
AutoCircuit: Automated Discovery of Interpretable 
Reasoning Patterns in Large Language Models 

Summary 
This project aims to systematically discover interpretable reasoning circuits in large language models, by data 
mining attribution graphs from Neuronpedia's circuit tracer which is based on Anthropic's circuit tracing 
publication (https://transformer-circuits.pub/2025/attribution-graphs/methods.html). While the transformer 
circuits work demonstrates how to generate attribution graphs for individual prompts, manually analyzing 
thousands of graphs to identify common computational patterns is impractical. 
 
Our approach will use LLM agents to automatically collect, process, and analyze attribution graphs across 
diverse prompt categories (factual recall, arithmetic, linguistic reasoning, etc.). The system will identify 
recurring subgraph patterns that represent stable computational circuits—reusable reasoning pathways that 
models consistently employ across similar tasks. 
 
Key components include: (1) automated graph collection via Neuronpedia's API across systematically varied 
prompts, (2) graph simplification algorithms to extract core computational structures while filtering noise, (3) 
pattern recognition to identify circuit motifs that appear across multiple contexts, and (4) validation through 
targeted interventions on discovered circuits. The output will be a curated library of interpretable reasoning 
circuits with evidence for their causal role in model behavior, advancing our understanding of how LLMs 
actually think and enabling more targeted model analysis and alignment research. 
 

Extended project description 
Theory of Change 
Automated circuit discovery could significantly contribute to reducing AGI risks by democratizing mechanistic 
interpretability and enabling real-time safety monitoring. Currently, understanding transformer internals requires 
extensive manual analysis, limiting interpretability research to small teams of specialists. By automating feature 
annotation, circuit hypothesis generation, and validation processes, automated circuit discovery would enable 
rapid identification of dangerous capabilities before they cause harm. Automated systems could continuously 
monitor deployed models for emerging deceptive behaviors, escape-seeking patterns, or capability jumps that 
might indicate misalignment. Ultimately, the goal in this field is to scale interpretability research from analyzing 
individual circuits to mapping entire LLM model cognitive architectures, enabling proactive safety measures 
rather than reactive responses. An issue of concern with agents would be bias due to the model training that is 
driving the agent. Our approach would be to manually confirm the circuit selections by agents, using a subset 
of the analyzed circuits, selected based on a metric such as the graph structure (centrality, distance between 
and number of pruned nodes by the agent etc). Furthermore, automated circuit discovery could accelerate AI 
alignment research by providing systematic understanding of how models represent goals, values, and 
decision-making processes, enabling targeted interventions to ensure beneficial outcomes. 

https://transformer-circuits.pub/2025/attribution-graphs/methods.html


Key Assumptions 
This theory of change assumes that AGI systems will continue using transformer-like architectures where 
mechanistic interpretability remains feasible, rather than shifting to completely opaque paradigms. It presumes 
that dangerous AI behaviors correspond to identifiable computational circuits that can be detected through 
automated analysis before causing irreversible harm. The approach requires that human society maintains 
sufficient coordination to implement interpretability-based safety measures, including regulatory frameworks 
that mandate circuit analysis for high-stakes AI deployments. Critical assumptions include that automated 
interpretability tools will be adopted by AI developers rather than being relegated to academic research, as 
currently the pace of circuit discovery and safety methodologies AI alignment, is than AI capability 
advancement. The theory also assumes that interpretability insights will translate into effective safety 
measures, rather than merely providing post-hoc explanations of already-occurred model unsafe or malicious 
behaviors. Success for large-scale deployment of this approach, depends on sufficient computational 
resources being available for real-time circuit analysis of increasingly large models. 

Project Plan 

Backup Plans 
Primary Risk: Automated circuit discovery systems might generate numerous false positive circuit discoveries, 
overwhelming researchers with incorrect interpretations. The backup plan involves developing a range of 
validation methods that require multiple independent confirmation signals before accepting a circuit 
hypotheses, and implementing human-in-the-loop verification for safety-critical discoveries. 
Technical Failure: If automated feature annotation proves insufficiently reliable, the project would pivot to 
semi-automated approaches that use AI systems to propose interpretations while requiring human validation. 
This maintains the research benefits while leading to accurate circuit predictions. 
Scalability Issues: Should the approach fail to scale to larger models due to computational constraints, the 
backup involves developing targeted analysis methods that focus on safety-relevant circuit categories rather 
than comprehensive model analysis. 

Project Scope 

Phase 1: Automated Circuit Discovery and Feature Annotation 
In this research project, we will implement automated feature interpretation by leveraging the cross-layer 
transcoder methodology and attribution graph construction algorithms from the circuit discovery framework 
published by Anthropic in 2025 (https://transformer-circuits.pub/2025/attribution-graphs/methods.html). We will 
employ language models to analyze activation patterns where features fire strongly, generating semantic 
interpretations that we validate through feature patching interventions. Our technical implementation will 
leverage the multiplicative steering capabilities demonstrated in the intervention demos and supported by 
Neuronpedia's model steering API functionality (https://www.neuronpedia.org/api-doc#tag/steering) we can 
systematically modify features through various intervention strategies including setting features to zero, 
amplifying their activations, or applying multiplicative scaling. These steering capabilities enable us to test 
causal hypotheses about feature function by observing how modifications propagate through the computational 
graph to affect downstream activations and final model outputs. Through Neuronpedia's graph visualization 
platform, we will also validate feature interpretations by demonstrating that interventions on semantically 
labeled features producing predictable and interpretable changes in model behavior, such as language 

https://transformer-circuits.pub/2025/attribution-graphs/methods.html
https://www.neuronpedia.org/api-doc#tag/steering


switching when modifying language-specific features or topic changes when steering content-related circuits. 
We will incorporate the display utilities for token predictions to visualize intervention effects, and build 
comprehensive databases of validated feature interpretations with confidence scoring based on intervention 
consistency and downstream effect measurements. 

Phase 2: Systematic Circuit Validation and Exploration 
We will systematically mine attribution graphs by analyzing the indirect influence computations. This will enable 
us to identify multi-step causal chains where features in early layers affect downstream computations through 
intermediate feature activations, revealing hierarchical circuit structures that implement complex behaviors. 
Our graph mining methodology will be automated for the most part using an LLM (Claude Sonnet), that can 
analyze the adjacency matrix patterns and propose hypotheses about which feature combinations form 
coherent computational circuits. The LLM will also interpret activation co-occurrence patterns and suggest 
semantic groupings based on the direct effect measurements between nodes. Our automated approach will 
focus on detecting feature clusters that consistently co-activate across related prompts, using the direct effect 
measurements encoded in the attribution graph's adjacency matrix. This approach enables us to quantify the 
strength of feature-to-feature interactions and identify computational modules that work together to implement 
specific functions. Through this analysis, we will remove the redundant nodes which do not add explanatory 
value to understanding the model's output generation process. We will utilize advanced exploration techniques 
with the generation comparison utilities to test circuit modifications across extended sequences, ensuring that 
our discovered computational patterns generalize beyond single-token predictions. The LLM driving our circuit 
path analysis will receive continuous feedback through graph completeness and replacement scoring metrics, 
in addition to  manually confirming the circuit selections by agents for graphs that are selected by the metrics. 
This will allow it to iteratively refine its circuit hypotheses and focus on the most explanatorily powerful 
computational pathways, while using these quantitative measures to guide its exploration and pruning 
decisions. We will leverage Neuronpedia's API endpoints for graph storage and visualization, enabling us to 
programmatically upload our generated and modified pruned graphs for interactive exploration and 
collaborative annotation through the platform's web interface. 

Phase 3: Cross-Model Pattern Analysis and Deployment 
Using circuit-tracer's ReplacementModel framework, we can load different model architectures with their 
corresponding transcoder configurations and generate attribution graphs for identical prompts, then 
systematically compare the resulting adjacency matrices to identify structurally similar computational pathways. 
Through Neuronpedia's graph storage and visualization capabilities, we can upload these cross-model 
attribution graphs and leverage the platform's annotation (http://neuronpedia.org/gemma-2-2b/graph) tools to 
manually validate that circuits with similar graph structures actually implement the same semantic functions 
and respond similarly to prompts. Furthermore, we can test this using the interactive steering interface to test 
whether interventions on corresponding features produce equivalent behavioral changes across different 
models. Our system will incorporate the graph completeness scoring and indirect influence matrix analysis to 
develop comparison metrics that account for architectural differences while identifying universal computational 
patterns. The real-time circuit monitoring for our deployment framework will be implemented as an extension to 
the existing circuit-tracer functionality, building upon the attribution computation pipeline to continuously 
analyze feature activation patterns and computational pathway changes in deployed models. We will extend 
the current batch processing and graph generation capabilities to support streaming analysis of model 
behavior, implementing automated alerts that trigger when significant deviations from baseline circuit patterns 
are detected, indicating potential emergence of dangerous capabilities relevant to AI safety. 

http://neuronpedia.org/gemma-2-2b/graph


Included in Scope 
-​ Automated annotation of model features using attribution graph analysis 
-​ Systematic circuit discovery and hypothesis generation methodologies 
-​ Validation frameworks for testing LLM model computation hypothesis through mechanistic interventions 
-​ Cross-model comparison techniques for identifying universal safety-relevant patterns 
-​ Integration with existing interpretability infrastructure including Neuronpedia and circuit-tracer 

frameworks 

Excluded from Scope 
-​ Development of new transcoder training methodologies or fundamental interpretability techniques 
-​ Creation of novel model architectures designed for interpretability 
-​ Regulatory policy development or implementation of industry safety standards 
-​ Analysis of non-transformer architectures or fundamentally different AI paradigms 

Most Ambitious Version 
A comprehensive automated interpretability platform that can continuously monitor deployed AI systems for 
emerging dangerous capabilities, automatically identify and validate safety-relevant circuits in real-time, and 
provide actionable interventions to prevent harmful behaviors before they manifest. This would include 
automated generation of safety benchmarks, real-time circuit analysis during model training, and integration 
with AI development pipelines to enable interpretability-guided model design. While this might be too ambitious 
for the time limits of this project, our open source code can be used as a basis for others to build it out to its full 
potential. 

Least Ambitious Version 
A suite of semi-automated tools that accelerate existing manual interpretability research by providing 
AI-assisted feature annotation and circuit hypothesis generation. This minimal version would primarily serve as 
a research accelerator for interpretability specialists, reducing the time required for manual circuit analysis 
while maintaining human oversight for all critical safety determinations. The tools would integrate with the 
existing framework of Neuronpedia, where at minimum a collection of circuits found through this project will be 
published. 

Output 
All circuits discovered in the proposed project will be published on Neuronpedia, and all code developed will be 
placed on Github with open source license. We will also do an arxiv paper which will also be submitted prior to 
a conference (ex. NeuroIPS 2026). 

Risks and downsides  
No risks other than mis-interpreting circuits, but the safeguards are built in the research methodology as 
described in Phase 1-3 as presented in the earlier section of the document. 



Team 
Team size​
3-5 people total, flexible to work on EST or CET time zone depending on the majority of the group, The lead 
and people who join the project are expected to spend a minimum of 10 hours per week on this project during 
its official duration. 
 
Project Lead ​
Konstantinos Krampis 
https://kkrampis.github.io/blog/curriculum-vitae/index.html  
 
Skill requirements​
Experience coding with Python,understanding APIs and graph data structures, ideally having run 
TransformerLens (https://transformerlensorg.github.io/TransformerLens/) or ARENA AI safety workshop 
materials which are available online (https://arena-chapter1-transformer-interp.streamlit.app/).  
 
Knowing clearly the Transformer LLM architecture, having read (and clearly understood) the Antropic papers 
(https://transformer-circuits.pub/), Neel Nanda’s excellent materials would also get you quickly up to speed 
https://www.neelnanda.io/mechanistic-interpretability/quickstart-old. 
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