Department of Electrical and Computer Engineering

The University of Texas at Austin

EE 306, Fall 2023
Problem Set 6

Due: Not to be turned in
Yale N. Patt, Instructor

TAs: Chester Cai, Kayvan Mansoorshahi, Sophia Jiang, Jaeyoung Park, Varun
Arumugam, Anna Guo, Nadia Houston, Asher Nederveld, Edgar Turcotte

Note: This problem set is unusually long, and is not to be turned in. We have put it
together and handed it out to give you some challenging examples to help you prepare
for the final exam.

1. Jane Computer (Bob's adoring wife), not to be outdone by her husband, decided
to rewrite the TRAP x22 handler at a different place in memory. Consider her
implementation below. If a user writes a program that uses this TRAP handler to
output an array of characters, how many times is the ADD instruction at the
location with label A executed? Assume that the user only calls this "new" TRAP
x22 once. Is it ok to call TRAP x21 within this "new" Trap routine? Explain why or
why not in 20 words or fewer.

: TRAP handler

; Outputs ASCII characters stored in consecutive memory locations.

; RO points to the first ASCII character before the new TRAP x22 is called.

; The null character (x00) provides a sentinel that terminates the output
sequence.

.ORIG x020F
START LDR R1, RO, #0

BRz DONE

ST RO, SAVERO

ADD RO, R1, #0

TRAP x21

LD RO, SAVERO
A ADD RO, RO, #1

BRnzp START
DONE RTI

SAVERO BLKW #1

.END

2. (Adapted from 9.16)

a.
b.

How many TRAP service routines can be implemented in the LC-3? Why?
Why must a RTI instruction be used to return from a TRAP routine? Why
won't a BRnzp (unconditional BR) instruction work instead?

How many accesses to memory are made during the processing of a
TRAP instruction?

3. (Adapted from 8.15)

a.

What does the following LC-3 program do?

ORIG x3000
LDR3, A
STIR3, KBSR
AGAIN LD RO,B
TRAP X21
BRnzp AGAIN
A FILL X4000
B FILL X0032
KBSR FILL XFEOO
END

If someone strikes a key, the program will be interrupted and the keyboard
interrupt service routine will be executed as shown below. What does the
keyboard interrupt service routine do?

.ORIG X1000
LDI RO,KBDR
TRAP X21
TRAP X21
RTI

KBDR FILL XFEO2
.END

Finally, suppose the program of part a started executing, and someone
sitting at the keyboard struck a key. What would you see on the screen?

4. (9.34) What does the following LC-3 program do?

.ORIG x3000
LD RO, ASCII
LD R1, NEG

AGAIN LDI R2, DSR
BRzp AGAIN
STI RO, DDR
ADD RO, RO, #1
ADD R2, RO, R1

BRnp AGAIN
HALT
ASCII FILL x0041
NEG FILL xFFB6
DSR FILL xFEO4
DDR FILL xFEO6
.END

5. (Adapted from 10.1)
What are the defining characteristics of a stack? Give two implementations of a
stack and describe their differences.

6. Consider the following LC-3 assembly language program. Assuming that the
memory locations DATA get filled before the program executes, what is the
relationship between the final values at DATA and the initial values at DATA?

.ORIG x3000
LEA RO, DATA

AND R1,R1,#0

ADD R1,R1,#9
LOOP1 ADD R2, RO, #0

ADD RS3, R1,#0
LOOP2 JSR SUB1

ADD R4, R4, #0

BRzp LABEL

JSR SUB2
LABEL ADD R2,RZ2, #1

ADD RS, R3, #-1

BRp LOOP2
ADD RI1,R1, #1

BRp LOOP1
HALT
DATA BLKW #10
SUB1 LDR R5, R2, #0
NOT R5,R5

ADD R5, R5, #1
LDR R6, R2, #1
ADD R4,R5,R6
RET

SuB2 LDR R4,R2, #0
LDR RS, R2, #1
STR R4, R2, #1
STR R5,R2,#0
RET
.END

7. During the initiation of the interrupt service routine, the N, Z, and P condition
codes are saved on the stack. By means of a simple example show how
incorrect results would be generated if the condition codes were not saved. Also,
clearly describe the steps required for properly handling an interrupt.

8. The program below counts the number of zeros in a 16-bit word. Fill in the
missing blanks below to make it work.

.ORIG x3000
AND RO, RO, #0
LD R1, SIXTEEN
LD R2, WORD

A BRn B
B

BRz C

BR A ; note: BR = BRnzp
C ST RO, RESULT

HALT

SIXTEEN .FILL #16
WORD BLKW #1
RESULT BLKW #1

.END

After you have the correct answer above, what one instruction can you change
(without adding any instructions) that will make the program count the number of
ones instead?

. Fill in the missing blanks so that the subroutine below implements a stack
multiply. That is it pops the top two elements off the stack, multiplies them, and
pushes the result back on the stack. You can assume that the two numbers will
be non-negative integers (greater than or equal to zero) and that their product will
not produce an overflow. Also assume that the stack has been properly
initialized, the PUSH and POP subroutines have been written for you and work
just as described in class, and that the stack will not overflow or underflow.

Note: All blanks must be filled for the program to operate correctly.

MUL

ST RO, SAVERO
ST R1, SAVER1
ST R2, SAVER2
ST R5, SAVERS
AND R2, R2, #0
JSR POP

ADD R1, RO, #0
JSR POP

ADD R1, R1, #0

AGAIN ADD R2, R2, RO

BRp AGAIN
DONE ADD RO, R2, #0
JSR PUSH

LD RO, SAVERO

LD R1, SAVER1
LD R2, SAVER2
LD RS, SAVERS
RET

10.The program below calculates the closest integer greater than or equal to the
square root of the number stored in NUM, and prints it to the screen. That is, if
the number stored in NUM is 25, "5" will be printed to the screen. If the number
stored in NUM is 26, "6" will be printed to the screen. Fill in the blanks below to
make the program work.

Note: Assume that the value stored at NUM will be between 0 an 81.

.ORIG x3000
AND R2, R2, #0
LD R3, NUM
BRz OUTPUT
NOT R3, R3
ADD R3, R3, #1
OUTLOOP ADD R2, R2, #1

AND R1, R1, #0

INLOOP ADD R1, R1, R2
ADD RO, RO, #-1
BRp INLOOP

BRn OUTLOOP
OUTPUT LD RO, ZERO

TRAP x21

HALT
NUM .BLKW 1
ZERO FILL x30

.END

11. The figure below shows the part of the LC-3 data path that deals with memory
and I/O. Note the signals labeled A through F. A is the memory enable signal, if it
is 1 memory is enabled, if it is 0, memory is disabled. B, C, and D are the load
enable signals for the Device Registers. If the load enable signal is 1, the register

is loaded with a value, otherwise it is not. E is the 16-bit output of INMUX, and F
is the 2-bit select line for INMUX.

/— GateMDR

4 LD.MDR

<— MIO.EN RW MIO.EN

MAR k+—LD.MAR

L4
. | 4'7 \J J/.,
ADDR. CTL.
R < MEMORY LOGIC | :
]A F[1:01 | Ct--+

MEM.EN

E[15:0] (.,
1

INMU X ™Y

_+ AAA

The initial values of some of the processor registers and the 1/O registers, and
some memory locations are as follows:

RO = x0000 KBSR = x8000 M[x3009] = xFEOO
PC = x3000 KBDR = x0061 M[x300A] = xFE02
DSR = x8000 M[x300B] = xFE04
DDR = x0031 M[x300C] = xFE06

During the entire instruction cycle, memory is accessed between one and three
times (why?). The following table lists two consecutive instructions to be
executed on the LC-3. Complete the table with the values that each signal or
register takes right after each of the memory accesses performed by the
instruction. If an instruction does not require three memory accesses, draw a line
across the unused accesses. To help you get started, we have filled some of the
values for you.

PC Instruction Access | MAR A |B [C |D |E[15:0] | F[1] [F[O] [MDR
x3000 [LD RO, x9 1 x3000 x2009

2

3
x3001 | LDR RO, RO, #0 |1

12.Note: This problem is NOT easy. In fact, it took me a while to solve it, and | am
supposed to be an expert on 306 material. So, if you are struggling to pass this
course, | suggest you ignore it. On the other hand, if you are a hot shot and think
no problem is beyond you, then by all means go for it. We put it on the problem
set to keep some of the hot shots out of mischief. We would not put it on the final,
because we think it is too difficult to put on the exam.

A programmer wrote this program to do something useful. He, however, forgot to
comment his code, and now can't remember what the program is supposed to
do. Your job is to save him the trouble and figure it out for him. In 20 words or
fewer tell us what valuable information the program below provides about the
value stored in memory location INPUT. Assume that there is a non-zero value at
location INPUT before the program is executed.

HINT: When testing different values of INPUT pay attention to their bit patterns.
How does the bit pattern correspond to the RESULT?

.ORIG x3000
LD RO, INPUT
AND R3, R3, #0
LEA R6, MASKS
LD R1, COUNT
LOOP LDR R2, R6, #0
ADD R3, R3, R3
AND R5, RO, R2
BRz SKIP

ADD R3, R3, #1
ADD RO, R5, #0
SKIP ADD RS, R6, #1
ADD R1, R1, #-1
BRp LOOP
ST R3, RESULT
HALT
COUNT FILL #4
MASKS FILL OXFF00
FILL OXxFOFO
FILL 0xCCCC
FILL OXAAAA
INPUT BLKW 1
RESULT .BLKW 1
END

13.Figure out what the following program does.

.ORIG X3000
LEARZ2, C
LDR R1, R2, #0
LDIR6, C
LDR RS, R1, #-3
STR5,C
LDR RS, R1, #-4
LDR RO, R2, #1
JSRR R5
AND R3, R3, #0
ADD R3, R3, #7
LEAR4,B

A STR R4, R1, #0
ADD R4, R4, #2
ADD R1, R1, #1
ADD R3, R3, #-1
BRP A
HALT

B ADD R2, R2, #1
LDR RO, R2, #0
JSRR R5
TRAP X29

ADD R2, R2, #15
ADD RO, R2, #3
LD R5, C
TRAP X2B
ADD R2, R2, #5
LDR RO, R2, #0
JSRR R5
TRAP X27
JSRR R5
JSRR R6

C .FILL X25
.STRINGZ "EE306 and tests are awesome"
.END

14.(Adapted from 9.53)

Suppose we want to introduce two extra interrupts to the LC-3: INTA and INTB.
INTA has priority 2 and an interrupt vector of x50. INTB has priority 4 and an
interrupt vector of x60.

Recall that the priority is specified in bits [10:8] of the PSR. In fact, the full PSR
specification is:

15 14 13 12 11 10 9 8 7 6 5
PSR: [Pr | 0O | O | O [O] Priority (0[O0][O |

432 10
0OJO[NJZ]|P]

where PSR[15] 0 (Supervisor mode), 1 (User mode).

PSR[14:11] = 0000

PSR[10:8] = priority, O (lowest) to 7 (highest).
PSR[7:3] = 00000

PSR[2:0] = condition codes for N,Z,.P

We want to provide some flexibility for developers to add their own INTA and
INTB service routines, so we currently left them blank as shown below:

INTA service routine: INTB service routine:
.ORIG x1000 .ORIG x2000
RTI RTI

.END .END

a. In order to support INTA and INTB, the interrupt vector table must have
entries. Show the addresses of these entries and the contents of those

memory locations.

Memory Address

Content

b. Show how the content of PSR changes after the following user program
starts executing at priority 0 and right before the HALT instruction.

.ORIG x3000
LD RO, NUM
INTA occurs
AND R1,R1,#0
ADD R1,R1,#5
INTB occurs
ADD R2, RO, R1
HALT

NUM .FILL xFFF1

Changes

PSR Content

Initial

1 0000 000 00000 010

15. Fill out the control store table for all of the states. If a state does not care about a
particular signal, write down x.

You can either build your own table from excel/google sheets.

Empty Sheets: & Empty Control Store 306

https://docs.google.com/spreadsheets/d/1kR8bFfNAs0XH5-6TvuhYUaswEeEexBP0mW9rB03pRUA/edit?usp=sharing

	Department of Electrical and Computer Engineering
	The University of Texas at Austin

