
Department of Electrical and Computer Engineering

The University of Texas at Austin
EE 306, Fall 2023
Problem Set 6
Due: Not to be turned in
Yale N. Patt, Instructor
TAs: Chester Cai, Kayvan Mansoorshahi, Sophia Jiang, Jaeyoung Park, Varun
Arumugam, Anna Guo, Nadia Houston, Asher Nederveld, Edgar Turcotte

Note: This problem set is unusually long, and is not to be turned in. We have put it
together and handed it out to give you some challenging examples to help you prepare
for the final exam.

1.​ Jane Computer (Bob's adoring wife), not to be outdone by her husband, decided
to rewrite the TRAP x22 handler at a different place in memory. Consider her
implementation below. If a user writes a program that uses this TRAP handler to
output an array of characters, how many times is the ADD instruction at the
location with label A executed? Assume that the user only calls this "new" TRAP
x22 once. Is it ok to call TRAP x21 within this "new" Trap routine? Explain why or
why not in 20 words or fewer.​

; TRAP handler
; Outputs ASCII characters stored in consecutive memory locations.
; R0 points to the first ASCII character before the new TRAP x22 is called.
; The null character (x00) provides a sentinel that terminates the output
sequence.

.ORIG x020F
START​ LDR R1, R0, #0

BRz DONE
ST R0, SAVER0
ADD R0, R1, #0
TRAP x21
LD R0, SAVER0

A​ ​ ADD R0, R0, #1
BRnzp START

DONE​​ RTI

SAVER0​ .BLKW #1
.END

2.​ (Adapted from 9.16)
a.​ How many TRAP service routines can be implemented in the LC-3? Why?
b.​ Why must a RTI instruction be used to return from a TRAP routine? Why

won't a BRnzp (unconditional BR) instruction work instead?
c.​ How many accesses to memory are made during the processing of a

TRAP instruction?

3.​ (Adapted from 8.15)
a.​ What does the following LC-3 program do?

.ORIG x3000
LD R3 , A

 ​ ​ STI R3, KBSR
AGAIN​ LD R0,B

TRAP X21
BRnzp AGAIN

A ​ ​ .FILL X4000
B ​ ​ .FILL X0032
KBSR ​ .FILL XFE00
 ​ ​ .END

b.​ If someone strikes a key, the program will be interrupted and the keyboard

interrupt service routine will be executed as shown below. What does the
keyboard interrupt service routine do?​

 ​ ​ .ORIG X1000
 ​ ​ LDI R0,KBDR
 ​ ​ TRAP X21
 ​ ​ TRAP X21
 ​ ​ RTI
KBDR ​ .FILL XFE02
 ​ ​ .END

c.​ Finally, suppose the program of part a started executing, and someone
sitting at the keyboard struck a key. What would you see on the screen?

4.​ (9.34) What does the following LC-3 program do?

 ​ ​ .ORIG x3000
 ​ ​ LD R0, ASCII
 ​ ​ LD R1, NEG
AGAIN ​ LDI R2, DSR
 ​ ​ BRzp AGAIN
 ​ ​ STI R0, DDR
 ​ ​ ADD R0, R0, #1
 ​ ​ ADD R2, R0, R1

BRnp AGAIN
 ​ ​ HALT
ASCII ​ .FILL x0041
NEG ​ .FILL xFFB6
DSR ​ .FILL xFE04
DDR ​ .FILL xFE06
 ​ ​ .END

5.​ (Adapted from 10.1)​
What are the defining characteristics of a stack? Give two implementations of a
stack and describe their differences.​

6.​ Consider the following LC-3 assembly language program. Assuming that the
memory locations DATA get filled before the program executes, what is the
relationship between the final values at DATA and the initial values at DATA?​
​

.ORIG x3000
LEA ​ R0, DATA

AND R1, R1, #0
ADD R1, R1, #9

LOOP1 ​ ADD R2, R0, #0
 ​ ​ ADD R3, R1, #0
LOOP2 ​ JSR SUB1
 ​ ​ ADD R4, R4, #0
 ​ ​ BRzp LABEL
 ​ ​ JSR SUB2
LABEL ​ ADD R2, R2, #1
 ​ ​ ADD R3, R3, #-1

 ​ ​ BRp LOOP2
 ​ ​ ADD R1, R1, #-1
 ​ ​ BRp LOOP1
 ​ ​ HALT
DATA ​ .BLKW #10
SUB1 ​ LDR R5, R2, #0
 ​ ​ NOT R5, R5
 ​ ​ ADD R5, R5, #1
 ​ ​ LDR R6, R2, #1
 ​ ​ ADD R4, R5, R6
 ​ ​ RET
SUB2 ​ LDR R4, R2, #0
 ​ ​ LDR R5, R2, #1
 ​ ​ STR R4, R2, #1
 ​ ​ STR R5, R2, #0
 ​ ​ RET
 ​ ​ .END

7.​ During the initiation of the interrupt service routine, the N, Z, and P condition
codes are saved on the stack. By means of a simple example show how
incorrect results would be generated if the condition codes were not saved. Also,
clearly describe the steps required for properly handling an interrupt.​

8.​ The program below counts the number of zeros in a 16-bit word. Fill in the
missing blanks below to make it work.​

 .ORIG x3000
 ​ AND R0, R0, #0
 ​ LD R1, SIXTEEN
 ​ LD R2, WORD
A ​ BRn B
 ​ ________________​ ​
B ​ ________________
 ​ BRz C
 ​ ________________​
 ​ BR A​ ; note: BR = BRnzp
C ​ ST R0, RESULT
 ​ HALT

SIXTEEN ​.FILL #16
WORD ​ .BLKW #1
RESULT ​ .BLKW #1

 .END

After you have the correct answer above, what one instruction can you change
(without adding any instructions) that will make the program count the number of
ones instead?

9.​ Fill in the missing blanks so that the subroutine below implements a stack
multiply. That is it pops the top two elements off the stack, multiplies them, and
pushes the result back on the stack. You can assume that the two numbers will
be non-negative integers (greater than or equal to zero) and that their product will
not produce an overflow. Also assume that the stack has been properly
initialized, the PUSH and POP subroutines have been written for you and work
just as described in class, and that the stack will not overflow or underflow.​
​
Note: All blanks must be filled for the program to operate correctly.​

MUL ​ _______________
 ​ ST R0, SAVER0
​ ​ ST R1, SAVER1
 ​ ST R2, SAVER2
 ​ ST R5, SAVER5
 ​ AND R2, R2, #0
 ​ JSR POP
 ​ ADD R1, R0, #0
 ​ JSR POP
 ​ ADD R1, R1, #0
 ​ _______________

AGAIN ​ ADD R2, R2, R0
 ​ _______________
 ​ BRp AGAIN
DONE ​ ADD R0, R2, #0
 ​ JSR PUSH
 ​ _______________
 ​ LD R0, SAVER0

 ​ LD R1, SAVER1
 ​ LD R2, SAVER2
 ​ LD R5, SAVER5
 ​ RET

10.​The program below calculates the closest integer greater than or equal to the
square root of the number stored in NUM, and prints it to the screen. That is, if
the number stored in NUM is 25, "5" will be printed to the screen. If the number
stored in NUM is 26, "6" will be printed to the screen. Fill in the blanks below to
make the program work.​
​
Note: Assume that the value stored at NUM will be between 0 an 81.​

.ORIG x3000
 ​ ​ AND R2, R2, #0
 ​ ​ LD R3, NUM
 ​ ​ BRz OUTPUT
 ​ ​ NOT R3, R3
 ​ ​ ADD R3, R3, #1
OUTLOOP ​ ADD R2, R2, #1
 ​ ​ _______________
 ​ ​ AND R1, R1, #0
INLOOP ​ ADD R1, R1, R2
 ​ ​ ADD R0, R0, #-1
 ​ ​ BRp INLOOP
 ​ ​ _______________
 ​ ​ BRn OUTLOOP
OUTPUT ​ LD R0, ZERO
 ​ ​ _______________
 ​ ​ TRAP x21
 ​ ​ HALT
NUM ​ .BLKW 1
ZERO ​ .FILL x30
 ​ ​ .END

11.​The figure below shows the part of the LC-3 data path that deals with memory
and I/O. Note the signals labeled A through F. A is the memory enable signal, if it
is 1 memory is enabled, if it is 0, memory is disabled. B, C, and D are the load
enable signals for the Device Registers. If the load enable signal is 1, the register

is loaded with a value, otherwise it is not. E is the 16-bit output of INMUX, and F
is the 2-bit select line for INMUX.​
​

​
​
The initial values of some of the processor registers and the I/O registers, and
some memory locations are as follows:

R0 = x0000 KBSR = x8000 M[x3009] = xFE00

PC = x3000 KBDR = x0061 M[x300A] = xFE02

 DSR = x8000 M[x300B] = xFE04

 DDR = x0031 M[x300C] = xFE06

During the entire instruction cycle, memory is accessed between one and three
times (why?). The following table lists two consecutive instructions to be
executed on the LC-3. Complete the table with the values that each signal or
register takes right after each of the memory accesses performed by the
instruction. If an instruction does not require three memory accesses, draw a line
across the unused accesses. To help you get started, we have filled some of the
values for you.

PC Instruction Access MAR A B C D E[15:0] F[1] F[0] MDR

x3000 LD R0, x9 1 x3000 x2009

2

3

x3001 LDR R0, R0, #0 1

2

3

12.​Note: This problem is NOT easy. In fact, it took me a while to solve it, and I am
supposed to be an expert on 306 material. So, if you are struggling to pass this
course, I suggest you ignore it. On the other hand, if you are a hot shot and think
no problem is beyond you, then by all means go for it. We put it on the problem
set to keep some of the hot shots out of mischief. We would not put it on the final,
because we think it is too difficult to put on the exam.​
​
A programmer wrote this program to do something useful. He, however, forgot to
comment his code, and now can't remember what the program is supposed to
do. Your job is to save him the trouble and figure it out for him. In 20 words or
fewer tell us what valuable information the program below provides about the
value stored in memory location INPUT. Assume that there is a non-zero value at
location INPUT before the program is executed.​
​
HINT: When testing different values of INPUT pay attention to their bit patterns.
How does the bit pattern correspond to the RESULT?

​
 .ORIG x3000

 ​ LD R0, INPUT
 ​ AND R3, R3, #0
 ​ LEA R6, MASKS
 ​ LD R1, COUNT
LOOP ​ LDR R2, R6, #0
 ​ ADD R3, R3, R3
 ​ AND R5, R0, R2
 ​ BRz SKIP

 ​ ADD R3, R3, #1
 ​ ADD R0, R5, #0
SKIP ​ ADD R6, R6, #1
 ​ ADD R1, R1, #-1
 ​ BRp LOOP
 ​ ST R3, RESULT
 ​ HALT
COUNT ​ .FILL #4
MASKS ​ .FILL 0xFF00
 ​ .FILL 0xF0F0
 ​ .FILL 0xCCCC
 ​ .FILL 0xAAAA
INPUT ​ .BLKW 1
RESULT ​ .BLKW 1
 ​ .END​

13.​Figure out what the following program does.

​ ​ .ORIG X3000
​ ​ LEA R2, C
​ ​ LDR R1, R2, #0
​ ​ LDI R6, C
​ ​ LDR R5, R1, #-3
​ ​ ST R5, C
​ ​ LDR R5, R1, #-4
​ ​ LDR R0, R2, #1
​ ​ JSRR R5
​ ​ AND R3, R3, #0
​ ​ ADD R3, R3, #7
​ ​ LEA R4, B​
A​ ​ STR R4, R1, #0
​ ​ ADD R4, R4, #2
​ ​ ADD R1, R1, #1
​ ​ ADD R3, R3, #-1
​ ​ BRP A
​ ​ HALT
B​ ​ ADD R2, R2, #1
​ ​ LDR R0, R2, #0
​ ​ JSRR R5
​ ​ TRAP X29

​ ​ ADD R2, R2, #15
​ ​ ADD R0, R2, #3
​ ​ LD R5, C
​ ​ TRAP X2B
​ ​ ADD R2, R2, #5
​ ​ LDR R0, R2, #0
​ ​ JSRR R5
​ ​ TRAP X27
​ ​ JSRR R5
​ ​ JSRR R6
C​ ​ .FILL X25
​ ​ .STRINGZ "EE306 and tests are awesome"
​ ​ .END

14.​(Adapted from 9.53)

Suppose we want to introduce two extra interrupts to the LC-3: INTA and INTB.
INTA has priority 2 and an interrupt vector of x50. INTB has priority 4 and an
interrupt vector of x60.

Recall that the priority is specified in bits [10:8] of the PSR. In fact, the full PSR
specification is:

We want to provide some flexibility for developers to add their own INTA and
INTB service routines, so we currently left them blank as shown below:

INTA service routine: INTB service routine:

.ORIG x1000​​ ​ ​ ​ ​ ​ .ORIG x2000
RTI ​ ​ ​ ​ ​ ​ ​ ​ RTI
.END ​​ ​ ​ ​ ​ ​ ​ .END

a.​ In order to support INTA and INTB, the interrupt vector table must have
entries. Show the addresses of these entries and the contents of those
memory locations.

Memory Address Content

b.​ Show how the content of PSR changes after the following user program
starts executing at priority 0 and right before the HALT instruction.

​ ​ ​ .ORIG x3000
​ ​ ​ LD R0, NUM

INTA occurs
AND R1, R1, # 0
ADD R1, R1, # 5
INTB occurs
ADD R2, R0, R1
HALT

NUM ​ .FILL xFFF1

Changes PSR Content

Initial 1 0000 000 00000 010

15. Fill out the control store table for all of the states. If a state does not care about a
particular signal, write down x.

You can either build your own table from excel/google sheets.

Empty Sheets: Empty Control Store 306

https://docs.google.com/spreadsheets/d/1kR8bFfNAs0XH5-6TvuhYUaswEeEexBP0mW9rB03pRUA/edit?usp=sharing

	Department of Electrical and Computer Engineering
	The University of Texas at Austin

