

In this assignment we will explore a few of the “object patterns” from PLAI, again using the

Stacker.

The programs will be rewritten to conform to the SMoL (which is intentionally low on features,

since it represents a common linguistic abstraction). For instance, we replace symbols with

strings, case with cond. We will also get rid of some of the methods to keep the code simpler.

http://smol-tutor.xyz/stacker/

Basic Objects

This program is a simple version of the basic object pattern:

(deffun (o-state-2 init)
 (lambda (m)
 (cond
 ​ [(eq? m "inc")
 (lambda () (set! init (+ init 1)))]
 ​ [(eq? m "get")
 (lambda () init)]
 ​ [else
 (error "undefined method")])))

(defvar o (o-state-2 5))
((o "inc"))
((o "get"))

Run this program through to completion.

1.​ Provide a screenshot of your final configuration.

2.​ You should see four closures. Using the addresses in the above configuration:

a.​ Which of these correspond to objects, and why?

b.​ Which of these correspond to classes, and why?

https://smol-tutor.xyz/stacker/?syntax=Lispy&randomSeed=smol&hole=%E2%80%A2&nNext=0&program=%28deffun+%28o-state-2+init%29%0A++%28lambda+%28m%29%0A++++%28cond%0A++%09%5B%28eq%3F+m+%22inc%22%29%0A+++++++%28lambda+%28%29+%28set%21+init+%28%2B+init+1%29%29%29%5D%0A++%09%5B%28eq%3F+m+%22get%22%29%0A+++++++%28lambda+%28%29+init%29%5D%0A++%09%5Belse%0A+++++++%28error+%22undefined+method%22%29%5D%29%29%29%0A%0A%28defvar+o+%28o-state-2+5%29%29%0A%28%28o+%22inc%22%29%29%0A%28%28o+%22get%22%29%29%0A

Static Members

This program represents the static pattern, where counter is the static member:

(defvar o-static-1
 (let ([counter 0])
 (lambda (amount)
 ​ (set! counter (+ 1 counter))
 ​ (lambda (m)
 (cond
 [(eq? m "inc")
 ​ (lambda () (set! amount (+ amount 1)))]
 [(eq? m "count")
 ​ counter]
 [else
 ​ (error "undefined member")])))))

(defvar o-1 (o-static-1 5))
(defvar o-2 (o-static-1 7))
((o-2 "inc"))
(o-2 "count")

Run this program through to completion.

1.​ Provide a screenshot of your final configuration.

2.​ How many objects are created? Where are they located in your configuration (using the

addresses in the above screenshot)?

3.​ Trace through the configuration to show why counter behaves like a static.

https://smol-tutor.xyz/stacker/?syntax=Lispy&randomSeed=smol&hole=%E2%80%A2&nNext=0&program=%28defvar+o-static-1%0A++%28let+%28%5Bcounter+0%5D%29%0A++++%28lambda+%28amount%29%0A++%09%28set%21+counter+%28%2B+1+counter%29%29%0A++%09%28lambda+%28m%29%0A++++++++%28cond%0A++++++++++%5B%28eq%3F+m+%22inc%22%29%0A+++++++%09%28lambda+%28%29+%28set%21+amount+%28%2B+amount+1%29%29%29%5D%0A++++++++++%5B%28eq%3F+m+%22count%22%29%0A+++++++%09counter%5D%0A++++++++++%5Belse%0A+++++++%09%28error+%22undefined+member%22%29%5D%29%29%29%29%29%0A%0A%28defvar+o-1+%28o-static-1+5%29%29%0A%28defvar+o-2+%28o-static-1+7%29%29%0A%28%28o-2+%22inc%22%29%29%0A%28o-2+%22count%22%29%0A

Dynamic Dispatch

The following program represents the “dynamic dispatch” pattern.

(defvar mt
 (let ([self "dummy"])
 (set! self
 (lambda (m)
 (cond
 ​ [(eq? m "sum")
 (lambda () 0)]
 ​ [else
 (error "mt")])))
 self))

(deffun (node v l r)
 (let ([self "dummy"])
 (set! self
 (lambda (m)
 (cond
 ​ [(equal? m "sum")
 (lambda () (+ v
 ((l "sum"))
 ((r "sum"))))]
 [else
 (error "node")])))
 self))

(defvar a-tree
 (node 10
 (node 5 mt mt)
 mt))

((a-tree "sum"))

We have simplified the program slightly: mt is a singleton. Because it has no parameters, we

have also gotten rid of the constructor and focused on the core object representation.

https://en.wikipedia.org/wiki/Singleton_pattern

1.​ Run this program and provide a screenshot of the configuration at the point where the

a-tree object has been initialized and before the method dispatch begins.

2.​ In the above configuration, point out which values represent mt and node objects. Do

any values here correspond to classes? If so, which one(s) and why?

3.​ Dynamic dispatch depends on objects having a consistent representation (this is the

heart of “object polymorphism”: you can treat them interchangeably, and the differences

in behavior are hidden inside the objects). In what way do these objects have a consistent

representation?

https://smol-tutor.xyz/stacker/?syntax=Lispy&randomSeed=smol&hole=%E2%80%A2&nNext=0&program=%28defvar+mt%0A++%28let+%28%5Bself+%22dummy%22%5D%29%0A++++%28set%21+self%0A++++++++++%28lambda+%28m%29%0A++++++++++++%28cond%0A++++++++++%09+++%5B%28eq%3F+m+%22sum%22%29%0A+++++++++++++++%28lambda+%28%29+0%29%5D%0A++++++++++%09+++%5Belse%0A+++++++++++++++%28error+%22mt%22%29%5D%29%29%29%0A++++self%29%29%0A+%0A%28deffun+%28node+v+l+r%29%0A++%28let+%28%5Bself+%22dummy%22%5D%29%0A++++%28set%21+self%0A++++++++++%28lambda+%28m%29%0A++++++++++++%28cond%0A++++++++++%09+++%5B%28equal%3F+m+%22sum%22%29%0A+++++++++++++++%28lambda+%28%29+%28%2B+v%0A+++++++++++++++++++++++++++++%28%28l+%22sum%22%29%29%0A+++++++++++++++++++++++++++++%28%28r+%22sum%22%29%29%29%29%5D%0A++++++++++++++%5Belse%0A+++++++++++++++%28error+%22node%22%29%5D%29%29%29%0A++++self%29%29%0A%0A%28defvar+a-tree%0A++%28node+10%0A++++++++%28node+5+mt+mt%29%0A++++++++mt%29%29%0A%0A%28%28a-tree+%22sum%22%29%29%0A

	
	Basic Objects
	Static Members
	
	Dynamic Dispatch

