Implementation design: In-place updates

Let Stefan Biringer know if you need write access to this doc

Related docs: Proposal, Umbrella issue
Related branches/PRs

e PR: In-place hooks API

e Alex’s prototype

e MD rollout planner prototype

e KCP e2e prototype
Difficulty: Major, Minor, Done

Later iterations (possibly CAPI v1.13+)

e Improve how to configure to which “objects” a RuntimeExtension applies

o Goal: We should avoid unnecessary CanUpdateMachine/MachineSet calls
(e.g. for the wrong infra provider)

o Ideas: ExtensionConfig objectSelector (like FieldSelectorRequirement),
Extend response of Discovery call (e.g. objectSelector (like
FieldSelectorRequirement) or “infraProviderKind”)

e Hook ordering

o Maybe implement alphabetic ordering for CAPI v1.12.0. But make it very clear
that this is not an APl and nobody should rely on this order

o Note: It's important that hooks of different update extensions are called in the
same order for CanUpdateMachine/CanUpdateMachineSet and
UpdateMachine hooks

Runtime Hooks API

CanUpdateMachine/CanUpdateMachineSet

e Principles:
o We assume that in-place is triggered like rollout, i.e. by changing the MD/KCP
or by rotating templates
o MD/KCP already have logic to figure out when a rollout is needed, this logic
must be reused (rollout.after & rollout.before will always trigger full rollouts)
o While MD/KCP make the rollout decision relatively course-grained, we need
more details for the CanUpdateMachine call, e.g. the current/desired
Machine/BootstrapConfig/InfraMachine, including defaulting & cleanup logic
e Assumptions:
o For KCP we are comparing every single Machine object
o For MD we are comparing every single MachineSet.
m > We do not want to repeat the same call for all the Machines in a
MachineSet

mailto:sbueringer@gmail.com
https://github.com/kubernetes-sigs/cluster-api/blob/main/docs/proposals/20240807-in-place-updates.md#infra-machine-template-changes
https://github.com/kubernetes-sigs/cluster-api/issues/12291
https://github.com/kubernetes-sigs/cluster-api/pull/12343
https://github.com/kubernetes-sigs/cluster-api/compare/main...alexander-demicev:cluster-api:inplaceupdatedraft?expand=1
https://github.com/fabriziopandini/cluster-api/tree/experiment-in-place
https://github.com/sbueringer/cluster-api/tree/pr-kcp-in-place

> To make this more explicitly, we probably need CanUpdateMachine
and CanUpdateMachineSet; for implementers, they can re-use the
same logic and compare spec or spec.templates.spec depending on
the case

> this leaves open the door to the idea of deleting bootstrap config
once machines are up (for scale reason)

e Research: Kind of changes that lead to rollouts:

o KCP

e Request:

MD/MS.spec.version
e Forin-place we should already apply other in-place changes
(label, annotations, ...) to current/desired
MachineSet/BootstrapConfigTemplate/InfraMachineTemplate
that we send
MD/MS.spec.bootstrap.{configRef,dataSecretName}
e Forin-place we need current/desired BootstrapConfigTemplate
MD/MS.spec.infrastructureRef
e Forin-place we need current/desired InfraMachineTemplate
MD/MS.spec.failureDomain
MD.spec.rollout.after
e Cannot be “rolled out” with in-place

o CanUpdateMachineRequest

current/desired Machine/InfraMachine/BootstrapConfig
m (only spec, no status, bootstrap optional)

o CanUpdateMachineSetRequest

current/desired
Machineset/InfraMachineTemplate/BootstrapConfigTemplate
e (only spec, no status, bootstrap optional)

e Response
o CanUpdateMachineResponse / CanUpdateMachineSetResponse
m RX should modify the incoming current objects to signal which
changes it can make and send them back as patch like in
GeneratePatchesResponse
e Call loop:

o We will call CanUpdateMachine/CanUpdateMachineSet for all registered
update extension

o We will use the output of the previous call as input for the next call (and
repeat)

o Once all update extensions have been called KCP/MD will figure out if the
Machine/MachineSet can be updated in-place by comparing the last response
with desired

m Safeguard: For the comparison CAPI should ignore fields like labels,
annotations, timeouts (fields that are already propagated in place by
CAPI).

UpdateMachine

Assumptions:
e Runtime extension should treat UpdateMachine requests as desired state; it is up to
them to compare with current state and do necessary actions.
o > This is also a chance to “remediate drift’
o Note: We will not send the list of changes to be applied (neither in the
message nor via annotations).

e Request:
e UpdateMachineRequest
o desired Machine/InfraMachine/BootstrapConfig
m (only spec, no status, bootstrap optional)
m runtime.RawExtension for InfraMachine/BootstrapConfig
(same as what we did in GeneratePatchesRequestItem)
e Response:
e UpdateMachineResponse
o CommonRetryResponse

KCP + MD/MS controller

How do we trigger the in-place Machine update:

Assumptions:
e We are going to overwrite Machine / InfraMachine / BootstrapConfig in-place.This
seems more realistic than trying to rotate InfraMachine / BootstrapConfig as rotation
would be very hard to handle for infra providers.

o Disclaimer: With some infra providers InfraMachines are immutable, this
would have to be changed if they want to start supporting in-place updates of
InfraMachines.

Challenges:
e Create/Patch vs SSA and fieldOwnership concerns (the following discussion is only
for InfraMachine / BootstrapConfig as we already always create & update Machines
with SSA):

Option 3 (preferred): Always client.Apply but with different fieldManagers
(similar for MS)
m Create InfraMachine / BootstrapConfig
e Apply object without labels/annotations with fieldManager:
capi-kubeadmcontrolplane-2
e [opt] Maybe do Create with labels/annotations but directly drop
ownership
e Apply object labels/annotations with fieldManager:
capi-kubeadmcontrolplane (as today)
syncMachines for InfraMachine / BootstrapConfig (for
labels/annotations sync)
e Apply object labels/annotations with fieldManager:
capi-kubeadmcontrolplane (as today)
Trigger in-place update
e Apply object without labels/annotations with fieldManager:
capi-kubeadmcontrolplane-2
Upsides:
e We can address the limitations of Option 1 & 2

o

e This can be implemented in a way that we eventually don’t
need any managedField migration anymore, and accordingly
don’t have to continue to store managedFields in the cache.

e Migration of managedFields of existing InfraMachines / BootstrapConfigs (from
before CAPI v1.12)

o Option 3 (preferred): delete the Update entry of manager
m Orphans a lot of fields, but after the first in-place update it will be also
possible to remove fields
Maybe that’s okay because this limitation only exists for pre-existing
objects
We chose this option for MS/Machines in the past and it worked out
well
e Apply Order + When should the Machine controller start in-place update with all
updated objects:
o Order:
m KCP/MS: Trigger in-place update
e Add to Machine: “in-place-update-in-progress’
e Add to InfraMachine/BootstrapConfig:
‘in-place-update-in-progress’
o Update the spec in the same call
e Add to Machine: ‘pending-hooks: UpdateMachine’
o Update the spec in the same call
m Machine: Wait for in-place update
e Wait for Machine: “pending-hooks: UpdateMachine’
e Wait for InfraMachine/BootstrapConfig:
‘in-place-update-in-progress’
m Machine: Complete in-place update
e Remove from Machine: “in-place-update-in-progress’
e Remove from InfraMachine/BootstrapConfig:
‘in-place-update-in-progress’
e Remove from Machine: "pending-hooks: UpdateMachine’
o We have to make sure that the “applies” happen “atomically” so the Machine
controller doesn’t do a partial in-place update, e.g. if it didn’'t observe the
latest BootstrapConfig / InfraMachine yet:

m Option 1: Use the “Patch and Wait” pattern for BootstrapConfig and
InfraMachine before marking pending upgrade on the Machine
e Ruled out => Works for MS as it is using the same cache as
the Machine controller, but that doesn’t work for KCP
m Option 2: Mark BootstrapConfig and InfraMachine as “pending” as well
e Machine controller will only start the in-place update if all 3
objects are marked correctly
e This works because once an in-place update is started on the
Machine we won't trigger another one on the same Machine
before it is completed
e Existing InfraMachine / BootstrapConfig controllers will probably directly reconcile
InfraMachine / BootstrapConfig after we applied changes
o InfraMachine:
m InfraMachine controller should ignore in-place changes and leave
them to the RX
m If the changes are not disruptive to other in-place updates going on in
parallel it might be fine for the InfraMachine controller to apply the
changes directly.
m 3 kinds of fields on an InfraMachine:
e entirely immutable fields
e fields that can only be “reconciled” by the in-place extension
o validation webhook should allow field updates
o InfraMachine controller should not reconcile the field
updates
(InfraMachine controller has to accept changes made
by the in-place update extension)
e “status” fields written back to spec by the infra provider (e.g.
ID)
o BootstrapConfig
m BootstrapConfig controller does not have to reconcile the
BootstrapConfig as we don’t need a bootstrap data secret (e.g.
cloud-init) anymore.
e Double-check where we need “Patch and wait”
e MD/MS specific:
o Create target MS + move Machine to the target MS, Challenges:
m update labels, ownerRef, ... (race condition free vs. old/new
MS.spec.replicas)
m object names won’t match MS name if we move to a different MS

KCP controller

e Rollout Logic: (POC in https://github.com/sbueringer/cluster-api/tree/pr-kcp-in-place)
o Figure out what do to next in upgradeControlplane to handle various
circumstances
m If we have to scale up, we’re going to create a new Machine
m If we're going to scale down, we're trying to in-place update
e |[f upToDateReplicas == spec.replicas => scale down (as we
have enough upToDate replicas already)

https://github.com/sbueringer/cluster-api/tree/pr-kcp-in-place

e How do we trigger the in-place Machine update (
B Implementation design: In-place updates)
e Track update state / UpToDate condition handling:
o Should we actually hand over control of the UpToDate condition to the
Machine controller and then back to KCP? (Maybe we want an additional
condition as well: UpToDate true/false is not the same as Updating true/false)

MD/MS controller

Challenges:
e Various current behaviors of the MD controller: RollingUpdate, OnDelete, sync on
pause
e Race conditions (including multiple controllers reconciling objects in parallel & stale
cache)
Controller reentrancy
We must ensure we respect MaxSurge and MaxUnavailable
In-place can be disruptive or not. How does this impact Availability
o => Decision: We assume in-place updates are disruptive because in-place
updates can always fail and this leads to Machine deletion/remediation =>
this also means that if users want to do an in-place update without any
Machine creations, they have to set maxUnavailable >= 1 (i.e. explicitly
accept potential unavailability)
m TBD => think about if we can/should apply the same logic for KCP

Principle: Objects should be managed only by one controller

- MD ctrl manages MS
- MD enforces maxUnavailable, maxSurge
- As a consequence it decides when to scale up newMS, when to scale
down oldMS
- When there is a decision to scale down, MD should check if this can be done
via in-place vs delete/recreate. If in-place is possible:
- Old MS will be informed to move machines to the newMS
- MS ctrl manages a subset of Machines
- When scaling down, if required to move, old MS is responsible for moving a
Machine to newMS
- newMS will take over moved machine and complete the upgrade workflow

Assumptions:

- We are making the in-place decision at MS level.
- ltis a trade off that reduces complexity, has performances benefits (less RX
call) and fits well in the MD ctrl responsibility and current implementation (MD
manages MS)
- Downsides of this assumption seems acceptable:
- MS: In-place: yes can update
- Some Machines => no cannot update => there was drift on the
machine state or some state relevant for the in-place decision

https://docs.google.com/document/d/1MuhwSL-1ZMsiMoEHE9fVRha9Wkb5ORUFCLSMVNK_mTA/edit?tab=t.0#heading=h.55k7lxsba1b7

that is managed outside CAPI and it is not consistent within a
MS.

- in-place update might success or fail => if failure is reported,
remediation will kick in

- A possible improvement, is that RX, when an in-place upgrade
is starting, checks again feasibility, and if not it fails fast

- MS: In-place: no cannot update

- Some Machines => yes can update => will go through a full

replacement, slightly less efficient than possible

- In place is always considered as potentially disruptive
- in place must respect maxUnavailable
- if maxUnavailable is zero, a new machine must be created, then as soon as
there is “buffer” for in-place, in-place update is done

- when in-place is possible, the system should try to in-place update as many
machines as possible.
- maxSurge is not fully used (it is used only for scale up by one if
maxUnavailable =0)
- Also, if there is a scale up in the middle of a rollout, creation of new machines
must be limited taking into account machines that can be updated in-place.

Machine controller

e How to know when to start in-place update
o => Only start the in-place update if Machine/InfraMachine/BootstrapConfig
are marked correctly
e How to track completion of the in-place update
o Remove annotations annotations from all objects
e How to track the progress of the in-place update
o Phase: Updating
o Condition: Updating (will be included to compute UpToDate)
m Option 1: Reuse UpToDate condition
e |t's hard to share a condition between KCP/MS/Machine
controller
e It's hard to surface all states in a single condition:
o UpToDate true/false
o In-place update in progress true/false
m Option 2 (preferred): Introduce an additional Updating condition
e Machine controller owns Updating condition
e KCP/MS controller own UpToDate condition
e Updating condition is also used to compute UpToDate
condition
e Updating condition can be used by MHC to trigger remediation
if an in-place update is taking too long (this would not work
with the UpToDate condition)
e What do we do if the update fails?

o Retry & MHC takes over

No guarantees below this line, wildly brainstorming
@

MD/MS controller

o Only in-place updates => maxSurge/maxUnavailable doesn’t matter
m We could add a new maxConcurrentinPlaceUpdates eventually (and
use 1 for now)
o Only regular rollout => maxSurge/maxUnavailable as of today
o Mixed Mode => (probably mixed over old MS, not mixed over time)

e How do we trigger the in-place Machine update (
B Implementation design: In-place updates)
e Track update state / UpToDate condition handling:
o Should we actually hand over control of the UpToDate condition to the
Machine controller and then back to MS? (Maybe we want an additional
condition as well: UpToDate true/false is not the same as Updating true/false)

e2e testing: e2e test, in-place CAPD Runtime Extension
e TODO

Ensure MHC works smoothly during in-place updates

e MHC should not accidentally interrupt in-place updates
e MHC should catch failed in-place updates even if the Machine does not become
unhealthy (via nodeUnhealthyConditions? maybe via machineUnhealthyConditions?)

https://docs.google.com/document/d/1MuhwSL-1ZMsiMoEHE9fVRha9Wkb5ORUFCLSMVNK_mTA/edit?tab=t.0#heading=h.55k7lxsba1b7

e KCP:
o remediation.go: tl;dr In-place update is blocking remediation except for the
in-place updating Machine
m We should prioritize in-place updating Machine for remediation

Autoscaler

e autoscaler should not accidentally try to delete Machines that are going through
in-place update

[Defer] More fancy MHC behavior

http://remediation.go

	Implementation design: In-place updates
	Later iterations (possibly CAPI v1.13+)
	Runtime Hooks API
	CanUpdateMachine/CanUpdateMachineSet
	UpdateMachine

	KCP + MD/MS controller
	How do we trigger the in-place Machine update:

	KCP controller
	Machine controller

	No guarantees below this line, wildly brainstorming 🙂
	MD/MS controller
	e2e testing: e2e test, in-place CAPD Runtime Extension
	Ensure MHC works smoothly during in-place updates
	Autoscaler
	[Defer] More fancy MHC behavior

