
RegExp builtins (re)design document
Attention: Shared Google-externally

Authors: bmeurer@chromium.org, jgruber@chromium.org​
Last updated: 2017-04-21

Tracking bug: https://bugs.chromium.org/p/v8/issues/detail?id=5339

This document describes the design and implementation of the RegExp builtins. It deals with the
RegExp constructor plus all its properties and the properties of its prototype property. It
doesn’t deal with the details of the actual implementation of the regular expression engine.

Background
There are two different regular expression engines available in V8, a simple interpreter based
regular expression engine, and a sophisticated compiler that generates efficient machine code
for the backtracking based NFA. Both engines are designed to be invoked more or less directly
from C++ code; the interpreter itself is written in C++, so that’s natural, while the compiler
generates code chunks with C linkage and has its own special integration with the GC.

Traditionally V8 was using a transactional runtime model, where most of the runtime interaction
with the core C++ code was not handlified and thus had to abort the transaction whenever it ran
out of memory, go back to the runtime entry, which would then perform a GC, and retry the
whole operation from the beginning. Obviously this model doesn’t really work well if you need to
perform side effects, i.e. like calling back into arbitrary JavaScript code. But even fairly innocent
builtins like the RegExp.prototype.flags getter can already cause arbitrary JavaScript
code to be run, since it does property lookups on the receiver object. So initially only the core of
the RegExp builtins could be written in C++, and each builtin required at least one driver
function written in JavaScript that drives the transactional core functionality, and takes care of
the side effecting parts . 1

Motivation
This approach however limits the flexibility of the builtin implementation choices, as you always
need to somehow keep the driver and the core implementation in sync and even expose
additional intrinsics and runtime functions to the driver to access various implementation details
(i.e. special in-object properties like the flags or the source internal fields of the JSRegExp

1 This was actually not limited to RegExp. Almost all builtins had to be written this way initially in V8 due to
the transactional runtime (and other design decisions), even if the core functionality was already
implemented in C++ anyways.

mailto:bmeurer@chromium.org
mailto:jgruber@chromium.org
https://bugs.chromium.org/p/v8/issues/detail?id=5339
https://tc39.github.io/ecma262/#sec-regexp-constructor
https://tc39.github.io/ecma262/#sec-regexp.prototype
https://tc39.github.io/ecma262/#sec-get-regexp.prototype.flags

class), which is then prone to errors and scatters the implementation unnecessarily. Specifically
over the last 1 ½ years we ran into multiple issues with the regexp.js based implementation,
that we now intend to address incrementally, namely:

1.​ Adding support for subclassing RegExp as required by the ES2015 specification tanked
performance of the (important) RegExp benchmark in Octane by around 15% initially,
and with some tricks we were able to reduce that to roughly 7%, which is still a lot that
users have to pay for a feature that is probably not very useful in practice.

2.​ New features that are planned for an upcoming revision of the EcmaScript specification
like named captures will likely cause further slow downs for a bunch of the RegExp
builtins, because additional runtime calls are necessary to transfer data between the
core and the driver.

3.​ Since the code in regexp.js is treated like arbitrary JavaScript, it is also subject to
type feedback pollution, which means that as the builtins see different shapes of
JSRegExp objects or the builtins take different execution paths, the overall performance
degrades. In addition to that, the launch of Ignition will naturally slow down the code in
regexp.js that was more or less carefully tuned for fullcodegen (and Crankshaft). This
clearly goes against our strategy of predictable, good baseline performance . 2

4.​ Due to the scattered implementation of the RegExp builtins, there are transient states in
the system where we have JSRegExp objects in the heap that are in an inconsistent
state, i.e. not yet fully initialized and verifiable. One prominent example of this is the
constructor itself which calls %_NewObject to create a JSRegExp object, whose
internal fields are set to some undefined value, and then calls into
RegExpInitialize, which can cause arbitrary JavaScript execution (due to the
TO_STRING calls), and only then finally calls into %RegExpInitializeAndCompile,
which brings the JSRegExp into a consistent state. This is currently somewhat OKish for
the RegExp constructor case, but still unnecessarily complex, given that one could just
atomically create and initialize the JSRegExp object and thereby avoid a bunch of bugs
right away.

5.​ Since the core implementation (i.e. the execution of the actual regular expression) is only
callable via C/C++, we need a special version of the CEntryStub, just to be able to
actually execute a regular expression. This RegExpExecStub is several pages of tricky
hand-written native code, and has a track record of a few somewhat hairy bugs
associated with it. Since the RegExpExecStub is significantly faster than the C++
implementation in RegExpImpl::Exec, and it is critical to overall performance of
RegExps, we will need to continue to rely on it for the time being. However, over time we
can move all except for the actual invocation of the generated Irregexp code to
CodeStubAssembler and remove most of the platform-dependent RegExpExecStub.

2 Again, this problem is not limited to the RegExp builtins.

https://docs.google.com/document/d/11T2CRex9hXxoJwbYqVQ32yIPMh0uouUZLdyrtmMoL44

Another reason to move away from the driver based implementation approach is increased
flexibility for changing the underlying data structures (i.e. the internal layout of a JSRegExp), but
we don’t really expect that to be necessary, so that’s not an important reason, just a nice goodie.

Goals
In order to address the issues mentioned above, the idea is to first come up with a reasonable
baseline implementation that is merely a port of the existing functionality - mostly unchanged -
to C++/TurboFan builtins, and reiterate from there to eventually address all the issues
mentioned above.

The goals for the first iteration are (these must be addressed as soon as possible, i.e. should
ideally be done by the end of Q3 or beginning of Q4 2016):

●​ Performance neutral (mostly) port of the existing functionality.
●​ Reduce dependencies on %_NewObject and the JSBuiltinConstructStub, which

is responsible for the inconsistent state problem described above (afterwards only the
current Promise implementation will still depend on this).

●​ Migrate all the functions in string.js that are related to the regular expression builtins
to C++ as well and find appropriate abstractions in the runtime to improve maintainability
of the relevant builtins and core parts.

●​ Remove the RegExpConstructResultStub, but continue to rely on
RegExpEntryStub for the actual Irregexp entry point.

The middle- and long-term goals are (these should be addressed by the end of 2016, but are
not on the critical path):

●​ Evaluate the need to/benefit of providing some builtins as TurboFan builtins, and
eventually even inline some of that directly into TurboFan (via the
JSBuiltinReducer). This has to be driven by performance data. For example, the
source/flags accessors could benefit from this, or the String.prototype.replace method.

●​ Address the performance regression that was introduced with ES6 subclassing of
regular expressions, and maybe even improve performance above the level we had
initially. At least recovering the previous performance should be a matter of adding a
“protector bit” on the Isolate similar to how we optimize @@species.

●​ Eventually remove the compatibility workarounds that we still have in our implementation
(and that we will for now port to C++).

●​ Turn on support for named captures without any serious performance impact on the
regular expression benchmarks in Octane, JetStream and SunSpider (i.e. prove that the
new implementation is viable and gives us the expected flexibility).

https://tc39.github.io/ecma262/#sec-get-regexp.prototype.source
https://tc39.github.io/ecma262/#sec-get-regexp.prototype.flags
https://tc39.github.io/ecma262/#sec-string.prototype.replace
https://tc39.github.io/ecma262/#sec-symbol.species

Implementation
Initially, the plan was to migrate the JavaScript implementation of RegExp functions to native
C++. This turned out to be too slow in practise, mostly since allocations, property access,
substring construction, and entry into the generated Irregexp code are significantly slower from 3

C++ than what is possible from TurboFan/CodeStubAssembler (CSA). We therefore changed
course and based the new RegExp implementation on CSA instead, allowing us not only to
reach pre-ES6 levels of performance but to exceed them (often by a significant factor).

While some functions, e.g. @@test, are simple enough to implement completely in CSA, more
complicated logic usually requires that the implementation is split between a CSA fast path for
unmodified RegExp instances, and a slow path (usually implemented in C++ runtime) to handle
other cases such as ES6 subclassing and monkeypatched RegExp. @@replace is an extreme
example of this, as it currently dispatches to two different CSA fast paths, one runtime fast path,
and falls back to the runtime slow path in other cases.

In fast paths, we can assume that the RegExp instance is completely unmodified, meaning we
can perform fast reads and writes to internal properties such as lastIndex, and we can simply
call our internal RegExp.prototype.exec implementation without first checking the
RegExp’s ‘exec’ property. Fast paths also guarantee non-observability of, e.g., RegExp
property accesses and exec calls, allowing us to take implementation shortcuts for which the
end state, but not necessarily intermediate states, are spec-compliant.

Fast path checks are based map checks: during bootstrapping, we store the RegExp function’s
initial map as well as the RegExp function’s initial prototype’s initial map on the context. During a
fast path check, we compare these against the given regexp’s map and prototype’s map. If they
match, the fast path is taken, otherwise we fall back to the slow path.

This fast path check differs from its previous form in regexp.js, which only performed an
instance-type check and verified the ‘exec’ property. This had both advantages (more cases
were able to take the fast path) and disadvantages (it was not 100% correct, for instance when
accessing lastIndex). See future work for our plan for more permissive fast path checks.

RegExpLastMatchInfo is our internal storage for the results of the last RegExp match,
required e.g. by the ‘input’ and ‘lastMatch’ properties. It used to be implemented as a plain
array-like JSObject with various fields mapped to specific indices. This is not necessary
anymore now that all accesses are from C++/CSA. The last match info is now stored in a more
efficient and convenient custom FixedArray type (RegExpMatchInfo).

3 To demonstrate: forcing the original implementation to use the C++ runtime implementations of
%_SubString, %_RegExpConstructResultStub, and %_RegExpExec instead of the natively
implemented stub versions resulted in a performance loss of 54%.

Results
Performance results are better than expected, not only achieving our goals of approaching
pre-ES6 performance, but actually exceeding it significantly.

According to arewefastyet.com, current octane/regexp scores are 16-40% better (compared to
pre-migration, depending on configuration) and at least 5% better (compared to pre-ES6).

Other notable results according in comparison to the prior JS implementation in regexp.js:

●​ 9%-21% speedup on ss/unpack-code.
●​ 18% speedup on ss/validate-input.
●​ 13% speedup on jetstream/regexp-2010:

http://arewefastyet.com

Our new RegExp microbenchmarks give a more detailed breakdown by functionality by
measuring only individual functions (or functionalities such as flag accesses) and distinguishing
between fast and slow paths. The following results compare against pre-migration on the fast
path:

●​ RegExp constructor: 11% slower
●​ exec: 8% faster
●​ flag accesses: 66% faster
●​ @@match: 37% faster
●​ replace: 5% faster
●​ @@search: 11% faster
●​ split: 108% faster
●​ test: 25% faster

It would be quite simple to achieve similar gains for the RegExp constructor by moving the
implementation to CSA, but it has not yet been deemed necessary since it is expected to be
used only infrequently (RegExp literals take another code path).

regexp.js has been removed, and the implementation has moved to
builtins-regexp.cc, runtime-regexp.cc (slow-paths), and
regexp/regexp-utils.cc (functionality used by both runtime and builtins).

Due to performance reasons, most RegExp functions have been implemented in TurboFan, i.e.
CodeStubAssembler (CSA). RegExpConstructResultStub has been moved to CSA.
RegExpExecStub has not been modified and is called directly from the CSA implementation.

We no longer depend on %_NewObject and JSBuiltinConstructStub. Once the final
remaining use in promise.js has been ported, these can be removed entirely.

string.js has remained largely untouched. StringSearch and StringMatch could
easily be ported to TF with a fast path for unmodified JSRegExp arguments. StringReplace
is a bit more difficult since it relies on GetSubstition, %StringIndexOf, and
%StringReplaceOneCharWithString. While all of these functions could also be moved to
C++, I’d expect a significant performance penalty due mainly to the required GetProperty
and SubString calls.

The RegExpEntryStub has been completely replaced (CL). The replacement CSA
implementation simply calls into generated Irregexp code (which has C-linkage) by using
CallCFunction9. Removal of the stub (and its associated exit frame) has been made possible by
removing the only throw site from the native call.

The current named captures proposal is fully supported (tracking bug) without performance
regressions for the standard case. Creation of the groups object could still be improved in future
work.

Finally, compat workarounds have been removed and several minor bugs were found and fixed
in the process.

Future Work
There are several follow-up tasks that should be started in the near future:

●​ Fast-path checks should be made more permissive to allow e.g. monkey-patched
RegExp prototypes to take the fast path as long as vital methods and properties have
not been modified (see https://bugs.chromium.org/p/v8/issues/detail?id=5577).

http://crrev.com/2752143003
https://github.com/tc39/proposal-regexp-named-groups/
http://crbug.com/v8/5437
https://bugs.chromium.org/p/v8/issues/detail?id=5577

	RegExp builtins (re)design document
	Background
	Motivation
	Goals
	Implementation
	Results
	Future Work

