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What are you trying to do?  
While Spark is used extensively, it was designed nearly a decade ago, which, in the age of 
serverless computing and ubiquitous programming language use, poses a number of limitations. 
Most of the limitations stem from the tightly coupled Spark driver architecture and fact that 
clusters are typically shared across users: (1) Lack of built-in remote connectivity: the Spark 
driver runs both the client application and scheduler, which results in a heavyweight architecture 
that requires proximity to the cluster. There is no built-in capability to  remotely connect to a Spark 
cluster in languages other than SQL and users therefore rely on external solutions such as the 
inactive project Apache Livy. (2) Lack of rich developer experience: The current architecture and 
APIs do not cater for interactive data exploration (as done with Notebooks), or allow for building out 
rich developer experience common in modern code editors. (3) Stability: with the current shared 
driver architecture, users causing critical exceptions (e.g. OOM) bring the whole cluster down for all 
users. (4) Upgradability: the current entangling of platform and client APIs (e.g. first and 
third-party dependencies in the classpath) does not allow for seamless upgrades between Spark 
versions (and with that, hinders new feature adoption). 
 
We propose to overcome these challenges by building on the DataFrame API and the underlying 
unresolved logical plans. The DataFrame API is widely used and makes it very easy to iteratively 
express complex logic. We will introduce Spark Connect, a remote option of the DataFrame API that 
separates the client from the Spark server. With Spark Connect, Spark will become decoupled, 
allowing for built-in remote connectivity: The decoupled client SDK can be used to run interactive 
data exploration and connect to the server for DataFrame operations.  
 
Spark Connect will benefit Spark developers in different ways: The decoupled architecture will 
result in improved stability, as clients are separated from the driver. From the Spark Connect client 
perspective, Spark will be (almost) versionless, and thus enable seamless upgradability, as server 
APIs can evolve without affecting the client API. The decoupled client-server architecture can be 
leveraged to build close integrations with local developer tooling. Finally, separating the client 
process from the Spark server process will improve Spark’s overall security posture by avoiding the 
tight coupling of the client inside the Spark runtime environment. 
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Spark Connect will strengthen Spark’s position as the modern unified engine for large-scale data 
analytics and expand applicability to use cases and developers we could not reach with the current 
setup: Spark will become ubiquitously usable as the DataFrame API can be used with (almost) any 
programming language. 

What problem is this proposal NOT designed to solve? 
Our proposal does not address or include  any of the following: 

-​ Changes to how DataFrames are executed in the backend of Spark.  
-​ Support for RDDs  
-​ Spark Connect is not meant to be an administrative interface of Spark.  
-​ Spark Connect is not meant to replace the HiveServer2 interface or SQL.  
-​ Spark Connect is not meant to be the generic interface for everything that Spark can do, 

but provides access to an opinionated subset of Spark features. 
 
We anticipate that for certain functionality based on RDDs (in particular open source ML libraries) 
there is no equivalent functionality in the DataFrame API. In some of these cases, we want to 
encourage developers to move to the DataFrame API. For example the StatsFunctions class used 
by the DataFrame API leverages RDD-based computation for logic that does actually have Spark 
SQL alternatives. We will foster migration of such RDD-based computations to their Spark SQL 
equivalents. 
 
However, supporting the machine learning ecosystem completely via DataFrame API  will be a 
challenge that can only be tackled over time. As called out below, some of the functionality can be 
replaced using additional logical plan nodes in the client API to support, whereas for others (e.g. 
distributed learning with barrier execution mode) we will have to continue our analysis. 

How is it done today, and what are the limits of current practice? 
Running Spark workloads is done either by submitting jobs via spark-submit, via SQL using the 
Thrift interface, or interactively using the Spark Shell (Scala / Python). They all come with some 
disadvantages:  

-​ spark-submit: Submitting jobs is impractical during development as it slows down the 
development loop. In addition, job submission to Spark typically encourages to run the 
process from a co-located host, making it infeasible to interact with a Spark cluster from a 
local client.  

-​ Spark Shell: Using the Spark shell essentially combines the classpath of the application 
with the one running the Spark server, which creates problems and conflicts in case of 
upgrades and when managing different versions of dependencies.  

-​ SQL via Thrift (Hive Server2): Submitting work using SQL via Thrift interface (or 
JDBC/ODBC) requires translating a sequence of operations into a SQL string that does not 
support lazy evaluation or structured composition. 
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What is new in your approach and why do you think it will be 
successful? 
The DataFrame API has proven to be a very powerful abstraction for users and engineers alike to 
interact with data. The translation of the API into logical plans delegates the power of analysis and 
optimization to the Spark core engine to achieve the best performance. By building on the 
DataFrame API and separating the consumption API of Spark from the core engine we can achieve 
the following improvements: 
 

●​ Seamless support for upgrading to more recent versions of Spark, as the client application 
can be completely decoupled from the server application and they no longer share the 
same classpath. 

●​ Working with Spark through DataFrames will become more ubiquitous as the new client 
interface makes it easy to integrate with developers’ local tooling. This will improve 
testability and reproducibility as the service interface is easier to manage. 

●​ Spark will become more stable since the client application is now better separated from the 
rest of the driver process, removing a class of issues that can cause instability (e.g. driver 
OOM). 

●​ Bring data science and data engineering to new programming languages without combining 
a JVM with every client library. Implementing a new client interface for a new language is 
straight forward: it requires to implement three simple software concepts: a) The 
language-specific DataFrame API; b) the serialization of the DataFrame operations to the 
RPC format; and c) the client library connecting to the Spark RPC endpoint. 

●​ To make it easier for JVM based languages to integrate and adopt this new protocol, we 
plan to extract an interface for the DataSet / DataFrame class (breaking binary 
compatibility, while retaining source compatibility for a next major release of Spark) that 
will allow clients to transparently switch between remote and client-local deployment.  

What are the risks? 
The DataFrame API covers a very large portion of the major use cases for today’s Spark users, but 
the risk is that some users will need to fall back to RDDs for certain operations, making it harder to 
use Spark Connect. We plan to address this risk by analyzing which DataFrame related functionality 
uses RDDs under the covers and plan to migrate those to the DataFrame API. For example, some of 
the DataFrame statistics functions use RDD code instead of the DataFrame’s own functionality. In 
addition, we highlight the following risk areas: 

PySpark and Spark Connect 
We plan to add the Spark Connect client library for Python directly to PySpark and make it available 
as a flavor of the Python package. This will allow a direct integration of the Python client with 



PySpark without forcing users of PySpark to install additional packages. There are some required 
changes in PySpark to facilitate the integration, but we believe that these changes are manageable.  

Pandas API 
The Pandas API is built directly on PySpark and the DataFrame API. We plan to add the Spark 
Connect client directly to PySpark and allow installing it as a specific flavor of the Python package 
and with that, enable the reuse of the Pandas API together with Spark Connect as part of PySpark. 

Spark ML / Open Source ML Libraries 
The integrated machine learning support in Spark is mostly based on the DataFrame API. However, 
there are still occurrences of RDD in these packages, which won’t be covered by Spark Connect 
from the start. Right now basic code search identifies ~37 cases of DataFrame.rdd.map usage and 
~10 cases of rdd.treeAggregate.  The PySpark interface to Spark ML does not directly call the 
underlying RDD. We plan to transform many of these cases into operations based on Spark logical 
plans over time.  
 
There are additional machine learning libraries that integrate with Spark that might not be directly 
compatible with Spark Connect. For example in XGBoost-spark, the dataset is converted to an RDD 
to then use barrier execution mode for distributed training. Apart from the barrier execution mode, 
there are other occurrences of DataFrame.rdd.map and mapPartitions. Similarly, for horovod the 
Python code leverages the underlying RDD to execute mapPartition calls in Python. 
 
To summarize, we can split the observations into three categories. First, we have to find a good 
way to normalize the definition and execution of map() and mapPartitions() via logical plans and 
DataFrames without relying on RDDs. This will help both Python and Scala in the long run. It will 
require additional work to analyze what amount of work is required to perform the migration. 
Second, for distributed learning / training, we will need a way to support barrier execution mode 
and communicate this intent using logical plans. As of today, we have not looked into the problem 
space enough to make a proposal. Finally, there are a number of libraries that perform all their work 
on the Spark driver today. These libraries should not be impacted as they directly consume the 
result of a DataFrame. 

Structured Streaming 
For consuming stream data, the Spark Session object provides the readStream method. Via a 
generator, it builds a DataFrame that is represented using a StreamingRelation(v2). To support 
reading from streaming data sources, we need to define the appropriate representation in the 
client API and map it to the appropriate operation. 
 
An initial analysis shows that for DataFrame.writeStream the operation cannot be as easily 
translated into an existing logical plan node. However, we believe that we will be able to come up 

https://sourcegraph.com/github.com/dmlc/xgboost@16ba74d00842f965db7b7c578f098f39ce4cc518/-/blob/jvm-packages/xgboost4j-spark/src/main/scala/ml/dmlc/xgboost4j/scala/spark/PreXGBoost.scala?L109
https://github.com/horovod/horovod/search?q=rdd.mapPartitions


with a client side logical plan node that can be translated into the appropriate operations on the 
server side. As of today, we have not yet fully scoped the approach and calling it out as a risk here. 

Unknown Operations / Extensibility 
We believe that there will be certain operations that are not yet / might not be expressible as logical 
plans directly in Spark. This will require us to make conscious choices when it comes to defining 
the protocol format to account for these unknowns. 
 

Architecture Diagram 
Please find a quick architectural overview of the current prototype below. The goal is to illustrate 
the basic components of Spark connect and how plans and results are processed. 
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