PRINCIPAL COMPONENT ANALYSIS (PCA)
CONDUCTING A PRINCIPAL COMPONENT ANALYSIS
packages: GPArotation, magrittr, pacman, psych rio, tidyverse
dataset. import b5.csv
principal components analysis
- several different functions available or doing principal component analysis
- principal component model using default method (precomp)
- get summary statistics for PC
- screeplot of eigenvalues
very simple structure (VSS)
- or use “nfactors” to do the same
factor analysis
- calculate and plot factors with fa ()
hierarchical clustering
- hierarchical clustering of items ( iclust () )
PC with k factors
- PCA with no rotation
- PCA with oblique rotation

correlations good - for when looking at how one variable here - is connected to one variable
there
sometimes what to look at connections/associations for an entire group of variables
ex: several questions on a survey - that all assess , more or less, the same thing - but
- 1) want to be able to average them
- or2) want to see how they group with one another
use principal component analysis -or- factor analysis
- (2 closely related procedures)




#INSTALL AND LOAD PACKAGES

pacman: :p load(GPArotation, magrittr, pacman, psych, rio, tidyverse)

- GPArotation - gradient projection algorithm rotation for FACTORS

# LOAD AND PREPARE DATA
Import data from CSV, save as “df”:

df <- import (“data/b5.csv”)

- result: envir - data: df 18930 obs of 50 variables
- there are 10 variables each - for the 5 personality factors

Data
O df 18930 obs. of 50 variables

> # Get column names
> df %% colnames()

[1] "e1" "E2" "E3" "E4" "E5" "E6" "E7?" "E8" "E9" "E1@" "N1" "N2"
[13] "N3" "N4" "N5" "Ne" "N7" "N8" "N9" "N1@" "A1" "A2" "A3" "A4"
[25] "A5" "Ae" "A7" "A8" "A9" "AlQ" "C1" "C2" "C3" "C4" "(C5" "Ce"
[37] "Cc7" "C8" "C9" "Ci@" "O1" "02" "O3" "04" "05" "O0e" "O7" "08"
[49] "09" "o01@"

[1] "EL" "E2" "E3" "E4" "ES" "E6" "E7" "E8" "E9" "E10" "NI" "N2"
[13] "N3" "N4" "NS" NG "N7" "N8" "NO" "N1@" "Al" "A2" "A3" "A4"
[25] "AS" "AE" "A7" "AS" "A9" "A1@" "C1" "C2" "(3" "C4" "C5" "C6"
[37] "C7" "C8" "C9" "C10" "01" "02" "03" "04" "05" "06" "07" "08"
[49] "09" "010"




# PRINCIPAL COMPONENTS ANALYSIS
- like trying to draw a line thru multidimensional space - that adequately summarises a lot of the
variability
- ex HEIGHT WEIGHT - they are associated
- > can talk about a principal component = that is about SIZE or BIGNESS
- >use that - instead of these 2 CORRELATED DIMENSIONS
- adv - gives you a little bit less that have to deal with (maybe cancels out some of the noise)
but gets to the essential details of your particular analysis

Several dift functions available for doing principal component analysis
Three methods in R:

?prcomp # most common method (in R by default)
?princomp # slightly dift method - from pre-R language called S (in R by default)
?principal # method from psych package (favourite)

Principal component model using default method:

pc <- df %>%

prcomp (
center = TRUE # centers means to 0 (optional)
scale = TRUE # sets unit variance (helpful)

)

- df - has only the outcome of questions
- center values - gives all the same mean of 0
- scale values - gives all the same variance and standard deviation of 1
- important - bc IF your variables are on dift scales THEN the ones that have a larger
scale, dominate the analysis (dn want that)
- results: envir - data: pc large prgroup (5 elements, 8.4 Mb)

@ pc Large prcomp (5 elements, 8.8 MB)



Get summatry statistics for pc:

summary (pc)

- results:

- for each PC shows

Standard deviation
Proportion of Variance
Cumulative Proportion

Standard deviation
Proportion of Variance
Cumulative Proportion

Standard deviation
Proportion of Variance
Cumulative Proportion

Standard deviation
Proportion of Variance
Cumulative Proportion

Standard deviation
Proportion of Variance
Cumulative Proportion

Standard deviation
Proportion of Variance
Cumulative Proportion

Standard deviation
Proportion of Variance
Cumulative Proportion

Standard deviation
Proportion of Variance
Cumulative Proportion

Importanke-of components:

2.
Q.
Q.

=

PC1
837 2.
161 @.
lel Q.
PC8

.02448
.02099
.53392

PC15

.88770
.01576
.65578

PC22

. 79044
.01269
.75213

PC29

.72285
.01045
.83136

PC36

.66858
.0089%4
.89873

PC43

.61161
.00748
.95523

PC5@

.47050
.00443
.00000

importance of components PC1 PC2 PC3 ... PC50

- 1) standard deviation
- 2) proportion of variance
- 3) cumulative proportion

PC2 PC3 PC4 PC5 PCo PC7
15015 1.94001 1.8842 1.66227 1.2511 1.15342
09246 0.07527 0.0710 0.05526 0.0313 0.02661
25348 @.32875 ©.3998 0.45502 0.4863 0.51293

PC9  PC10 PC11 PC12 PC13 PC14
98413 0.9617 0.94714 ©.93146 @.91905 0.89562
01937 0.0185 0.01794 ©.91735 0.01689 0.01604
55329 ©.5718 0.58973 0.60708 0.62398 0.64002
PCle  PC17 PC18 PC19 PC20 PC21
.8574 0.8544 ©.84801 0.82540 0.81318 ©.81020
.0147 0.0146 ©.01438 0.01363 0.01323 0.01313
.6705 0.6851 ©.69946 0.71309 0.72631 @.73944

PC23  PC24 PC25 PC26 PC27 PC28
.78210 0.7681 @.76291 0.75388 @.74457 0.72978
.01223 0.0118 0.01164 0.01137 0.01109 0.01065
.76436 0.7762 0.78780 ©.79917 0.81026 0.82091

PC30 PC31 PC32 PC33 PC34 PC35
.71456 0.70840 0.70125 0.69817 0.69424 0.66920
.01021 0.01004 0.00984 0.00975 0.00%4 0.00896
.84157 ©0.85161 0.86144 0.87119 0.880@83 0.88979

PC37 PC38 PC39 PC40 PC41  PC42
.65893 0.64839 0.64463 0.63571 0.63006 0.6165
.00868 0.00841 0.00831 0.00808 0.00794 0.0076
.90741 ©.91582 0.92413 0.93221 0.94015 0.9477

PC44 PC45 PC46  PC47 PC48 PC49
.60308 ©.58938 ©.5873 0.5702 0.56901 @.55859
.00727 0.00695 0.0069 0.0065 0.00648 0.00624
.96251 0.96946 0.9764 ©.9829 ©.98933 0.99557

Q.
Q.
Q.

0.
0.
0.

- the principal components - is a way of proportioning the variability that is in the data




Screeplot of eigenvalues:

plot (pc)

- has to do with the rubble that falls off a side of a cliff. The biggest piles are right next to the
cliff, and then they taper down in descending order

- plot has PCs in descending order of proportional relevance

- Result:

-This one is not labelled - but tells you how much variability/variance each component accounts for
-first component - accounts for 8 units of variance (an eigenvalue)

-the next one accounts for 4, ... get to 5 very low at end

— lets us know that - even tho have 50 variables in our data - we might be able to boil it down to a
smaller number.
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- scree plot - is one of the tools - for assessing - how many components you should have in
your data

- this b5 dataset - is designed to have 5 components - so there is a little jump down in
relevance, after the 5 PC mark



IF trying to figure out - how many factors/components you should have in your data
THEN there are a few other approaches you can use:

1)
2)
3)
4)

Very Simple Structure (VSS)
Factor Analysis
Hierarchical Clustering

PC with K Factors

# VERY SIMPLE STRUCTURE (VSS)

use “very simple structure” to suggest number of factors

MAP = minimum absolute partial correlation

n is the proposed maximum number of factors

idea - when do principal component analysis - gives you weights, that can multiply every
variable by > to get a new component score for everything

in practice - people usually put a variable on one component - they average just one score
= VSS - is an attempt to find - how many components you need - when you are going to put
a variable - only into one component.

df %$>%
select (1:50) %>% # select first 50 variables (all the ones in dataset)
vss(n = 10) # run up to 10 possible factors/components
results:

Statistics by number of factors
vssl vss2 map dof chisq prob sgresid fit RMSEA BIC SABIC complex

1 0.46 0.00 0.0234 1175 247942 "} 76 0.46 0.105 236370 240104 1.0
2 0.53 0.61 0.0175 1126 181584 (7] 55 0.61 0.092 170494 174073 1.2
3 0.51 0.67 0.9133 1078 133756 0 41 0.71 ©.081 123139 126565 1.6
4 0.57 0.75 0.0103 1031 94542 [’} 29 0.79 0.069 84388 87664 1.5
5 0.63 0.78 0.0060 985 56723 (7] 22 0.85 0.055 47022 50152 1.3
6 0.64 0.76 0.0057 940 45066 ] 19 0.86 0.050 35809 38796 1.5
7 0.62 0.76 0.0052 89 36826 ] 18 0.87 0.046 28002 30849 1.6
8 0.61 0.75 0.0062 853 29070 0 17 0.88 0.042 20670 23380 1.7
9 0.62 0.75 0.0067 811 24933 0 16 0.88 0.040 16946 19523 1.8
10 0.62 0.75 0.0071 770 21043 0 15 0.89 0.037 13460 15907 1.8

eChisqg SRMR e(CRMS  eBIC

1 737929 0.126 0.129 726357
2 454648 0.099 0.103 443558
3 282088 0.078 0.083 271472
4 136940 0.054 0.059 126786
5 50472 0.033 0.037 40771
6 33927 0.027 0.031 24670
7 24042 0.023 0.027 15218
8 18301 0.020 0.024 10400
9 15790 0.018 0.023 7803
10 12722 0.017 0.021 5139




graph: Very Simple Structure
x = number of factors
- shows how many factors its adding (from 1 to 10)
y =very simple structure fit
- shows how well the model fits the data - goes from 0 at bottom, which is horrible, to 1
which is perfect (dn expect it to get to 1)

the numbers and lines in the graph - indicate - how many COMPONENTS are we going to allow
EACH VARIABLE to contribute
- in practice, it should be just 1 (so ignore the other lines)
- >look at line with 1’s - see that at 5 factors, the line flattens out (even goes downhill a bit)
- >>indicates that maybe a 5 factor model is appropriate (which makes sense, bc that is
what it was designed for)

Very Simple Structure

Call: vss(x = ., n = 1@)

Although the VSS complexity 1 shows 6 factors, it is probably more reasonable to think about 2 factors
VSS complexity 2 achieves a maximimum of @.78 with 5 factors

The Velicer MAP achieves a minimum of ©.01 with 6 factors

BIC achieves a minimum of 13459.82 with 1@ factors
Sample Size adjusted BIC achieves a minimum of 15906.84 with 1@ factors
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Or use “nfactors” to do the same (includes VSS)

df %>%
select (1:50) %>%
nfactors(n = 10)

- results: 4 graphs

4 graphs
- 1) very simple structure (like above) (flatten at 5 factors)
- 2) complexity (dips down at 5 factors)
- 3) empirical BIC (bayesian information criterion) (flattens out at 5)
- 4) root mean residual (bend at 5)
- >> each shows something distinctive going on at 5 factors
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- concl: taken together - all would suggest that 5 factors would be an appropriate solution for
our data

Number of factors
Call: vss(x = X, n = n, rotate = rotate, diagonal = diagonal, fm = fm,
n.obs = n.obs, plot = FALSE, title = title, use = use, cor = cor)
VSS complexity 1 achieves a maximimum of Although the vss.max shows 6 factor
s, it is probably more reasonable to think about 2 factors
VSS complexity 2 achieves a maximimum of @.78 with 5 factors
The Velicer MAP achieves a minimum of @.01 with 6 factors
Empirical BIC achieves a minimum of 5139.05 with 10 factors
Sample Size adjusted BIC achieves a minimum of 15906.84 with 1@ factors




# FACTOR ANALYSIS

Factor analysis using minimum residual (minres) method and oblimin rotation, which is
useful for simple structure.

Need to enter desired number of factors (from VSS or nfactors above)

closely related to principal component analysis (have a dift theory about the relationship bw
the factors and the variables) - but often used interchangeably

Calculate and plot factors with fa () :

df %>%

select (1:50) %>%

fa(
nfactors = 5,
rotate = “oblimin”
) ST>%

fa.diagram() %>%

print ()

oblimin oblique rotation (way to simplify the interpretation of the data)
T-pipe (t pipe feeds results to BOTH fa.diagram and print - without stopping in between)
results:

console: lots of info
- 1) shows 50 variables - along with the 5 factors (50 x 5)
- 2) commonality, uniqueness ...
this is not about theory of factor analysis
- is about - how to get the info you need to interpret your results
MR1 MRZ MR3 MRS MR4 h2 u2 com

El 0.69 0.04 -0.03 -0.01 0.01 0.46 0.54 1.0
E2 -0.70 -0.08 -0.04 0.04 0.00 0.48 0.52 1.0
E3 0.63 -0.17 0.16 0.09 -0.06 0.58 0.42 1.3
E4 -0.72 0.05 0.04 0.00 0.03 0.52 0.48 1.0
ES ©0.72 0.03 ©0.12 0.07 0.03 0.60 0.40 1.1
E6 -0.54 0.01 -0.08 ©0.01 -0.19 0.40 0.60 1.3
E7 0.74 0.00 0.06 0.02 -0.01 0.57 0.43 1.0
E8 -0.60 -0.04 0.11 0.07 -0.01 0.33 0.67 1.1
E9 0.64 0.04 -0.09 -0.02 0.09 0.40 0.60 1.1
E10 -0.65 0.10 ©0.03 0.00 0.01 0.45 0.55 1.0
Nl -0.06 0.69 ©.10 0.05 -0.05 0.49 0.51 1.1
N2 ©0.07 -0.51 -0.01 -0.09 0.050.27 0.73 1.1 1 401 007 -0.04 0.60 .12 0.39 0.61 1.1
N3 '0.11 0.61 @.20 0.1@ 0.01 @.43 9.57 1.4 CZ 0.05 @_04 0.08 _0_54 0 lz 0_31 0.69 1.2
N4 0.14 -0.30 -0.07 0.07 -0.07 0.14 0.86 1.8 (3 -9.08 ©.05 0.07 0.40 0.27 0.24 0.76 2.0
N5 .01 0.53 0.01 -0.05 -0.11 0.32 0.68 1.1 (4 -0.03 ©.30 0.01 -0.53 0.02 0.45 0.55 1.6
N6 ©.00 0.75 0.06 -0.01 -0.07 0.57 0.43 1.0 (5 ©0.08 ©.01 0.00 ©.63 -0.08 0.41 0.59 1.1
N7 ©.06 0.71 -0.05 -0.08 0.02 0.52 0.48 1.1 (6 ©0.02 0.1 0.05 -8.59 0.06 0.38 0.62 1.1
Ng ©.05 0.74 -0.06 -0.08 0.01 0.58 0.42 1.0 C7 -0.06 0.14 0.00 ©.56 0.05 0.30 0.70 1.2
N9 ©.04 0.73 -0.15 0.04 ©.00 0.54 0.46 1.1 (8 -0.02 0.16 -0.11 -0.45 -0.03 0.30 0.70 1.4
N10 -0.21 ©.58 ©0.03 -9.11 ©0.08 ©.47 0.53 1.4 €9 ©0.05 0.11 0.04 0.64 -0.03 0.41 0.59 1.1
Al  ©.05 0.09 -0.44 0.02 -0.07 0.20 0.80 1.2 gi“ ggg g-gg 221 g-;‘; 2 Zg 252 2 2:2; 1;
A2 0.28 -0.04 0.50 -0.04 ©.05 0.41 0.59 1.6 -9.95 -9.95 -9. : -36/0.64 1.
6 017 000 ooz oz & 0% ST 08Uk e s
A4 -0.06 0.03 0.8 -0.01 -0.01 0.62 0.38 1.0 "o, 99 .13 -9.13 .11 -0.47 0.26 0.74 1.5
AS -0.06 0.04 -0.66 0.05 0.00 0.450.55 1.0 o5 .15 g.01 -0.06 0.14 0.58 0.41 .59 1.3
A6 '0.@5 0.12 0.61 0.@2 _0.08 @.37 9.63 1.1 06 _0.04 @_94 _0.08 0_@6 _0 49 0.27 0.73 1.1
A7 -0.23 0.09 -0.61 0.05 -0.01 0.51 0.49 1.4 (7 .02 -0.10 -0.03 ©.17 0.49 0.30 0.70 1.3
A8 0.05 -0.02 0.58 0.05 0.02 0.36 0.64 1.0 08 -0.04 0.08 -0.11 -0.05 0.56 0.32 0.68 1.1
A9 ©0.04 0.10 0.70 0.03 0.04 .51 0.49 1.1 09 -0.19 .15 0.21 .04 0.35 0.20 0.80 2.7
Ale ©.28 -0.08 0.34 ©.11 ©0.06 0.31 0.69 2.4 01¢ 0.13 0.02 0.00 0.02 0.66 0.48 0.52 1.1




MR1 MRZ MR3 MR5 MR4

SS loadings 5.07 4.55 3.74 3.27 3.20
Proportion Var 0.10 .09 0.07 0.07 0.06
Cumulative Var 0.10 .19 0.27 3 0.40

0.3
Proportion Explained .26 ©.23 ©.19 0.16 0.16
Cumulative Proportion ©.26 ©.49 0.67 ©0.84 1.00

With factor correlations of
MR1 MR2 MR3 MRS MR4
MR1 1.00 -0.24 0.25 ©0.09 0.16
MR2 -0.24 1.00 -0.03 -0.24 -0.08
MR3 0.25 -0.03 1.00 0.14 0.07
MRS 0.09 -0.24 0.14 1.00 @.05
MR4 Q.16 -0.08 0.07 @.05 1.00

Mean item complexity = 1.3
Test of the hypothesis that 5 factors are sufficient.

df null model = 1225 with the objective function = 19.15 with Chi Square = 362087.3
df of the model are 985 and the objective function was 3

The root mean square of the residuals (RMSR) is @.03
The df corrected root mean square of the residuals is 0.04

The harmonic n.obs is 1893@ with the empirical chi square 50472.27 with prob < 0
The total n.obs was 18930 with Likelihood Chi Square = 56722.95 with prob < 0

Tucker Lewis Index of factoring reliability = @.808
RMSEA index = ©.055 and the 90 % confidence intervals are 0.054 0.055
BIC = 47022.17
Fit based upon off diagonal values = 0.97
Measures of factor score adequacy

MR1 MRZ MR3 MRS
Correlation of (regression) scores with factors ©.95 0.95 0.94 0.91

Multiple R square of scores with factors 0.91 0.90 0.87 0.84

Minimum correlation of possible factor scores 0.81 0.79 0.75 0.67
MR4

Correlation of (regression) scores with factors 0.91

Multiple R square of scores with factors 0.83

Minimum correlation of possible factor scores 0.66




chart: shows 5 dift factors MR1 .. MR5 on right - individual variables on left

black line = positive connections
dotted red = negative connections (but potentially still meaningful associations

Factor Analysis
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concl: this falls into the categories we expected - very easily




# HIERARCHICAL CLUSTERING
Hierarchical clustering of items with iclust ()

df %>%
select (1:50) %>
iclust ()

o

- so far: done this before - with the clustering of CASES (groups of people , or- units of
observation)

- now: do with VARIABLES (dift approach)

- call iclust function -

- results:

-console: lots output
-graph: 50 dift variables on left > at each step (how they get combined with one another)
ICLUST

- concl: fall into naturally relevant clusters - for how the 50 questions go into the 5
PERSONALITY FACTORS



# PC WITH K FACTORS
Principal components with set number , K, factors
1)First, PCA with NO rotation , specify 5 factors:

df %>% principal (nfactors = 5) # from psych package

- results: console

similar to other outputs (50 variables - 5 factors)

Principal Components Analysis

Call: principal(r = ., nfactors = 5)

Standardized loadings (pattern matrix) based upon correlation matrix

n
[*]
s -

RCI RC2 RCS RC3 RC4 h2 w2

E1 0.71 -0.05 ©0.05 0.01 ©0.03 0.52 0.48 1.0
E2 -0.72 ©0.00 -0.12 @.03 -0.03 0.53 0.47 1.1
E3 0.67 -0.26 ©.26 0.13 -0.02 0.60 0.40 1.7
E4 -0.74 ©.15 -0.05 -0.02 0©.00 0.57 0.43 1.1
ES ©0.74 -0.08 ©.22 0.10 ©.07 0.62 0.38 1.3
E6 -0.60 0.08 -0.16 -0.02 -0.23 0.45 0.55 1.5
E7 0.75 -0.10 ©.16 0.05 ©.03 0.61 0.39 1.1
E8§ -0.62 0.02 ©.06 0.07 -0.03 0.40 0.60 1.1
E9 0.67 -0.04 -0.03 -0.01 0.12 0.46 0.54 1.1
E10 -0.68 0.19 -0.06 -0.02 -0.02 0.50 0.50 1.2
N1 -0.11 0.73 0.07 -0.01 -0.07 0.55 0.45 1.1
N2 ©0.11 -0.56 ©0.01 -0.05 @.07 @.33 0.67 1.1
N3 -0.14 0.06 ©0.18 0.06 -0.01 0.49 0.51 1.3
N4 ©.16 -0.37 -0.04 0.10 -0.07 0.18 ©.82 1.7 1 ©0.05-0.10 0.01 ©0.65 0.12 0.450.55 1.1
(2 0.06 0.10 .05 -0.59 0.14 0.38 0.62 1.2
N5 -0.04 0.59 -0.02 -0.11 -0.14 0.38 0.62 1.2 5 "0, 505 909 0.47 .29 0.31 0.69 1.8
N6 -0.06 0.77 0.03 -0.08 -0.09 0.61 0.39 1.1 ¢4 g 95 .33 -0.04 -0.50 0.02 0.49 0.51 1.8
N7 0.00 0.73 -0.09 -0.15 ©.00 0.57 0.43 1.1 (5 0.09 -0.08 0.06 0.67 -0.10 0.48 0.52 1.1
N8 -0.01 0.76 -0.09 -0.16 -0.02 @0.61 0.39 1.1 C6 0.00 0.17 0.01 -0.64 0.07 0.44 0.56 1.2
N9 -0.04 0.74 -0.19 -0.04 -0.03 0.58 0.42 1.1 (7 -0.05 0.09 0.03 0.61 0.04 0.38 0.62 1.1
N10 -0.26 ©0.65 -0.04 -0.17 0.06 0.52 0.48 1.5 gg gg‘; g;i g;; g:s ggz gig gg‘z‘ iz
Al ©0.00 ©.08 -0.50 -0.01 -0.09 0.26 0.74 1.1 (14 504 509 0.06 0.53 0.25@.35 0.65 1.5
A2 0.35 -0.05 ©.57 0.00 ©.09 0.46 0.54 1.7 (1 .03 -0.04 -0.04 ©.05 .65 0.43 0.57 1.0
A3 0.13 0.27 -0.46 -0.20 0.09 0.35 0.65 2.3 02 0.00 0.23 -0.03 ©.01 -0.61 0.43 0.57 1.3
AL 0.04 0.06 0.830 .04 0.02 0.65 ©0.351.0 03 0.04 0.12 0.07 -0.09 0.59 0.37 0.63 1.2
AS -0.13 0.02 -0.71 0.01 -0.02 0.52 ©.48 1.1 04 0.03 0.13 -0.13 .08 -0.54 0.34 0.66 1.3
05 ©0.22 -0.06 -0.03 0.18 0.62 0.47 0.53 1.5
A6 -0.01 0.16 ©.65 0.03 -0.08 0.45 ©0.55 1.2 = 010 0.05 -0.09 ©.04 -0.56 8.33 B.67 1.1
A7 -0.31 0.10 -0.67 ©0.00 -0.05 0.56 0.44 1.5 07 ©0.08 -0.14 -0.01 ©.22 ©0.54 0.36 0.64 1.5
A8 0.12 -0.02 0.64 0.09 0.04 0.43 0.57 1.1 (03 0.00 ©.09 -0.13 -0.05 0.61 0.40 0.60 1.1
A9 0.12 0.12 0.73 0.07 0.07 0.56 0.44 1.1 09 -0.17 0.19 0.21 0.05 0.40 0.27 0.73 2.5
Al®@ 0.36 -0.13 ©0.42 ©.15 ©0.09 0.35 0.65 2.6 010 0.20 -0.02 0.02 ©.05 0.70 ©.53 0.47 1.2
RC1 RCZ RC5 RC3 RC4
SS loadings 5.52 5.15 4.35 3.91 3.82
Proportion Var 9.11 0.10 0.09 0.08 0.08
Cumulative Var 0.11 0.21 0.30 0.38 0.46
Proportion Explained @.24 0.23 0.19 0.17 0.17
Cumulative Proportion @.24 9.47 0.66 0.83 1.00

Mean item complexity = 1.3
Test of the hypothesis that 5 components are sufficient.

The root mean square of the residuals (RMSR) is 0.04
with the empirical chi square 81657.81 with prob < @

Fit based upon off diagonal values = 0.95




2)second, PCA with oblimin (oblique) rotation:

df %>%
principal (
nfactors = 5,
rotate = “oblimin”
) $>%
plot () # plot position of variables on components
- result:
plot - 5 components on a diagonal
- plots show how dift variables - load on the dift factors
Principal Component Analysis
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SUMMARY:

- another way of looking at the associations of individual variables, and how they might be
combined - into larger factors or components, which
- 1) reduces the number of the number of things we have to deal with
- and 2) can help cancel out some of the idiosyncratic variation of individual variables -
to get a clearer look on the signal on the noise in your data




