
CloudEvents Plugin for Jenkins

Google Summer of Code 2021 Project Proposal

Shruti Chaturvedi
shrutichaturvedi16.sc@gmail.com

Kanpur, India
GitHub Username: ShrutiC-git

Project Abstract:

Enhance interoperability in the current Jenkins architecture by designing a

plugin for Jenkins which emits and consumes CloudEvents. CloudEvents is

an industry-adopted standard specification for describing an event and

the event data (also referred to as Payload). This project enables Jenkins

to produce CloudEvents (as a source) for common Jenkins events like a

project-build success or failure event, which other tools (example Azure

Event Grid, AWS Kinesis, Apache Pulsar Stream and more) can consume.

This project also enables Jenkins to be configured as a sink where

external tools (e.g. Amazon Kinesis) can send CloudEvents, and Jenkins

can consume those events to perform a Jenkins action (e.g. trigger a

Jenkins job build). Implementing this plugin in a workflow will give

Jenkins users the ability to use and extend an event-driven Jenkins

workflow to systems which use the CloudEvent-spec.

End-Goal of the Project:

The goal of this project is to enable interoperability between Jenkins and

external tools like Azure Event Grid, Debezium, Knative, et cetera, which

support CloudEvents. CloudEvents specification is a standard spec for

describing events. By using the CloudEvents spec for Jenkin events, we

are making Jenkins compatible with tools and systems which use

CloudEvents spec for their events. This will allow developers to integrate

Jenkins in their workflows with tools which use CloudEvents. Additionally,

mailto:shrutichaturvedi16.sc@gmail.com
https://github.com/ShrutiC-git
https://cloudevents.io/

using this standard spec for events will make extending Jenkins

capability to other platforms in the future easy.

Project Description:

As development is becoming more complex, developers want tools which

can integrate well with other systems they use to make the development

and deployment cycles faster. Being a CI tool with CD capabilities,

Jenkins greatly enhances development, testing and deployment cycles by

integrating with other tools. Currently, Jenkins does not support

industry-standard specification for emitting and consuming events. This

makes it hard to integrate Jenkins to work with events which support the

industry-standard spec for events (CloudEvents). This project will solve

that problem by implementing a plugin to emit and consume CloudEvents

from Jenkins.

General Understanding

●​ According to CloudEvents.io, CloudEvents is a spec for describing

event data in a standard way. CloudEvents spec is used in

managing interoperability between systems which emit and

consume events.

●​ A producer generates a CloudEvent-spec compliant event. A

consumer can express interest in this event and consume it without

having to worry about the structure of the event or the payload

since CloudEvent spec defines a standard way of design for events.

●​ CloudEvents defines metadata, which contains information like the

source of the event, the type of the event and the target to allow

efficient routing, and also data about the event (e.g. the build#,

Github userID of the user who initiated the event).

●​ CloudEvents offers a variety of protocols (e.g. HTTP, Kafka) and

encodings (JSON, Avro) for serializing events.

https://cloudevents.io/

●​ Event-driven tools like Azure Event Grid, Tekton, Keptn (a CD tool),

AWS EventBridge, et cetera emit CloudEvent-compliant events.

Consider an example of how Tekton, an Open-Source,

event-driven, CI/CD tool emits CloudEvent-compliant events:

⇒ Run of a Pipeline in Tekton becomes the

resource/event-source which emits a ‘Pipeline Succeeded’

CloudEvent. This CloudEvent uses JSON encoding and is sent

over HTTP between different systems. The event payload

(event data) contains information like the name of the

pipeline, steps within the pipeline, environment vars used by

the steps, description of the steps and more. (1)

⇒ Now for this Tekton event, a Sink is configured (fig below).

A Sink will enable any system to receive this event and act

on it. To configure the sink, a user will have to provide the

Sink URL (REST API Endpoint in case of a Request/Response

like system) or alternatively provide the Sink topic URL

(Apache Pulsar or Kafka streaming like EDA pattern). (2)

⇒ A post request will be sent to the Sink’s API, upon which

the Sink will receive this CloudEvent as it is emitted (the

retrieval of this Event by the Sink may vary by architecture).

(3)

●​ Several tools which can consume Events, like Azure EventGrid are

called Sinks. These tools have SDK Clients to configure a Sink

where CloudEvents from a Source can be sent. For example, Azure

provides a client library for Azure Event Grid. This client can

be configured from a Source application with Access Keys and Topic

URL to send events to Event Grid from whereon Event Grid can be

configured to trigger Azure-specific actions.

-​ One way to configure a sink would be using the

Request/Response architecture similar to the architecture

used by Webhooks. This, however, is not the most conducive

architecture for an event-driven system. We’ll look at

EDA-sink implementation in sections ahead: High-level

implementation; Detailed-implementation

●​ Similar to the diagram below, a Source which emits a CloudEvent

will send a CloudEvent-complaint event to the sink’s REST API

endpoint or a topic URL depending upon the architecture used. The

sink will this event to perform a task. The source only cares about

the exposed endpoint where it would send the events to.

Architecture of the sink (what processed/receives the event) is

independent of the Source.

●​ In a more complex system, this architecture can also be

implemented using either a Broker-like pattern (consider Pub/Sub

method) or an Event-Mediator pattern where the Broker will

perform an intermediating role between the Source emitting Cloud

Events and the Sink consuming these events. These are EDA

Designs pattern implementations.

Project Deliverables:
-​ Jenkins as a Source and integration with external tools (Phase I)

-​ Global Plugin Config as part of Jenkins as a Source (Phase I)

-​ Jenkins as a Sink (Phase II)

-​ Global Plugin Config as part of Jenkins as a Sink (Phase I + II)

Implementation in High-Level Terms:

Jenkins needs to be implemented as a Source emitting CloudEvents

and as a Sink consuming CloudEvents. We will start by implementing

the architecture which is used by tools like Tekton, Debezium. Here are

the high-level steps, which we will look into detail in the ‘A Closer Look’

section ahead:

1.​ Jenkins as a Source (HL):

-​ Jenkins events will be wrapped as CloudEvents using

CloudEvents Java SDK. We will then be configuring external

tool’s Sink-clients for cloudevents emerging from Jenkins; this

is where Jenkins events will be sent. A common example

would be using Azure Event Grid client library for Java.

⇒ This Azure Event Grid Java SDK will be used to serialize

and publish events to EventGrid (sink), which is compatible

https://github.com/cloudevents/sdk-java
https://docs.microsoft.com/en-us/java/api/overview/azure/messaging-eventgrid-readme?view=azure-java-stable

with CloudEvents. To use EventGrid, users will have to create

a topic to which our SDK Client will send the CloudEvent to in

Azure portal/console.

-​ The jenkins plugin will have support/integration for

common tools which consume CloudEvents like Amazon

Kinesis, Google Cloud Pub/Sub, Azure EventGrid and more

depending upon possible integrations needed. It can also work

by supplying a Sink URL/Topic URL for Event Sinks outside of

these tools. This will be configured as part of the Global Plugin

Config, adding UI changes to accept input from the User

depending upon the external 3rd-party Client that is being

used (or a Sink URL in case a custom Sink is being used).

-​ Global Plugin Config as Part of Jenkins as a Source: This

plugin should allow users to efficiently send events to

integrations/tools this plugin offers support for. In order to do

that, the plugin will also need UI changes to accept

user-input to configure the Sink. Referring to the example

above, the user would have to enter Azure Subscription Keys

and topic info to send events from Jenkins to Event Grid.

2.​Jenkins as a Sink (HL):

-​ The general implementation of a Sink without an event-driven

architecture pattern would be a simple Request/Response

system similar to the architectural pattern used by the

Generic Webhook Trigger Plugin. This will involve creating a

REST API Endpoint and configuring it to receive POST

requests with the CloudEvent. Followed by polling to catch

events as they happen.

https://plugins.jenkins.io/generic-webhook-trigger/

-​ The implementation of sending events to Sink in an EDA

pattern instead of a Request/Response system will need some

more thought to be compliant with the Event-Driven

Architecture. There are two commonly adopted

approaches for implementing EDA: Event-Streaming

and Pub/Sub. The methods described here use Event

Streaming over Pub/Sub and Request/Response Architecture

because the project needs real-time or almost real-time

processing of events and it can be achieved efficiently

with Event-Streaming EDA pattern.

a.​ First and the preferred approach is implementing

Apache Kafka as a streaming solution. Here we will

have to implement Confluent REST Proxy to send events

to a Kafka topic through HTTP. The source will be given

the URL of the topic. If our topic is “cloudEvents”, the

URL for the Sink would be

https://<Kafka-host>:<port-where-Kafka-is-running>/topic/

cloudEvents.

The next step will be implementing a Kafka Consumer to

consume and process events. Details here.

b.​ Another approach is to have an HTTP Sink

implementation for Apache Flume or Apache Nifi.

The Sink will take events sent as POST requests to the

HTTPSource URL. Depending upon the data received

(source of the event/event type), a Jenkins event

(job-build) can be triggered using Jenkins REST API

Client. Details here

https://www.confluent.io/blog/confluent-rest-proxy-putting-kafka-to-rest/?_ga=2.185713769.1749112851.1618158601-1936012432.1617897676

EVENT-DRIVEN ARCHITECTURE VS REQUEST/RESPONSE SYSTEMS

EDA REQ/RES

Loosely Coupled Strongly coupled

Asynchronous Ops Synchronous Ops

Easy to Scale Difficult to Scale

Event-Streaming allows
real-time processing

Polling for real-time which
wastes compute and network.

Resilience achieved easily Resilience will need more
configuration.

Managing infra can be hard Infra Management is easy

Difficult to set up the
architecture.

Easy and quick setup; a REST
Endpoint config can be easily
added.

Will require setting up one or
more servers to run kafka
cluster or Pub/Sub Broker.

No additional infrastructure
will be required to use the
Req/Res System

NOTE: Between the above two implementation suggestions for event-streaming

EDA pattern, Apache Kafka is preferred. It offers a resilient and scalable

architecture whereas Flume is more functional for usage with Hadoop or other Big

Data architecture. Since the Events transported will need scalability over storage

given the fact that each single event can only hold 64 KB of data inside of it.

However, Flume or NiFi can also be used by following an architecture pattern

similar to Request/Response along with setting up an HTTP Source, JDBC Connector

(or in-memory connector) and an HTTP Sink.

-​ Global Plugin Config as Part of Jenkins as a Sink (not

applicable for Kafka): This task will include creating a REST

API endpoint.

a.​ The creation of an external REST API Endpoint will be

required to receive requests from external systems in a

Request/Response system. For other architectures,

topicURL (Kafka) or Source URL (Flume) is needed.

Example, a lifecycle-start Choria event (which is

CloudEvent compliant) would send a POST request to

our designed API endpoint (/cloudevents) from where

we will receive and process this singleton request. This

is the creation of a protected REST API endpoint for

external tools to use, where they will send a POST

request with the CloudEvent.

b.​ Ideally, this endpoint will be also protected with an API

Key or a username/password to not over-burden our

system. Raises another concern about an EDA system.

c.​ Consider an example of using AWS EventBridge as an

Event Source. EventBridge invokes the REST API

endpoint it is configured with and delivers the event as

a payload within the request. Figure below:

NOTE: In the example above, a Kafka REST Proxy URL can also be

given instead.

A Request-Response System is not very adept in handling event-driven

system design. Although we can use this system, an event-streaming

EDA design will be better as it allows a scalable and resilient real-time

processing system.

A Closer Look

=> Jenkins as a Source:

A.​ Start by implementing a Jenkins REST API Client which would be

responsible for polling the Queue on the QueueAPI to look for status

of queue item (tested on /queue/api/json and

/queue/item/<queueitem#>/api/json). We would then use the

JobsAPI to get the current build info on the item being built, and

keep polling it until the job stops building. An example of doing this

from Jenkins below:

B.​ Using buildInfo(), we will be able to extract information essential to

understand the status of a build. For example, if building is False,

and the result is Success it would emit a ‘job successful’ type of

CloudEvent with JSON encoding which uses HTTP protocol in the

example here. The current suggested architecture is using HTTP

Protocol for transporting CloudEvents. Most Sinks with CloudEvents

support use HTTP protocol to receive events. Here is what the event

payload defined with CloudEvent Spec can look like:

* all variables will be extracted from the REST Client.

* source and/or id can be UUIDs, which is the suggested pattern.

NOTE: This data or event payload is a basic example of how we

can track and send data. If we were to add more functionality to

our build, we can start to incorporate that data into the payload

as well.

C.​ The above event will be built and sent using CloudEvents Java SDK

(if not using an external client in which case the CloudEvent will be

transported by the Sink client of that tool). As we saw earlier, since

each external tool has either their external Sink URL (links to

DataDog) or Sink API Client (links to Azure), we will need to use

https://docs.datadoghq.com/api/latest/events/
https://docs.microsoft.com/en-us/java/api/overview/azure/messaging-eventgrid-readme?view=azure-java-stable

that particular system to allow users to interact with the Sink of

their choice.

D.​ A user using this plugin will have the option to choose from

available Sink providers. The users can either provide a custom Sink

URL for their custom sink OR provide information necessary to

register an external sink tool. For example, to use Azure Event Grid

as a Sink would require us to implement their Sink API Client.

E.​ Users would have to enter information like their Azure Key

Credentials, EndpointURL, et cetera through the plugin. The plugin

will allow for taking the info specific to the integration from the user.

Example of Events within Jenkins:

(The Design Doc provided with this project is used for reference)

Resource Event Event Type

Job Execution Started io.jenkins.event.job.started.v1

 Running io.jenkins.event.job.running.v1

 Succeeded io.jenkins.event.job.successful.v1

 Failed io.jenkins.event.job.failed.v1

Resource Event Event Type

Job in Queue EnteredQueue io.jenkins.event.queue.entered.v1

 QueueItem#
Change

io.jenkins.event.queue.changed.v1

 Into Build io.jenkins.event.queue.left.v1

 Cancelled io.jenkins.event.queue.cancelled.v1

Similarly, a Job step execution tracking the actions in the build can be

used to emit CloudEvents about the class of the step. Also, the class

https://docs.google.com/document/d/1vJ06K92-2wumfAUAiUEwwx921iR19v4zu7nHPkScrvk/edit#

returned from the API endpoint can be used to notify when a

particular action/step occurred (example, a step which checked out a

file occurred in the build--for the SCM Checkout Step referred to in the

Design Doc).

NOTE: These are just suggestions on what CloudEvent emittance can

look like. It will need more collaboration with the team to understand

the importance of various events within and outside Jenkins, and

understand how different plugins send information to the REST API.

=> Jenkins as a Sink:

1.​ (Not applicable for the Kafka Design Pattern) We will begin by

creating a REST API endpoint which will listen to POST requests.

External tools which emit CloudEvents, for example, Tekton

CloudEvents. Tekton emits TaskRun or PipelineRun events. Each

source (Task or Pipeline Run) from Tekton needs to be configured

with a Sink which would process these requests.

-​ This endpoint will need to be protected similar to other REST

endpoints Jenkins uses (by instantiating a Jenkins client or

using Crumb-ID). Take reference from DataDog, Zendesk et

cetera. They have REST API Endpoints for receiving events.

The plugin should ideally also allow for edits in configuration

of the API Endpoint. For example, editing the rate-limiting

features, security credentials et cetera.

https://docs.datadoghq.com/api/latest/events/
https://developer.zendesk.com/rest_api/docs/sunshine/events_api

NOTE: We are configuring a single API endpoint instead of having

multiple endpoints. This will allow a central system of processing the

stream of events. The stream solution we use will tag the appropriate

event, and Jenkins will process it accordingly. This is a strategy which

can be re-designed to instead have different channels exposed by

different API endpoints where external tools can send requests to.

2.​ A central stream system to manage these events becomes critical

for a complex system where multiple sources or external tools enter

a variety of different events. EDA is a better handler than

Request/Response System for configuring the Sink. Here, an

event-streaming method using services like Kafka is the ideal

solution although few other architectures are listed too.

-​ One approach is to implement an event-streaming queue

service (Apache Kafka like systems), which will handle

the transportation of events in a loosely-coupled manner.

⇒ For example, using Apache Kafka as a streaming

service between the Source and the Sink is the most

preferred method of implementing the Streaming EDA

method.

a.​ Here, we will have to make use of KAFKA-REST which

“provides a RESTful interface to a Kafka cluster. It makes it

easy to produce and consume messages, view the state of the

cluster, and perform administrative actions without using the

native Kafka protocol or clients”. By using this proxy, we

will be able to use Kafka native REST endpoints on

/topic/topicName and configure topics to send

the CloudEvent via a POST request at the

endpoint(for example /topic/job).

https://www.confluent.io/blog/confluent-rest-proxy-putting-kafka-to-rest/?_ga=2.185713769.1749112851.1618158601-1936012432.1617897676

b.​ Next, we would have to implement a Kafka Consumer

which will subscribe to a topic and for each event in the

consumer, the plugin will trigger a jenkins event as

needed.

​ ​ This infrastructure will require setting up Kafka Cluster/s.

-​ Another infrastructure (as talked earlier) is having an HTTP

Source implementation of Apache Flume which uses a

JDBC channel (to allow persistence) to send events to

an HTTP Sink implementation of Apache Flume.

a.​ The Source will receive POST requests from external

clients with CloudEvent payload in the request as JSON.

b.​ Then, send it to a JDBC Channel.

c.​ The HTTPSink will receive events from the channel.

This infrastructure will require setting up a Flume agent (JVM

Daemon) which will be running the whole architecture. It will

also need defining properties for the Source/Sink.

-​ Alternatively, Apache Nifi can be also used here in place

of Flume, which follows almost the same design architecture

with more scalability and a reactive-architecture with a robust

support community. Nifi is not specific to Big Data unlike

Flume thus allows for data routing between disparate systems

with more ease. Nifi however is more memory intensive and

will require a more in-depth research.

⇒ Reference can be taken from an Open-Source tool called Siddhi.

This tool has offerings for a variety of business cases starting from basics

like configuring Source and Sink to Data Processing and logging. Here’s

an example of configuring an HTTP Source sending payload to Log Sink

and a Kafka Sink;

https://siddhi.io/en/v5.1/docs/examples/

-​

Http Source to receive requests on, a Stream to collect incoming data, a

Kafka topic for stream to send data to and a Kafka Sink which will receive

from the Stream. The payload can be a CloudEvent specific payload. We

can implement Siddhi with kafka if the mentors agree to using Siddhi.

NOTE: A simple infrastructure of polling the API endpoint to listen to POST

requests (Request/Response) can be designed for the sink, however, given

the fact that multiple events can be triggered within a short period of time,

and across multiple sources, an event queue or a an event streaming

system is a better design approach in terms of parallel and scalable

architecture. The acceptance waiting and bonding phase will involve

researching and developing test architectures.

Proposed Project Schedule:

Note: The dates in the GSoC timeline takes precedence over this document

Time Period Tasks

March 29 - April 13
(Application Period)

Involves:

●​ Research
Architecture
(Jenkins as a
Sink)

1.​ Deep dive into Jenkins infrastructure: Jenkins REST API

Client; Jenkins-generated payload as Jenkins builds a

project; understanding the different build stage classes and

actions; testing jobs and queues endpoint and analyzing

data returned; understand architecture of the Generic

Webhook Trigger; looked at developing an external plugin

for extending Jenkin capabilities; read Jenkins glossary to

understand Jenkins specific terms.

2.​ Deep-dive into Event-Driven Architecture: looking at tools

and services which employ CloudEvents for the EDA

architecture. Examples are: Choria, Debezium, Azure

EventGrid, commerTools, Kinesis

3.​ Beginners exploration into the two most commonly

employed EDA patterns: pub/sub method and

Event-streaming architecture.

April 14 - May 17
(Acceptance Waiting)

Involves:

●​ Test Architecture
(Jenkins as a
Sink)

●​ Research and
test integrations
(Jenkins as a

1.​(Jenkins as a Sink | Global Plugin Config)

-​ Start by implementing a test architecture using the

Event-streaming EDA method for Jenkins events

which follow the CloudEvents specification;

Event-streaming method over Pub/Sub will allow

better handling of multi-channel events.

-​ Begin with testing Apache Kafka by implementing the

Kafka REST proxy to receive event data from

external systems, Kafka topic and a Kafka Consumer.

https://developers.google.com/open-source/gsoc/timeline
https://docs.confluent.io/2.0.0/kafka-rest/docs/intro.html#:~:text=The%20Kafka%20REST%20Proxy%20provides,native%20Kafka%20protocol%20or%20clients.

Source)

●​ Data for
CloudEvents
(Jenkins as a
Source)

After the consumer is written, I will poll the topic to

get event data and process it to produce a Jenkins

action. (More Preferred)

-​ Also test Siddhi integration with Jenkins configured

with HTTPSource and a Kafka or consequently an

HTTP Sink. (Next preferred method)

-​ Begin with testing Apache Nifi VS Apache Flume

architecture configured with HTTP Source, Sink and a

persistence channel.(Less Preferred)

-​ Test a simple Request/Response System without

using any external streaming or queueing system.

(Least Preferred)

2.​ (Jenkins as a Source)

-​ Research possible integrations with tools and services

which consume CloudEvents and fit into the Jenkins

infrastructure. Starting point is to test with Azure

Event Grid which spans a wide variety of Event

Handlers.

⇒ For example, if a Jenkins build has succeeded,

Jenkins will send a CloudEvent to Azure topic (which

the user will provide as a part of the plugin), and

Azure EventGrid will be configured to take events

coming into the topic to push to Azure Functions, or

any event handler.

-​ Also research the data which is passed by Jenkins

REST API when building with a variety of plugins and

running a variety of Jobs/Pipelines. For example,

what data is emitted for a Gerrit Trigger, and how

this data can be wrapped in a CloudEvent-compliant

event which is useful.

3.​ More interaction with the community to understand the

need for integrations within this plugin.

May 17 - June 7
(Community Bonding)

Involves:

●​ Discussing Sink
Architecture
(Jenkins as a
Sink)

●​ Protocol for
Event Transfer
(Global)

●​ Discussing
integration needs
(Jenkins as a
Source)

●​ Data state

(Jenkins as a
Source)

Crucial time to connect with the community and hear

suggestions on:

⇒ The Event-Driven Architecture to use for implementation

of HTTP Event Sink.

⇒ Talk about if Request/Response would be a better design

over EDA.

⇒ Possibly hear ideas about the desired protocol for Event

transfer. The protocol used in this proposal doc is HTTP.

⇒ Data wrapped into CloudEvents for build jobs.

⇒ Integrations for using Jenkins as a source and use cases

between these integrations.

⇒ Evaluate the need for types of integrations by

connecting with the community.

June 7 - July 16
(Coding Phase I)

Involves:

●​ Design
Event-Spec (as
Source)

●​ Represent Event
as CloudEvent
(as Source)

●​ UI Changes (as
Source)

1.​ (Jenkins as a Source) Build event-specification for

Jenkins events. Primary event sources are:

a.​ Job Execution

(events emitted: job started, running, cancelled,

succeeded, failed): listening and polling the Jobs API

and using buildInfo()

b.​ Job Step Execution

(events emitted: step started, step finished):

listening and polling the Jobs API and listening for

Actions as they are started. A similar pattern to listen

●​ API Endpoint (as
Sink)

for Builds in the Queue can be used for Steps of a

Pipeline.

c.​ Job Queue Execution (events emitted:

enteredInQueue, changedPositionInQueue,

leftQueue): Polling the queueAPI and listening Queue

and QueueItem.

2. (Jenkins as a Source) Wrap data into a structured

CloudEvent which uses JSON serialization and HTTP binding. The

structured format is easier to integrate with event-streaming

platforms.

3. (Jenkins as a Source) Implement external tool Sink Clients

(refer to this example).

4. (Global Plugin Config | Jenkins as a Sink) Build the REST

API endpoint for Sources to send POST requests to (depending

on architecture) or configure Topic Sink URL.

5. (Global Plugin Config | Jenkins as a Source) Add UI

changes as part of the plugin to accept User-input to configure

the Sink for our Source.

A step for each development task will be rigorous testing to

ensure functionality works as desired.

July 16 - August 16
(Coding Phase II)

Involves:

●​ Implementing
the URL for
external tools to
send events to

1.​ Extend the REST API endpoint as part of phase 1 to

process the requests received for systems which need API

endpoint (Request/Response or a Flume-like Sink).

a.​ One implementation which uses an API endpoint can

also be designed similar to the Generic WebHook

https://docs.microsoft.com/en-us/java/api/overview/azure/messaging-eventgrid-readme?view=azure-java-stable

(as a Sink)

●​ Regular feedback
from the mentors
to streamline UX
(as a Sink)

Trigger which listens for POST requests as they are

made, and processes the request. This approach

however could be blocking execution and is less

preferred.

2. Implement the route of Event-Streaming architecture

which is the preferred method over Request/Response

and Pub/Sub (it allows both scalability and resilience) for this

scenario:

⇒ first, implement Kafka REST Proxy producer,

which will ingest the POST request sent to the

Proxy API endpoint (/topics/<topicDesigned>).

This proxy API will receive events from an external

system. This is also the URL which will be given as

Sink to other tools.

⇒ then create a Kafka topic where the proxy can

send the data using the NewTopic Module. For

example, a topic named cloudEvents can be

generated by specifying a partitionId (scalability) and

replicationFactor (resiliency).

⇒ then implement a Kafka Consumer to

subscribe to the topic we created.

⇒ then the consumer will poll the topic until

there are events the topic is receiving.

⇒ then extract the CloudEvent Data and

produce a Jenkins Action (build the project or

more).

3. Another sink implementation using the streaming

architecture will be using Apache Flume HTTP Clients. Find

details here

August 16 - August 23
(Final Submission)

Involves:

●​ Testing (Global)

●​ Deploying the
Plugin (Global)

1.​ Testing and more rigorous testing

2.​ Evaluating the architecture from the perspective of a tool
which interacts with Jenkins through CloudEvents.

3.​ Ensure the UI workflow for the
plugin works for a User who wants to send and receive
CloudEvents.

4.​ Build and deploy the Plugin to the marketplace.

5.​ Touch base with the community and mentors to make sure

the business case is solved efficiently keeping in mind that
the Plugin is suitable for complex architecture.

Foreseeable Challenges:

●​ The one big challenge is understanding the architecture needed for
streaming events parallely in a scalable and resilient manner from
various Event Sources or generators to the Sink.

●​ Another challenge would be understanding CloudEvent payload
which can be consumed by different tools.

Workaround: The best workaround is talking with the mentors and the
community to discuss possible architectural patterns to understand
trade-offs. Also, do more mocking and testing to understand data that

is generated as a result of running a Job, and how different Sinks
(outside of Jenkins) can use this payload.

Future Plans (Post GSoC):

●​ I would keep enhancing the CloudEvents architecture to support
multi-directional events and tools. EDA has enhanced developer and
user-experience. I would be committed to ensuring that the current
plugin is able to handle workloads simultaneously while not losing
information.

●​ An important point which came up during discussion with a
community member was the lack of continued support for projects.
As a future plan, I would like to be committed to this project and
make sure that the plugin fits user needs, and meets industry
standards.

●​ Jenkins is an absolutely amazing tool, which I have had the chance
to use in 2 projects. Post this project, I would be connected with the
Jenkins community and be developing for Jenkins as the tech
ecosystem grows. I would love developing tools which will enhance
interoperability between Jenkins and external tools.

●​ Encourage developers to incorporate Jenkins in their workflows by
presenting the power of developing with Jenkins through various
platforms and projects I am a part of.

* * Conflicts of Interest or Commitment:
No conflicts which would hinder me to develop and deliver this project. I
am committed and excited to work on this project.

Why do I Want to Work on a Jenkins Project:

Ever since I have started coding, I have been fascinated by CI/CD

automation tools. Jenkins is a really special CI tool for me. It was being

used as an automated test tool in the first professional project I was a

part of. We had a Gerrit infrastructure for Code Review, with resources for

Web, Mobile, Server Config and more. Jenkins was being used to test the

stability of our web and mobile apps, and also the health of our API, and

pushing results to our Slack App. I was so fascinated by how vast yet

easy to use Jenkins was. It was always so fun visiting the console and

looking at the stability of our projects. It was allowing the developer team

to be able to spend more time developing over having to worry about

build stability. It simplified our workload. And the coolest thing was the

availability of plugins to extend Jenkins to external systems (like Gerrit).

As a User, we had developer freedom to configure the test pipelines as we

wanted with custom variables or a custom environment. It was and still is

such an amazing tool, and this project came at the right time allowing me

to discover and build Jenkins. Jenkins is a holistic Software System, and

has a variety of challenging and fun solutions to think about and/or work

on. I want to be an insider of the jenkins community. As a user of Jenkins,

I have had the chance of using this truly diverse CI/CD tool, and now I

want to help build it even further. As I was researching for this project, I

was so curious and interested in learning about how Jenkins is built by an

amazing community. This project will help me work on a tool I am really

curious about and inspired by!

Relevant Background Experience:

●​ As a Jenkins User: I have used Jenkins as an automated test

and build tool for 2 different projects. The first project was testing

the stability of Android App Bundle. This project employed Gradle

Invocation to build and test the artifact from a Gerrit Push Trigger.

The second project was using Docker-plugins to build and publish

Docker Image to a central repo with the Jenkins Build-Number

being used as the tag. Working on these projects has given me a

general idea of workflow implementation on Jenkins and how

plugins can be configured to incorporate additional Build

Steps into Jenkins.

●​ I have designed a smaller-scale Home-Automation MQTT

pub/sub IoT project using C# and Arduino. An integral part of

the project was configuring topics to which a Publisher can send

“events” to as they occur. The subscribers were subscribed to

relevant topics, and would trigger an action accordingly. This project

used MQTT as the transportation protocol. This project laid a good

idea of an EDA system, and how it can be designed for

processing of events without blocking.

●​ I was working on a Microservice-based project, which is a part of

a startup in Toronto (Connexa.ai). I designed a resilient and

distributed data ingestion and streaming platform using AWS

managed services. Primarily, AWS Firehose for ingesting data

from an Amplify Client App. This data consists of information on

current open user interactions, and needs to be processed right

away. The solution I designed included using AWS Firehose for

ingesting data into an S3 bucket, and using Glue alongside Glue

Crawlers to analyze the data. This project will help me brainstorm

strong infra ideas for Jenkins EDA system.

Relevant Language Skills:

●​ Java (Intermediate)
●​ Go (Beginner/Basic)
●​ Jenkins (Intermediate)
●​ Networking (Intermediate)
●​ Git/GitHub (Intermediate/Advanced)

Extra Personal Info:

I’m a Junior (Undergrad) at Kalamazoo College, Michigan majoring in CS,

returning back to college this Spring (April’21 - June’21) after a health

break. I am from Kanpur, India, where I am also currently located, doing

remote study and work in the light of COVID-19. I will be in Kanpur, India

for the whole duration of the project. I am a Cloud Architect and

Developer, with a focus on delivering applications that scale. I have

worked with multi-industrial tech spaces, and am known to have taken

and worked successfully on complex projects. I am extremely passionate

about CI/CD tools which enhance developer workflows and

user-experience. I recently delivered a talk for GitHub Satellite, which is

centered around DevOps architecture through GitHub Workflows, which

can be found on YouTube. This talk was a result of some months of

discovering DevOp architecture through GitHub (or similar tools), and

developing applications which require iterative development. I am always

interested in, and inspired by how CI/CD tools are built as they are a

complete tech solution which enhances other tools and systems. I also

recently developed for IBM Call for Code, and our team of 3 won the first

prize for predicting wildfires in various territories in Australia and making

a production-ready ML Pipeline. Above all, I am a curious learner,

passionate and an innovative thinker who loves to brainstorm ideas with

the team, and deliver. I am always ready to challenge myself, after all,

that's the only CI/CD way to enhance human-knowledge!

	CloudEvents Plugin for Jenkins
	
	Project Abstract:
	End-Goal of the Project:
	General Understanding
	
	
	Implementation in High-Level Terms:
	
	A Closer Look
	Proposed Project Schedule:
	
	
	
	
	Foreseeable Challenges:
	Future Plans (Post GSoC):
	
	Why do I Want to Work on a Jenkins Project:
	
	Relevant Background Experience:
	Relevant Language Skills:
	
	Extra Personal Info:

