
TRACE: Trajectory Recording and

Capture Environments

Abstract

Language-model agents for web and computer use are starting to automate realistic browser

tasks, but the environments needed to train and evaluate them are still costly to build and fragile

to maintain, often requiring teams to handcraft websites and workflows as in recent web-agent

benchmarks. This paper introduces TRACE (Trajectory Recording and Capture

Environments), a pipeline for capturing, post-processing, and replaying browser

environments and trajectories from expert demonstrations on real websites. TRACE uses an

instrumented browser to record every interaction, page state, network request, and visual

change while an expert completes a task, and then a post-processing pipeline turns these

captures into fully reproducible environments by extracting high-level actions, removing

credentials, selecting key checkpoints, and trimming non-essential traffic for replay. With a

single expert demonstration, TRACE can produce a fully fledged, self-contained environment for

a live website that can be replayed offline, creating a reusable substrate not only for evaluation

but also for reinforcement learning on realistic trajectories. We also release an initial

demonstration dataset containing 6 human trajectories, each paired with its captured

environment, screenshots, page snapshots, videos, and HTTP logs. Overall, TRACE is designed

as an extensible collection and replay framework rather than a closed benchmark, making it easy

to turn real browsing sessions into reusable environments for future agent training and

evaluation, and it includes a minimal example evaluation pipeline for browser-use agents as a

reference implementation.​

Figure 1: TRACE Pipeline. Collection, Post-processing, Offline Replay, Agent Evaluation.

1 Introduction

Autonomous web and computer-use agents built on large language models are beginning to

automate tasks such as booking travel, configuring SaaS tools, and executing complex enterprise

workflows. Recent benchmarks—including Mind2Web and its follow-up Mind2Web 2, which

annotate web tasks on real sites [5,6], WebArena [7], REAL [8], OSWorld [9], BEARCUBS [1],

BrowseComp [2], TheAgentCompany [10], BrowserAgent [11], and GAIA [4]—have driven rapid

progress by defining realistic tasks and environments spanning live websites, deterministic

replicas, and full operating systems. However, these efforts also highlight how expensive

high-fidelity environments are to build and maintain, and how brittle evaluation can be as the

web changes over time. WebArena and REAL, for example, require hand-crafted replicas of full

websites with custom evaluators for each task [7,8], OSWorld must script fine-grained OS state

for hundreds of tasks [9], and TheAgentCompany reports roughly 3,000 person-hours by 20

contributors to design its company-scale work environment and task suite [10]. BEARCUBS and

BrowseComp show complementary challenges on the live web, where question validity and

trajectories must be continuously refreshed as content changes [1,2].

At the same time, there is growing recognition that many benchmark tasks are only loosely

connected to real economic value. A large subset of benchmarks fall into deep research tasks

(e.g., GAIA, BEARCUBS, BrowseComp, parts of Mind2Web 2) that emphasize hard

information-seeking and multi-hop reasoning, often framed as trivia-like questions with little

evidence that anyone would pay for their completion [1–4,6]. Others focus on

information-seeking with light interaction, such as much of Mind2Web’s live-web and

snapshot tasks [5]. A third category, execution-based benchmarks (Mind2Web, WebArena,

WebVoyager, OSWorld, REAL, TheAgentCompany) includes more action-oriented

tasks—editing content, filing forms, manipulating spreadsheets—but still mixes a large fraction

of low-value, atomic operations with only a modest core of realistic, economically meaningful

workflows [5,7–10]. Mind2Web 2 explicitly categorizes existing live-web benchmarks by horizon

and time variance and shows that most suites concentrate on short-horizon tasks, with relatively

few long-horizon workflows that resemble real work [6].

To systematically compare this growing ecosystem of web and computer-use benchmarks, we

also built a unified “web-evals” dashboard (https://web-evals.streamlit.app) that ingests GAIA,

Mind2Web, Mind2Web2, BrowseComp, WebArena, WebVoyager, REAL, BEARCUBS,

Agent-Company, and OSWorld into a common schema, making it easy to filter, search, and

inspect tasks across benchmarks [29].

There are promising attempts to move toward explicitly economically grounded evaluations.

REAL includes tasks such as scheduling property tours on real estate sites, which more closely

resemble paid work but remain limited in number (roughly a hundred tasks overall, of which

only a subset are clearly economically significant) [8]. OpenAI’s GDPVal benchmark evaluates

models on 220 real-world tasks across 44 occupations, constructed from representative work by

industry experts, and explicitly measures performance on economically valuable knowledge

work rather than synthetic puzzles [21, 22]. SWE-Lancer defines over 1,400 freelance software

engineering tasks from Upwork, representing $1M in actual payouts, and maps model

performance to monetary value [23]. Mercor’s APEX benchmark similarly assesses models on

professional work across investment banking, consulting, law, and medicine, but the underlying

tasks are not fully released and are not framed as browser environments [1,7,21,24]. These

efforts demonstrate that it is possible to ground evaluations in real economic activity, but they

are either domain-specific (software engineering), closed, or do not expose reusable trajectories

and environments that other researchers can build on.

The Evaluation practice further complicates progress. Many web and computer-use benchmarks

ultimately report a binary or near-binary notion of success—short-answer correctness, a

rubric-based pass/fail judgment, or a single scalar task score—even when they internally use

richer evaluators [1,2,4,7–9]. This makes leaderboards easy to interpret but limits diagnostic

power: it is difficult to attribute failures to specific missteps, to understand how far an agent

progressed before derailing, or to reuse trajectories as dense reward signals for reinforcement

learning. “An Illusion of Progress?” shows that such coarse metrics can overstate capability

gains when benchmarks themselves drift or contain exploitable artefacts [12].

TheAgentCompany explicitly introduces checkpoint-based scoring over realistic employee-style

tasks, but building its environment and evaluators required months of manual effort [10]. There

remains no lightweight, reusable way to attach granular progress signals to arbitrary browser

tasks on the live web.

TRACE (Trajectory Recording and Capture Environments) is motivated by this gap.

Rather than handcrafting miniature internets or company intranets, TRACE provides a

toolchain that lets an expert complete a task once in an instrumented browser and automatically

turns that demonstration into a self-contained environment that can be replayed offline. The

collector logs the expert’s full trajectory—DOM evolution, HTTP traffic, screenshots, and

videos—while they interact with real websites, and a post-processing pipeline converts these raw

captures into shareable bundles by parsing tool-like actions, scrubbing credentials, inserting

checkpoints, and determining which hosts can be ignored during replay. A replay module then

serves the captured assets locally so that agents can be evaluated against an exact snapshot of

the original session, without contacting the live web. In contrast to bespoke

environment-building projects such as WebArena, REAL, OSWorld, and TheAgentCompany

[7–10], TRACE aims to make it as easy to produce a fully fledged browser environment as it is to

record a screen-share.

Commercial platforms underscore both the demand for, and the concentration of, high-quality

environments. Mechanize, Plato, Deeptune, PreferenceModel, and others offer hosted browser

environments for training and evaluation, often based on reproducible copies of common

websites and complex workflows [15–19]. Leading labs such as OpenAI, Anthropic, and others

run reinforcement learning and large-scale agent training on top of these environments, treating

them as core infrastructure and paying correspondingly high prices for access. This has

effectively turned browser environments into a strategic, privately held asset: valuable, but

closed, expensive, and tied to a specific vendor’s stack. While this model has enabled rapid

progress inside well-resourced organizations, it also creates a barrier for the broader research

community: there is still no practical way to scale this approach to the long tail of real websites,

and academic and open-source groups generally cannot afford to license these environments at

the scale needed to train and iterate on competitive agents. As a result, the ability to run

controlled experiments and iteratively improve agents on realistic, reproducible browser tasks

remains largely concentrated in a small number of well-funded companies and labs.

Concretely, our contributions are:

●​ TRACE collection tool. A Playwright-based browser collector (CLI and desktop) that

captures expert trajectories—including DOM snapshots, network logs, screenshots, and

videos—together with task and metadata, sufficient to reconstruct a local browser

environment.​

●​ Post-processing pipeline. A sequence of scripts that parse high-level tool-calls from

the expert’s reasoning, redact credentials, annotate intermediate checkpoints, and filter

irrelevant network hosts.​

●​ Replay environment. A launcher that replays captured websites entirely offline,

including DOM, static assets, and browser state, with options to execute the human

trajectory for debugging.​

●​ Example evaluation runner. A minimal, working harness for browser-use agents,

plus binary and checkpointed LLM-based graders; a parallel OpenAI Computer Use

harness exists but is experimental and not part of the validated pipeline.​

●​ Demo dataset. An initial open dataset, $dataset, with $n expert demonstrations and

linked captured environments derived from Mind2Web tasks [5], intended as a template

for future, more economically grounded datasets.​

●​ Benchmarks dashboard (supporting artifact). A unified web-evals dashboard for

exploring 10+ browser and computer-use benchmarks under a common schema, used in

this work to analyze task properties and motivate TRACE’s design.​

2 Related Work

2.1 Benchmarks and Datasets for Web and Computer-Use Agents

Mind2Web introduced one of the first large-scale, open benchmarks for generalist web agents

operating on live websites, with crowdsourced annotations for diverse user tasks [5]. Mind2Web

2 extends this line of work by proposing agent-as-a-judge evaluation and agentic search, further

emphasizing live-web evaluation [6]. WebArena instead constructs a self-hosted web

environment with fully functional websites across four domains (shopping, forums, content

management, and collaborative development), along with programmatic validators for task

success [7,26]. REAL follows a similar philosophy but focuses on deterministic simulations of 11

widely used websites, providing 112 realistic tasks and a robust evaluation harness mixing

programmatic checks and rubric-guided LLM judgments [8]. OSWorld moves beyond the

browser to full operating systems, offering 369 tasks across real web and desktop applications

and highlighting how far current multimodal agents lag behind humans [9].

BEARCUBS targets computer-using web agents, unifying web and desktop interactions in a

benchmark for frontier models [1]. BrowseComp introduces a competition-style benchmark for

browsing agents that emphasizes simple yet challenging information-seeking tasks on the live

web [2]. TheAgentCompany defines even more consequential tasks involving coding and

terminal use, building on the WebArena ecosystem [7,10]. BrowserAgent focuses on grounded,

test-time adaptation in real websites using a unified browser agent framework [11]. Together,

these works demonstrate a vibrant landscape of web and computer-use benchmarks, but also

underscore how each new environment requires substantial bespoke engineering.

Benchmark Category Horizon Limitation

GAIA Deep research Medium Trivia-style, multi-hop QA; browser often

unnecessary.

BEARCUBS Deep research Short Complex search questions, manual eval.

BrowseComp Deep research Long Long-horizon scavenger hunts; strong reasoning,

not realistic. LM as a judge.

Mind2Web 2 Deep research Long Long-horizon, multi-hop QA, LM Code gen Eval.

Mind2Web Info seeking / Exec Short–Medium Mix of IR and simple actions; curated checkpoints,

no golden trajectory.

WebVoyager Info seeking Short Long-horizon navigation label, but many tasks are

small, atomic info-seeking steps.

WebArena Execution-based Short–Medium Action-based on cloned sites; many tasks are

atomic, limited high-value multi-step flows.

REAL Execution-based Short–Medium Deterministic replicas; ~50 with clear economic

value;

OSWorld Execution-based Short–Medium Real desktop apps; useful tasks but small dataset

and heavy, task-specific state machinery.

Agent-Company Execution-based Medium Realistic workflows, expensive to build.

Table 1: Taxonomy of Existing Browser based Benchmarks and their limitations. Overall they

highlight the importance and effort required of offline replicas.

2.2 Trajectory Collection and Self-Improving Agents

Beyond static benchmarks, several works study how to collect trajectories and let agents

learn from interaction. NNetNav proposes unsupervised learning of browser agents through

environment interaction “in the wild,” using large-scale, unlabeled trajectories rather than fully

curated supervision [3]. Agent Learning via Early Experience explores how generalist web

agents can benefit from temporally credit-assigned early experiences to improve downstream

performance [13]. SkillWeaver and related efforts develop self-improving agents that discover,

refine, and reuse skills via APIs over web environments, often evaluated on WebArena and real

websites [28]. These projects highlight the value of flexible data collection pipelines that can

serve both supervised learning and RL-style improvement.

TRACE is closer to Mind2Web and WebArena in that it focuses on expert demonstrations,

but it departs from both by providing end-to-end tooling to automatically capture and freeze the

entire environment an expert interacted with (network, DOM, screenshots, videos, and browser

state), rather than only task descriptions and action sequences [5,7]. This supports use cases

ranging from supervised imitation to execution-based evaluation and RL fine-tuning, provided

appropriate reward and logging machinery is attached.

2.3 Evaluation Methodology and LLM-as-a-Judge

Recent work has shown that evaluation choices can significantly distort perceived progress in

web agents, especially when relying on coarse, binary metrics or poorly specified LLM judges.

An Illusion of Progress? argues that benchmark design and evaluation practice can overstate

gains, and proposes Online-Mind2Web with a more careful LLM-as-a-Judge setup as a partial

remedy [12]. Benchmarks such as BrowseComp, REAL, OSWorld, and Beyond Browsing:

API-Based Web Agents similarly combine programmatic checks with rubric-guided LLM

judgments to handle free-form outputs and multiple valid strategies [2,8,9,14].

TheAgentCompany extends this line of work to consequential, long-horizon “employee-style”

tasks, where recognizing partial progress is essential [10].

Figure 2: Dashboard that ingests the most used browser benchmarks in a standardized format,

allowing for exploration and comparison.

TRACE follows this direction but keeps the evaluation layer intentionally minimal. The

repository ships an example evaluation runner for browser-use agents with two simple

modes: a binary judge that decides success or failure based on the task description, human

reference, and the agent’s final state, and a checkpoint-based judge agent that assigns partial

credit when the agent reaches predefined semantic milestones, even if it follows a different

trajectory than the human. Both modes are semantic rather than action-by-action, allowing

alternative valid paths and enabling finer-grained error analysis and denser rewards for RL-style

training. However, TRACE does not claim a full-fledged evaluation framework yet; its primary

contribution is to provide reusable, replayable environments on top of which more robust and

specialized evaluation schemes can be built.

https://web-evals.streamlit.app

2.4 Commercial Environment Platforms

Beyond academic benchmarks, a small ecosystem of commercial platforms now offers browser

and computer-use environments as a service. Mechanize, Plato, Deeptune, PreferenceModel,

and AGI Inc provide hosted environments, curated trajectories, and evaluation tooling that are

used internally by large labs for training and benchmarking web agents [15–19]. These platforms

confirm that environments themselves are a valuable asset, but they are typically proprietary

and tightly coupled to a single vendor’s infrastructure, limiting their use in open, reproducible

research.

TRACE targets a different point in this landscape: it is not an environment service, but an

open-source toolchain that enables researchers and practitioners to capture their own

environments from the live web and replay them locally. In this sense, TRACE complements

commercial platforms by making the core capability—building reproducible environments from

demonstrations—available to the broader research and open-source communities.

3 TRACE

3.1 Overview

TRACE is a pipeline for automated collection, post-processing, and replay of browser

environments from expert demonstrations. It is implemented in a single repository, “Web

Environments: Browser Agent Data Collection,” a modular design centered around four stages:

(1) task collection via an instrumented browser, (2) post-processing, (3) environment replay,

and (4) example evaluation.

At a high level, the user initiates the collection tool—either through a command-line interface or

a small desktop application—to launch a Playwright-based chromium browser with a

stealth configuration suitable for production websites. While the expert completes a task (e.g.,

“find flights under a given budget” or “filter products by price”), the tool records all browser

events, including navigation, DOM mutations, screenshots, videos, keyboard and mouse actions,

and HTTP traffic. These raw traces are stored across an sqlite database, and a structured folder

hierarchy (for example, data/captures/<task_id>), forming the basis of an offline environment.

After collection, TRACE’s post-processing pipeline transforms raw captures into cleaned,

annotated artifacts: it takes the database steps table for a task and converts the events logged

into high-level tool-calls as a human trajectory baseline, redacts credentials and potential

secrets, inserts task-specific checkpoints and reward annotations, and determines which

network hosts should be ignored during replay (e.g., analytics or third-party trackers). The

resulting artifacts are designed to support reproducible replay and flexible evaluation, without

leaking sensitive information.

The replay module then launches a local environment that reconstructs the recorded session,

using stored DOMs, static assets, and HTTP archives. Agents can interact with this environment

through a browser automation layer without contacting the live web, making experiments

deterministic and robust to subsequent changes on the original websites. Finally, a minimal

evaluation script demonstrates how to connect TRACE environments to the browser-use agent

framework and measure success over checkpoints; this runner is meant as a template rather

than a definitive benchmark.

3.2 Task Collection

TRACE’s collection phase is driven by a small set of commands. From the command line, users

can run: uv run trace

Figure 3: collecting a task using the Tkinter desktop app.

The CLI first prompts for (i) the source of the task (e.g., self, Mind2Web seed), (ii) task type

(information retrieval vs. action), and (iii) a natural-language description plus the target

website.

It then launches a stealth Playwright Chromium instance (custom arguments, anti-detection

scripts, optional proxy) and begins recording once the browser opens. During recording, TRACE

logs a rich set of events, including:

●​ Navigation events (page loads, redirects),

●​ DOM mutations and page-load events,

●​ Mouse clicks, keyboard input, scrolls, and form submissions,

●​ Screenshots and video frames,

●​ HTTP requests and responses, console logs, and storage snapshots.​

Recording stops when the collector hits Enter (or Ctrl+C) in the terminal; some task types

(information retrieval) additionally prompt for a final answer before closing.

For less technical annotators, TRACE also includes a desktop collector implemented with

Tkinter. This application mirrors the CLI prompts in a GUI, launches the same stealth browser

when Start Task is clicked, and writes into the same data/ directory, making it easier to

distribute to external contributors who may not be comfortable with command-line tools.

Each completed task produces a capture bundle and corresponding database entries.

Specifically, TRACE writes:

●​ Task and event rows into data/tasks.db (SQLite), including all recorded browser events

(e.g., page_loaded, dom_mutation, click, type, request_finished),​

●​ Raw per-step logs in data/steps/task_<id>.jsonl,​

●​ A capture bundle in data/captures/task_<id>/ (manifest, HAR, resources, storage),​

●​ Screenshots in data/screenshots/task_<id>/*.png, videos in

data/videos/task_<id>/*.webm, and DOM snapshots in

data/doms/task_<id>/step_<n>.txt .​

In the first post-processing step (postprocess-toolcalls), each task and its associated events in

tasks.db are transformed into a consolidated data/tasks.jsonl file, which then serves as the entry

point for the rest of the pipeline.

3.3 Post-Processing

The post-processing pipeline consists of several scripts that operate over the raw capture

bundles:

1.​ Tool-call parsing. All logs and web events (DOM events, Playwright actions,

navigation) are converted into a standardized browser-agent DSL, yielding a sequence of

high-level tool calls such as click, type, scroll, back, and goto. This replaces low-level

event noise with a human-trajectory representation that agents and analysis code can

consume directly.​

2.​ Credential extraction. Instead of masking inputs, TRACE identifies credential-related

interactions (e.g., login forms, tokens) from DOM and action logs and extracts them into

a separate structured field. This allows different harnesses (browser-use, OpenAI,

Anthropic, etc.) to inject credentials in whatever format their APIs expect, while enabling

substitution with dummy values when sharing environments.​

3.​ Checkpoint selection. A lightweight LM “judge” inspects the overall trajectory and

DOM states and selects two semantic checkpoints that represent meaningful partial

completion (e.g., reaching a results page or filling a form). These checkpoints enable

dense reward and partial-credit evaluation rather than only binary task completion.​

4.​ Ignore-list construction. Captured HTTP traffic is analyzed to determine which hosts

and request patterns can be safely ignored during replay (e.g., analytics, ads,

non-essential third parties). The resulting ignored.json is required for stable,

deterministic environment replay and reduces noise during evaluation.​

After post-processing, each task is represented as a compact JSONL record referencing the

cleaned environment artifacts, standardized tool-call trajectory, extracted credential descriptors,

checkpoints, and ignore list.

3.4 Environment Replay

The replay component of TRACE exposes a launch-environment command that reconstructs a

captured task entirely offline:

uv run launch-environment data/captures/task_<id> --channel chrome --run-human-trajectory

--ignore-cache

When invoked on a capture directory, the launcher loads the capture manifest and

recording.har, builds a Chromium context with HAR replay routing, and uses the task-specific

ignored.json to abort any URL that should not be served (e.g., analytics or other non-essential

third parties). All responses are served from the capture bundle and the HAR file; by default no

live network is touched unless --allow-network-fallback is explicitly enabled. For each outgoing

HTTP request, TRACE first matches on method and URL, then applies character-based

similarity heuristics over the path and query string to handle dynamically changing

parameters (such as timestamps or extra tracking fields) that strict Playwright HAR matching

would otherwise miss. When multiple HAR entries remain plausible, an LM-based matcher can

break ties and cache the chosen mapping (unless --ignore-cache is set), ensuring deterministic

replay across runs. The launcher can also restore storage state (cookies, localStorage, etc.) and

optionally execute the human tool-call trajectory for visual debugging. From an agent’s

perspective this appears as a standard automated browser session, but all network and state

transitions are driven by the recorded capture, providing deterministic environments built

directly from real expert sessions rather than hand-constructed sites.

Figure 4: Offline replayed environments of each of the tasks provided, including the replay of

sensitive interactions (sign-in/payments) in tasks (1, 2, 5).

3.5 Evaluation

TRACE includes an example evaluation runner for the browser-use framework,

implemented as a thin wrapper that:

1.​ Loads a processed task and its associated environment bundle.​

2.​ Launches the replayed environment.​

3.​ Initializes a browser-use agent with the task description and target website.​

4.​ Executes the agent’s actions within the replayed environment.​

5.​ Computes success at checkpoints by identifying semantically meaningful checkpoints

from the human trajectory and comparing the agent steps against those.

This runner is intentionally minimalist and is primarily intended to demonstrate how TRACE

environments can be plugged into an evaluation harness, rather than to define a new

benchmark or claim rigorous evaluation results. The README also contains a partially

implemented harness for OpenAI Computer Use / Operator, but this integration is currently

non-functional and considered an experiment, not part of the supported pipeline.

Longer term, the same environments could support richer evaluation schemes inspired by

REAL, OSWorld, BrowseComp, and Beyond Browsing (e.g., combining functional checks with

rubric-guided LLM judgments, or measuring robustness across variations in instructions)

[2,8,9,12,14]. However, those extensions are left as future work.

4 Results

Because the TRACE pipeline is primarily an environment and collection framework, this

section provides a report of 6 collected environments

4.1 Collected Environments

TRACE has been used to produce TRACE Environments, a small public demo dataset hosted on

Hugging Face at https://huggingface.co/datasets/josancamon/trace-environments. The current

release contains 6 tasks captured on widely used production websites, covering both

action-oriented and information-retrieval scenarios.

Each task is stored as a fully replayable environment bundle, including:

●​ A natural-language task description and task type (action vs. information retrieval),

●​ An expert “golden” trajectory expressed as typed actions (go_to, click, type, etc.),

●​ A capture bundle with HTTP logs (HAR), cached resources, and storage snapshots,

●​ Per-step DOM snapshots, screenshots, and video for visual inspection,

https://huggingface.co/datasets/josancamon/trace-environments

●​ Task-level metadata such as duration, number of tool calls, and approximate storage

footprint.

Table 2 summarizes the six environments in the initial release:

Table 2: TRACE Environments dataset (6 captured tasks and their aggregate statistics)..

Together, these environments illustrate that even a small number of expert demonstrations

produces rich, high-dimensional traces: each task involves hundreds to thousands of HTTP

requests, dozens of DOM snapshots and screenshots, and tens to hundreds of megabytes of

captured state, all of which can be replayed deterministically using TRACE’s launcher.

4.2 Environment Examples

The six tasks in TRACE Environments are designed to exercise realistic web workflows rather

than synthetic toy interaction:

1.​ GitHub (Action, with credentials). The collector signs in to GitHub, stars a target

repository, uses the search bar to find a specific user, and follows that user. The

environment captures the full sign-in flow, repository navigation, and user profile

interactions.​

2.​ Amazon (Action, with credentials). The collector signs in to Amazon, navigates to current

deals (e.g., Black Friday deals), identifies a discounted item meeting specified constraints

(such as a minimum percentage discount), adds it to the cart, and proceeds toward

checkout using a saved payment method and default address.​

3.​ Airbnb (Information retrieval, no credentials). The collector searches for stays on

airbnb.com within a specified location, date range, and budget, applies relevant filters

(such as entire place and minimum rating), and inspects one or more candidate listings.

The resulting environment includes map interactions, scrolling, and detailed listing

pages.

All six environments are replayable offline with TRACE’s launch-environment command,

allowing agents to be evaluated on realistic, real-world websites without contacting the live web.

While the dataset is intentionally small, it demonstrates end-to-end coverage of credential

handling, navigation, search and filtering, cart operations, and account-state changes, and

serves as a concrete template for scaling TRACE to much larger, more economically grounded

task suites.

> it took less than 40 minutes to collect this dataset.

Figure 5: Offline replayed environment and tool call parsing of task “sign in to my amazon

account with $email, $password, open the cart and buy the lacrosse ball that is in there with the

card finishing in 3565 and the default address.”

5 Conclusion

In this work, we presented TRACE (Trajectory Recording and Capture Environments),

a toolchain designed to simplify the collection, post-processing, and replay of browser

environments for web and computer-use agents. TRACE focuses on environment-level

infrastructure rather than defining yet another benchmark: it enables experts to perform

tasks as usual in an instrumented browser while automatically capturing all relevant

signals—DOM, network, interactions, screenshots, and videos—and then converts these captures

into replayable environments.

By releasing the TRACE Environments dataset—a public collection of six fully captured,

replayable tasks on real websites—and providing a minimal browser-use evaluation runner,

TRACE offers a practical starting point for researchers who wish to build their own task suites

and evaluation pipelines from live websites. In doing so, it complements existing benchmarks

such as Mind2Web, WebArena, REAL, OSWorld, BEARCUBS, TheAgentCompany,

BrowseComp, BrowserAgent, GAIA, and API-based web-agent frameworks [1–5,7–11,14].

TRACE’s design directly addresses concerns about the fragility and cost of current benchmarks

by offering a scalable, open-source approach to freezing real-world tasks into reusable

environments [8,9,12].

Ultimately, TRACE aims to make environment creation itself more accessible and

reproducible. Rather than relying solely on centralized environment services or one-off

benchmarks, researchers can use TRACE to iteratively collect and share high-value tasks tied to

their own domains, thereby enriching the ecosystem of web and computer-use evaluations.

6 Next Steps

Several avenues remain for future work, many of which are already hinted at in the mini draft

and design notes:

1.​ Improved edge-case handling and stealth. Hardening the collector and replayer

against anti-automation measures, dynamic content, and complex authentication flows,

potentially drawing on techniques from commercial platforms and recent environment

frameworks such as REAL and OSWorld [8,9,15-19].​

2.​ Richer and more robust evaluation. Integrating more sophisticated evaluation

schemes, including hybrid programmatic + LLM-as-a-Judge scoring, stress tests for

robustness (à la Illusion of Progress, BrowseComp, and TheAgentCompany) [2,8,10,12].​

3.​ RL pipelines. Extending TRACE environments with step-level rewards and richer

checkpoint structures to support RL-based training and finetuning of agents [26-28],

including long-horizon credit assignment as in Early Experience [13] and skill discovery

as in SkillWeaver [28].​

4.​ Larger-scale datasets. Scaling beyond the current 6-task demo to hundreds or

thousands of tasks, with a particular focus on economically valuable tasks, as discussed

in prior notes on browser-automation economics. This includes expanding coverage over

multiple domains (productivity, finance, travel, developer tools) and documenting

curation costs.​

5.​ Beyond the browser to full computer use. Adapting TRACE’s capture and replay

mechanisms to OS-level tasks, thereby bridging toward OSWorld-style environments

and computer-use agents evaluated in BEARCUBS and RedTeamCUA [1,9,20].​

By addressing these directions, TRACE can evolve from an environment collection toolkit into a

central component of a broader ecosystem for transparent, reproducible, and

economically grounded evaluation of web and computer-use agents.

References

1.​ Y. Song et al. BEARCUBS: A Benchmark for Computer-Using Web Agents.

arXiv:2503.07919, 2025. Available at: https://arxiv.org/pdf/2503.07919​

2.​ J. Wei et al. BrowseComp: A Simple Yet Challenging Benchmark for Browsing

Agents. OpenAI blog and report. Available at: https://openai.com/index/browsecomp/​

3.​ S. Murty et al. NNetNav: Unsupervised Learning of Browser Agents Through

Environment Interaction in the Wild. alphaXiv / arXiv:2410.02907, 2024.

Available at: https://www.alphaxiv.org/abs/2410.02907​

4.​ M. J. A. Maia et al. GAIA: A Benchmark for General AI Assistants in the Wild.

arXiv:2311.12983, 2023. Available at: https://arxiv.org/pdf/2311.12983​

5.​ C. Zhang et al. Mind2Web: Toward a Generalist Agent for the Web.

arXiv:2306.06070, 2023. Available at: https://arxiv.org/pdf/2306.06070​

6.​ Z. Li et al. Mind2Web 2: Evaluating Agentic Search with Agent-as-a-Judge.

arXiv:2506.21506, 2025. Available at: https://arxiv.org/pdf/2506.21506​

7.​ S. Zhou et al. WebArena: A Realistic Web Environment for Building

Autonomous Agents. arXiv:2307.13854, 2023. Available at:

https://arxiv.org/pdf/2307.13854​

8.​ D. Garg et al. REAL: Benchmarking Autonomous Agents on Deterministic

Simulations of Real Websites. arXiv:2504.11543, 2025. Available at:

https://arxiv.org/pdf/2504.11543​

9.​ T. Xie et al. OSWorld: Benchmarking Multimodal Agents for Open-Ended

Tasks in Real Computer Environments. arXiv:2404.07972, 2024. Available at:

https://arxiv.org/pdf/2404.07972​

10.​WebArena Team. TheAgentCompany: A Benchmark of Consequential Tasks for

Web and Terminal Agents. arXiv:2412.14161, 2024. Available at:

https://arxiv.org/pdf/2412.14161​

11.​ Y. Feng et al. BrowserAgent: Grounded Test-Time Adaptation for Web Agents.

arXiv:2510.10666v2, 2025. Available at: https://arxiv.org/html/2510.10666v2​

12.​ T. Xue et al. An Illusion of Progress? Assessing the Current State of Web

Agents. arXiv:2504.01382, 2025. Available at: https://arxiv.org/pdf/2504.01382​

13.​ S. Murty et al. Agent Learning via Early Experience: Generalist Web Agents

with Temporal Credit Assignment. arXiv:2510.08558, 2025. Available at:

https://arxiv.org/pdf/2510.08558​

https://arxiv.org/pdf/2503.07919
https://openai.com/index/browsecomp/?utm_source=chatgpt.com
https://www.alphaxiv.org/abs/2410.02907
https://arxiv.org/pdf/2311.12983
https://arxiv.org/pdf/2306.06070
https://arxiv.org/pdf/2506.21506
https://arxiv.org/pdf/2307.13854
https://arxiv.org/pdf/2307.13854
https://arxiv.org/pdf/2504.11543
https://arxiv.org/pdf/2504.11543
https://arxiv.org/pdf/2404.07972
https://arxiv.org/pdf/2404.07972
https://arxiv.org/pdf/2412.14161
https://arxiv.org/pdf/2412.14161
https://arxiv.org/html/2510.10666v2?utm_source=chatgpt.com
https://arxiv.org/pdf/2504.01382
https://arxiv.org/pdf/2510.08558
https://arxiv.org/pdf/2510.08558

14.​ L. Jiang et al. Beyond Browsing: API-Based Web Agents. Findings of ACL 2025.

Available at: https://aclanthology.org/2025.findings-acl.577.pdf​

15.​ Mechanize. Mechanize: AI-Native Browser Automation Platform. Company

website. Available at: https://www.mechanize.work​

16.​Plato. Plato: Agentic AI Data and Environment Tools. Company website.

Available at: https://plato.so​

17.​ Deeptune. Deeptune: Evaluation and Training Infrastructure for AI Agents.

Company website. Available at: https://deeptune.com​

18.​Preference Model. PreferenceModel: Preference-Based Evaluation and

Training for AI Agents. Company website. Available at:

https://www.preferencemodel.com​

19.​AGI Inc. REAL Evals and Environment Services for Web Agents. Company

website. Available at: https://agi.inc​

20.​H. Yuan et al. RedTeamCUA: Red-Teaming Benchmark for Computer-Use

Agents. arXiv:2502.12911, 2025. Available at https://arxiv.org/pdf/2505.21936​

21.​ OpenAI. GDPval: Evaluating AI Model Performance on Real-World

Economically Valuable Tasks. Available at https://arxiv.org/pdf/2510.04374.​

22.​OpenAI. GDPval Benchmark Card and Evaluation Details. OpenAI evaluation

documentation, 2025. Available at: https://openai.com/index/gdpval/​

23.​S. Ramaswamy et al. SWE-Lancer: Benchmarking LLMs on Freelance Software

Engineering Tasks. Available at: https://arxiv.org/pdf/2502.12115​

24.​Mercor. APEX: Benchmarking Models on Professional Work Across Multiple

Domains. Company report / arXiv preprint, 2024. Available at

https://arxiv.org/html/2509.25721v1​

25.​J. Deng et al. WebShop: Towards Scalable Real-World Web Interaction with

Grounded Language Agents. arXiv:2207.01206, 2022. Available at:

https://arxiv.org/abs/2207.01206​

26.​OpenAI. Gym. GitHub repository. Available at: https://github.com/openai/gym​

27.​PrimeIntellect. verifiers: Tools for Verifier-Guided RL and Evaluation. GitHub

repository. Available at: https://github.com/PrimeIntellect-ai/verifiers​

28.​(SkillWeaver authors). SkillWeaver: Self-Improving Web Agents via Skill

Discovery and Reuse. arXiv preprint, 2024. Available at

https://arxiv.org/pdf/2504.07079​

29.​J. Cabezas. Web-Evals: Unified Dashboard for Web and Computer-Use

Benchmarks. Streamlit app and REST API, 2025. Available at:

https://web-evals.streamlit.app

https://aclanthology.org/2025.findings-acl.577.pdf
https://www.mechanize.work
https://plato.so
https://deeptune.com
https://www.preferencemodel.com
https://www.preferencemodel.com
https://agi.inc
https://arxiv.org/pdf/2505.21936
https://arxiv.org/pdf/2510.04374
https://openai.com/index/gdpval/
https://arxiv.org/pdf/2502.12115
https://arxiv.org/html/2509.25721v1
https://arxiv.org/abs/2207.01206?utm_source=chatgpt.com
https://arxiv.org/abs/2207.01206?utm_source=chatgpt.com
https://github.com/openai/gym?utm_source=chatgpt.com
https://github.com/PrimeIntellect-ai/verifiers?utm_source=chatgpt.com
https://arxiv.org/pdf/2504.07079
https://web-evals.streamlit.app
https://web-evals.streamlit.app

	TRACE: Trajectory Recording and Capture Environments
	Abstract
	1 Introduction
	2 Related Work
	2.1 Benchmarks and Datasets for Web and Computer-Use Agents
	2.2 Trajectory Collection and Self-Improving Agents
	2.3 Evaluation Methodology and LLM-as-a-Judge
	2.4 Commercial Environment Platforms

	3 TRACE
	3.1 Overview
	3.2 Task Collection
	3.3 Post-Processing
	3.4 Environment Replay
	3.5 Evaluation

	4 Results
	4.1 Collected Environments

	5 Conclusion
	6 Next Steps
	
	
	References

