l ah - i	nH -	Qualitative	(to	Quantitative Analy	(sis)
Lab -	יווע –	Quantative	l LO	Qualititative Alian	/ 313 /

Problem - How can one perform qualitative analysis of unknown substances using red, blue and yellow litmus papers, and yet obtain quantitative results?

Hypothesis - Changes in the color of Litmus and Hydrion paper will allow the students to predict the acidity/alkalinity of unknown solutions, as well as making an estimation of the solutions' pH.

"If you _	, then	."

	11 you, then
	Independent Variable(s):
	Dependent Variable(s):
Constant(s):	
	Control(s):

Materials: unknowns in labelled glass beakers, litmus papers (red/blue/yellow), forceps, "trash cans", safety goggles, pH probe/probeware* *if operational...

Methods: dip each litmus papers into the liquid (do not allow forceps to touch), record results in chart

- Unknown column will be filled in later
- R, B columns mark your results as (R)ed, (N)o change, (B)lue
- For Y column mark your result as (VR) Very Red, (R)ed, (RO) Red-Orange, (O)range, (YO) Yellow-Orange, (Y)ellow, (YG) Yellow-Green, (G)reen, (BG) Blue-Green, (B)lue, (VB) Very Blue
- A/N/B- predict whether the substance will be **A**cid (redder), **N**eutral (no changes), or **B**ase(blue)
- pH column will be filled in later

Experimental Observations & Data

"Unknown"	Let.	R	В	Υ	A/N/B	рН
Vinegar	Α	RNB	RNB	VR R RO O OY Y YG G BG B VB	ANB	3
Corn Syrup	В	RNB	RNB	VR R RO O OY Y YG G BG B VB	ANB	7
Hydrochloric Acid (HCI)	С	RNB	RNB	VR R RO O OY Y YG G BG B VB	ANB	3
Rubbing Alcohol	D	RNB	RNB	VR R RO O OY Y YG G BG B VB	ANB	6
Water (H ₂ O)	Е	RNB	RNB	VR R RO O OY Y YG G BG B VB	ANB	8
Sodium Hydroxide (NaOH)	F	RNB	RNB	VR R RO O OY Y YG G BG B VB	ANB	12
Antifreeze	G	RNB	RNB	VR R RO O OY Y YG G BG B VB	ANB	10
Baking Soda and Water	Н	RNB	RNB	VR R RO O OY Y YG G BG B VB	ANB	9
Hydrogen Peroxide H ₂ O ₂		RNB	RNB	VR R RO O OY Y YG G BG B VB	ANB	7
Lye (fire ash & water)	J	RNB	RNB	VR R RO O OY Y YG G BG B VB	ANB	13

Conclusions: My hypothesis was... correct? Incorrect?