Sensor APls implementation in
Chromium: Generic Sensor Framework

Mikhail Pozdnyakov <mikhail.pozdnyakov@intel.com>
Alexander Shalamov <alexander.shalamov@intel.com>
Maksim Sisov <maksim.sisov@intel.com>

Last updated: April 12 2017

Objective

This document explains how sensor APIs (such as Ambient Light Sensor, Accelerometer,
Gyroscope, Magnetometer) based on Generic Sensor API are implemented in Chromium. This
document describes the Generic Sensor API implementation on both renderer process and
browser process sides, it also describes important implementation details, for example how data
from a single platform sensor is distributed among multiple JS sensor instances and how sensor
configurations are managed.

At the time of writing following specifications were implemented in Chromium under “Generic
Sensor” feature flag.

ED Specs:

Generic Sensor API https://w3c.github.io/sensors/

Ambient Light Sensor API https://w3c.github.io/ambient-light/
Accelerometer Sensor API https://w3c.github.io/accelerometer/
Gyroscope Sensor API https://w3c.github.io/gyroscope/

Magnetometer Sensor API https://w3c.qithub.io/magnetometer/
Absolute Orientation Sensor API https://w3c.github.io/orientation-sensor/

Background

The Generic Sensor API defines base interfaces that should be implemented by concrete
sensors. In most of the cases, concrete sensors should only define sensor specific data
structures and if required, sensor configuration options. Same approach is applied on the
implementation side: Generic Sensor APl implementation (we call it Generic Sensor Framework
or GSF) provides the common functionality that is reused by concrete sensor implementations,
its goal is to decrease to a minimum the amount of code required for implementation of a new
sensor type.

mailto:mikhail.pozdnyakov@intel.com
mailto:alexander.shalamov@intel.com
mailto:maksim.sisov@intel.com
https://w3c.github.io/sensors/
https://w3c.github.io/ambient-light/
https://w3c.github.io/accelerometer/
https://w3c.github.io/gyroscope/
https://w3c.github.io/magnetometer/
https://w3c.github.io/orientation-sensor/
https://irsmsx101.ger.corp.intel.com/owa/redir.aspx?SURL=GYg5R3a4eQVkOKJXqFlPgdYEHrMXZ9Q8xfDkyElmJmnsiPXFYCjUCGgAdAB0AHAAcwA6AC8ALwB3ADMAYwAuAGcAaQB0AGgAdQBiAC4AaQBvAC8AbQBhAGcAbgBlAHQAbwBtAGUAdABlAHIALwA.&URL=https%3a%2f%2fw3c.github.io%2fmagnetometer%2f

Generic Sensor Framework requirements

1. Share the crucial parts of functionality between the concrete sensor implementations.
Avoid the code duplication and thus simplify maintenance and development of new
features.

2. Support simultaneous existence and functioning of multiple JS Sensor instances of the
same type that can have different configurations and life-time.

3. Support for both “slow” sensors that provide periodic updates (e.g. AmbientLight,
Proximity), and “fast” streaming sensors that have low-latency requirements for sensor
reading updates (motion sensors).

Overview/Scope

The GSF implementation consists of two main components: Sensor module in Blink (located at

third_party/WebKit/Source/modules/sensor) which contains JS bindings for Generic

Sensor API and concrete sensors APls, and ‘generic_sensor’ component (located at

services/device/generic_sensor/) - a set of classes living on Browser process side that
eventually call system API to access the actual device sensors.

The ‘generic_sensor’ component exposes following mojo interfaces for communication with JS
bindings:

e SensorProvider is a “factory like” interface that provides data about the sensors
present on the device and their capabilities (reporting mode’, maximum sampling
frequency).

e Sensor is an interface wrapping a concrete device sensor. JS bindings code uses it to
start polling the device sensor with the configurations obtained from JS.

e SensorClient is implemented by JS bindings code to be notified about errors occurred
on platform side and about sensor reading updates for sensors with ‘onchange’ reporting
mode.

Please note, that the fetched sensor data is not passed to JS bindings via mojo calls - shared
memory buffer is used instead, thus we obviate bloating of mojo IPC channel with sensor data
(for sensors with continuous reporting mode) when platform sensor has high sampling
frequency and also avoid bringing of an extra latency.

' Sensors in GSF can have either ‘onchange’ or ‘continuous’ reporting mode, which correspond to the
similar ones in Android SDK. Please refer to

https://source.android.com/devices/sensors/report-modes.html for more details.

https://chromium.googlesource.com/chromium/src/+/master/third_party/WebKit/Source/modules/sensor
https://cs.chromium.org/chromium/src/services/device/generic_sensor/
https://cs.chromium.org/chromium/src/device/generic_sensor/public/interfaces/sensor_provider.mojom?l=33
https://cs.chromium.org/chromium/src/device/generic_sensor/public/interfaces/sensor.mojom?l=42
https://cs.chromium.org/chromium/src/device/generic_sensor/public/interfaces/sensor.mojom?l=80
https://source.android.com/devices/sensors/report-modes.html

GSF component diagram is shown on figure below:

Sensors JS
bindings

Generic_sensor
component

Sen
ent

Detailed Design

Generic sensor component

The class diagram of Generic Sensor device component is shown below. All classes act on

thread, except if documented otherwise.

)

sinclude»
E PlatformsensorProvidersase

+ CreateSensor(in type: mojom :: SensorType, in callback: CreateSensorCallba
+ GetSensor(in type: mojom 1 SensorType); scoped_refptr<FlatformSensc

+ c\unesharedsuﬁerHand\e() mojo::ScopedSharedBufferHanc

«Const» + HasSensors(): bor

«rtuals + SetFileTaskRunner(in file_task_runner: scoped_refptr < base ::
«Create» # PlatformSensorProviderBase

«\Virtual, Destroy» # ~PlatformSensorProviderBase

«\irtual» # CreateSensorinternal(in type: mojom .: SensorType,
«Virtual» # AllSensorsRemoved(

SingleThreadTaskRunne

in mapping: mojo :: ScopedsharedBufferMapping,

in callback: CreateSensorCalibe

«Includes
= PlatformsensorProvide

«ncludes
H sensorProviderimp

+ Getinstance(): PlatformSensorProvide

+ SetProviderForTesting(in provider: PlatformSensorProvids

«Create» # PlatformSensorProvider

«Destroy» # ~PlatformSensorProvider

+ CreateSenser(in type: mejom :: SensorType, in callback: CreateSensorCallba
+ GetSensor{ intype: mojom :; SensorType): scoped_refptr<Platformsensc

+ ClonesharedBufferHandle(}; mojorScopedsharedaifferHanc

3 platformsen

pr
1

+ Createl in file_task_runner: scoped_refptr < base :: SingleThreadTaskRunner >, in request: mojom i
«Destroys + ~SensorProviderimpl(
«Create, Constinit» - SensorProviderimpl(in provider: PlatformSensorProvide

- GetSensor(In type: SensorType. In sensor _request: mojom :: SensorRequest, in eallback: GetSensorCallt

SensorProviderReq

S

*

+ sensorprovideri

de€onst» + HasSensors(): bor

«/irtual» + SetFileTaskRunner(in file_task_runner scoped_refptr < base ::
«Creates # PlatformSensorProviderBase

«Virtual, Destroy» # ~PlatformSensorProviderBase

SingleThreadTaskRunn

in callback: Ci

«Virtual» # CreateSensorinternal(in type: mojom :: SensorType,
gVirtual» # AllsensorsRemoved(

in mapping: mojo g,

allbe|

Create

E client

4} «Virtual» + OnSensorReadingChanged) + client

SetProviderForTestin
Getinstance
SetFileTaskRunne

4 «Virtual» + onsensorerror()
«Virtual» + IsNotificationsuspendedt(): boo *
& <virtual, Destroy» # ~Client(

«Include»
H sensorimpl

«Destroy» + ~Sensorimpl(}

+ GetClient(): mojom::SensorClientRequer

- addConfiguration(in configuration: PlatformSensorConfiguration, in callback: AddConfigurationCallbac
- GetDefaultConfiguration(in callback: GetDefaultConfigurationCallbac
- RemoveConfiguration(in configuration: PlatformSensorConfiguration,
- Suspend()

- Resume(]

- OnsensorReadingChanged(

- OnsensorError(

- IsNatificationSuspended(): boc

«Virtual» + OnSensorReadingChanged!()

«Virtual» + OnSensorérror()

«Virtuals + IsNotificationSuspended(): boo

irtual, Destroys # ~Client(

in callback: RemowveConfigurationCallbal

+ sensorimp 1

Createsenso + platformsensorprovide
GetSensol
ClonesharedBufferHandl
HasSensor:

1

+ platformsenso

*

«Includex
] platformsensor

«Virtual» + Get 0 ting|
<Virtuals + GetDefaultconfigurati 0: fi t

«Virtual» + GetMaximumSupportedFrequency(): doubl

«Const» + GetType(): mojom::SenserTyp

+ StartListening(in :hent Client, in config: PlatformSensorConfiguration): ba
+ StopListening(in client: Client, in config: PlatformSensorConfiguration): ba
+ UpdateSensor(

GetClient
AddConfiguration
GetDefaultConfiguratior
RemoweConfiguratior
Suspend

Resume
OnSensorReadingChange
onSensorErrol
IsNotificationSuspendac

* +
1

blatformsensg

+ AddClient(in client: Client]
+ RemoveClient(in client: Client
«irtual, Destroy» # ~PlatformSensori

«Create, Constinit= # PlatformSenser{ in type: mojom :: SensorType, In mapping: mojo pedShar

+ platformsenso

«Virtual» #updatesensorlnterna\(in cunflguratlons ConﬂgMap) be
«Virtuals # StartSensor(in fig b
«Virtual» # StopSensor()

«Virtuals # CI figuration(in g : ig

): bot

dBufferMapping,

in provider: Platform

GetType
GetMaximumSupportedFreguency
Startlistening

StopListening

UpdateSenso

AddClient

RemoveClient

PlatformSensorProvider is a singleton class, its main functionality is creating and tracking
PlatformSensor instances. PlatformSensorProvider is also responsible for creating a
shared buffer for sensor readings. Every platform has its own implementation of
PlatformSensorProvider (PlatformSensorProviderAndroid,
PlatformSensorProviderWin, ...), generic part of the functionality is encapsulated inside the
inherited P1latformSensorProviderBase class.

PlatformSensor represents device sensor of a given type, there can be only one
PlatformSensor instance of the same type at the time, its ownership is shared between
existing SensorImpl instances. PlatformSensor is an abstract class which encapsulates
generic functionality and is inherited by the platform-specific implementations
(PlatformSensorAndroid, PlatformSensorWin, ...).

SensorImpl class implements the exposed Sensor mojo interface and forwards IPC calls to the
owned PlatformSensor instance. SensorImpl implements PlatformSensor::Client
interface to receive notifications from PlatformSensor.

SensorProviderImpl class implements the exposed SensorProvider mojo interface and
forwards IPC calls to the PlatformSensorProvider singleton instance.

Sensor module in Bink

Blink side class diagram is shown below.

«ncludes»
] sensorProviderProxy

-m_sensorProxies: SensorsSet
- m_sensorProvider: device:mojom::blink::SensorProviderPtr

+ from(frame: LocalFrame): SensorProviderProxy

+ createSensorProxy(type, document, readingFactory): SensorProxy
+ getSensorProxy(typel: SensorProxy

- getSensorProvider(): device::mojom::blink::SensorProvider

] observer

+ onSensorinitialized()
+ onSensorReadingChanged(timestamp: double)
+ onSensorError(: ExceptionCode, sanitizedMessage: String,

unsanitizedMessage: String)

¢
1
«DataTypes
«Externals «Include»
SensorClient H sensor
+ RaiseError() - m_sensorProxy: Member<SensorProxy=
+ SensorReadingChanged() - m_storedData: SensorReading
1..% 1 + start(scriptState: ScriptState, exceptionState: ExceptionState)
O + stop(: ScriptState, exceptionState: ExceptionState)
+ reading(}: SensorReading
«Include» # createSensorReadingFactory(); std:.unigue_ptr<=SensorReadingFactory=
SensorProxy # createSensorConfig(): SensorConfigurationPtr
- m_sensor: device:mojom::blink::SensorPtr 1| - startListening()
-m_observers: ObserversSet < - stoplistening()
- m_readingUpdater: Member<SensorReadingUpdater= 1
- m_readingFactory: std::unique_ptr<=SensorReadingFactory= [] SensorState
+ addObserver(observer: Observer) 14 i
+ removeObserver(observer: Observer) X
+ addConfiguration(configuration, callback) I
+ removeConfiguration(configuration) 1 X
+ suspend() |
+ resume() «Include» |
+ initialize()] sensorReading X
+ sensorReading(): SensorReading + timeStamp(scriptState): DOMHighResTimeStamp | creates
- updateSensorReading() + isReadingUpdated(previous: SensorReading): bool i
- onAnimationFrame(in timestamp: double) + data(): SensorReading :
SensorReading(: SensorReading) |
[=] State :
I
T 4 :
V
1 1 «includes
«Include » «Include»] sensorErrorEvent
£ sensorReadingFactory £ sensorReadingUpdater + create(eventType, error): SensorErrorEvent

+ createSensorReading()
+ start()

engqueueAnimationFrameTask()
- onAnimationFrame()

+ create(proxy): SensorReadingUpdater

+ create(eventType,
+ error(): DOMException

initializer): SensorErrorEvent

«Includes

£ sensorReadingUpdaterContinuous

+ SensorReadingUpdaterContinuous(sensorProxy)
+ start()

engqueueAnimationFrameTask()

onAnimationFramelnternal()

™~

«Includes»
E] sensorReadingUpdateronChange

+ SensorReadingUpdaterOnChange(sensorProxy)
+ start()

onAnimationFramelnternal()

engueueAnimationFrameTask()

Sensor - implements bindings for the Sensor interface. All classes that implement concrete
sensor interfaces (such as AmbientLightSensor, Gyroscope, Accelerometer) must be inherited

from it.

SensorReading - implements bindings for the SensorReading IDL interface. All classes that
implement concrete sensor reading interfaces (e.g. GyroscopeReading) must be inherited from

it.

https://w3c.github.io/sensors/#the-sensor-interface
https://w3c.github.io/sensors/#the-sensor-reading-interface

SensorProxy wraps the mojom: : Sensor mojo interface proxy and itself implements

mojom: :SensorClient interface. It provides nested SensorProxy: :0bserver interface which
is inherited by Sensor class in order to receive notification from platform side.

SensorProxy contains the SensorReading instance which is shared between all Sensor
instances inside the frame.

Inside a frame there can be only one SensorProxy instance for a concrete sensor type (i.e.
ambient light, accelerometer) at the time and its ownership is shared between Sensor instances.
SensorProxy instance is created at first Sensor. start() method call and destroyed when
there are no more active Sensor instances left.

SensorProviderProxy wraps 'SensorProvider' mojo interface proxy and manages
'SensorProxy' instances. Sensor implementation obtains SensorProviderProxy instance as a
LocalFrame supplement and uses it to the get SensorProxy instance for the needed type.

SensorReadingUpdater abstract class (and its implementations
SensorReadingUpdaterOnChange and SensorReadingUpdaterContinuous) encapsulates the
logic for sending 'onchange’ event which depends on sensor's reporting mode.

Sensor shared buffer

Sensor shared buffer is used to transfer sensor readings from browser process to renderer
process. Read-write operations are synchronized via seglock mechanism.

GSF uses a single shared memory buffer which is divided into chunks - sensor reading buffers,
one chunk per sensor type. Every sensor reading buffer contains 6 tightly packed 64-bit floating
fields: { seqlock, timestamp, sensor reading 1, sensor reading 2, sensor reading 3, sensor
reading 4 }, so it has fixed size 6 * 8 = 48 bytes.

Please see sensor reading.h for more details.

Sensor configurations management

This paragraph describes the implementation of logic behind Sensor. reading update and
sending of Sensor.onchange event. The issue here is that relationship between device sensor
and corresponding JS sensor instances is one-to-many, and each JS sensor instance may have
different configuration.

In GSF the resulting configuration which is applied to the device sensor is the highest from the
currently existing JS sensors configurations. The following object diagram illustrates these logic
with example of four sensor instances of the same type and they have different sampling
frequencies: 1Hz, 50Hz, 10Hz, 20Hz.

https://cs.chromium.org/chromium/src/services/device/public/cpp/generic_sensor/sensor_reading.h
https://w3c.github.io/sensors/#sensor-reading
https://w3c.github.io/sensors/#sensor-onchange

sensorl: Sensor
frequency = 1 Hz ‘SensorProxy — naorim
/ -reading: SensorReading
sensor?: Sensor
frequency = 50 Hz
PlatformSensor System
APls
frequency = 50
Hz
sensord; Sensor
frequency = 10 Hz SensorProxy - = Sansorimpl
-reading: SensorReading
sensord: Sensor
frequency = 20 Hz

The maximum sampling frequency used is 50 Hz and PlatformSensor updates shared buffer
using this frequency.

Note: the given sampling frequency value is capped to 60 Hz for security reasons, that are
explained in “Security and Privacy” section of this document.

On platform side (in generic_sensor component) sensor configurations are managed inside
PlatformSensor class.

On Blink side, for ‘continuous’ reporting mode, SensorProxy continuously updates the stored
reading instance from shared buffer using periodic timer and then notifies all dependent Sensor
instances that sensor reading has changed. Further, Sensor instance may send ‘onchange’
event considering its own frequency and based on the timestamp delta between the newly
arrived reading and the one that had been previously send.

For ‘onchange’ reporting mode the behavior is a bit different: SensorProxy updates reading
from shared buffer, however, unlike the ‘continuous’ reporting mode case, it does not do it all the

time. Reading updates start after ‘SensorReadingChanged()’ mojo call and continue for the

period of time equal to

T =

1+-Fmin

where Fmin is the minimal sampling frequency from the currently present Sensor instances, in
the example above it would be 1+1Hz = 1s.

Platform Implementation details

Implementation on Android

«nclude»
] PlatformSensorProviderAndroid
- j_object_: base::android::Scoped|avaGlobalRef<jobject>

+ Getinstance(): PlatformSensorProvider

CreateSensorinternall type, mapping, callback) 1

=] org.chromium. device, sensors.PlatformSensorProvider

- mSensorManager: android.hardware.SensorManager

- mSensorsThread: android.os.HandlerThread

- mHandler: android.os.Handler

- mactiveSensors: java.util. Set=device. sensors,PlatformSensor=

+ getSenserManager(): android.hardware.SensorManager

+ getHandler(): android.os.Handler

+ sensorStarted(sensor: org.chromium.device.sensors.PlatformSensor)
+ sensorStopped(sensor: org.chromium. device.sensors.PlatformSensor)
startSenserThread()

stopSensorThread()

+ create(); org.chromium.device.sensors.PlatformSensorProvider

+ createSensor(): org.chromium.device. sensors.PlatformSensor

«ncludes
=] PlatformSensorandroid

- j_object_: base::android::Scoped|avaGlobalRef<jobject>

Register]NIl enw: JNIEnv): bool

GetReportingMode(): mojom::ReportingMode
GetDefaultConfiguration(): PlatfermSensorConfiguration
GetMaximumSupportedFrequency(): double
NotifyPlatformSensorError(caller)

UpdatePlatformSensorReadingl caller, timestamp, wvaluel, value2,
StartSensor(configuration: PlatformSenserConfiguration): boal

StopSenser()

+ 4+ o+ o+ o+

+

value3)

CheckSensorConfiguration{ configuration: PlatfermSensorConfiguration): bool

«interfaces»
[Z] android.hardware.SensorEventListener

+ on&ccuracyChanged()
+ onSenserchangedi()

I

£l org.chromium.device,sensors. PlatformSensor

- mSensor: andreid.hardware.Sensor
- mProvider: org.chromium, device.sensors.PlatformSensorProvider

+ create(): org.chromium.device.sensors.PlatformSensor
getReportingMode(): int

getDefaultConfiguration(): double

getMaximumSupportedrFrequency(): double

————>8 # startSensor(): bool

stopSensor()

checkSensorConfiguration(): bool

updateSensorReading()

- getSamplingPeriod(): int

- nativeNotifyPlatformSensorError()

- nativeUpdatePlatformSensorReading()

The adaptation for Android platform consists of two parts, native (C++) and java. Native
adaptation includes PlatformSensorProviderAndroid and PlatformSensorAndroid C++
classes, while java counterpart consists of PlatformSensorProvider and PlatformSensor

java classes that are included in org.chromium.device.sensors package. Java classes
interface with Android Sensor API to fetch reading from device sensors. Native side and java
classes communicate with each other over JNI interface.

The PlatformSensorProviderAndroid class implements PlatformSensorProvider interface
and responsible for creation of PlatformSensorProvider instance over JNI, when java object
is created, all sensor creation requests are forwarded to java object.

The PlatformSensorAndroid class implements PlatformSensor interface, owns
PlatformSensor java object and forwards start, stop and other requests to it.

The PlatformSensorProvider java object is responsible for thread management, and
PlatformSensor creation, it also owns Android SensorManager object that is accessed by
PlatformSensor java objects.

The PlatformSensor java object implements SensorEventListener interface and owns
Android Sensor object. The PlatformSensor adds itself as a event listener for a Sensor to

receive sensor reading updates and forwards them to native side using native* methods.

Simplified runtime view.

Hlsd: Runtimeviewandroid)

Y org...PlatformSensor

Y org...PlatformSensorProvider

JNI

5 :PlatformSensorandroid

L. PlatformSensorProviderandroid

CreateSensorinternall)

create()
nativeUpdatePIatform?fensorReading{}

NotifysensorReadingChanged{}l

ing, provider, java_s¢nsor}

v

>
|
|
|
|
|
[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

PlatformSensorAndroiditype, mapd

Implementation on Windows

«Includes»
H PlatformSensorProviderwin

- sensor_manager_: basenwin:ScopedComPtr<|SensorManager=
- sensor_thread_: std::unique_ptr<base::Thread=

+ Getinstance(): PlatformSensorProviderwin

+ SetSensorManagerForTesting(sensor_manager)

AllsensorsRemaoved()

CreateSensorinternal(type, mapping, callback)

- InitializeSensorManager(): bool

- StartSensorThread(): bool

- StopSensorThread()

- CreateSensorReader(type: SensorType): std::unique_ptr<PlatformSensorReaderwin=
- SensorReaderCreated(type, mapping, callback, sensor_reader)

creates creates

£ PlatformSensorReaderWin::Client

+ OnReadingUpdated(in reading: SensorReading)
+ OnSensorError()

T
|
|
|
|
|
|
1
[
[
]
]
[
[
[
I
I
|
|
I
I

V

«Includes»
£ PlatformSensorwin

- sensor_thread_runner_: scoped_refptr<base::SingleThreadTaskRunner=

«DataType»
«External»
1SensorEvents

T

«Includes»
= EventListener

- platform_sensor_reader_: PlatformSensorReaderWwin
- last_sensor_reading_: SensorReading 1

+ AddRef(): STOMETHODCALLTYPE

+ Release(): STOMETHODCALLTYPE

+ Queryinterface(riid: REFID, ppwv: void): STDOMETHODIMP

OnEvent(: ISensor, : REFGUID, : IPortableDeviceValues): STOMETHODIMP

OnLeave(sensor_id: REFSENSOR_ID): STDMETHODIMP

OnStateChanged(sensor: ISensor, state: SensorState): STOMETHODIMP

OnDataUpdated(sensor: ISensor, report: ISensorDataReport): STOMETHODIMP

«Includes»
£ PlatformSensorReaderwin

- init_params_: std::unigue_ptr<ReaderinitParams=

-task_runner_: scoped_refptr<base::SingleThreadTaskRunner=

- lock_: base:lock

- sensor_active_: bool

- client_: PlatformSensorReaderwin:: Client

- sensor_; base:win:ScopedComPtr=/Sensor=

- event_listener_: scoped_refptr<Eventlistener=

- weak_factory_: base:WeakPtriactory<PlatformSensorReaderwin=

4

- sensor_reader_: PlatformSensorReaderwin
- weak_factory_: base::WeakPtrFactory<PlatformSensorwin= 1

+ GetDefaultConfiguration(): PlatformSensorConfiguration

+ GetReportingMode(): mojom::ReportingMode

+ GetMaximumSupportedFrequency(): double

+ OnReadingUpdated(reading: SensorReading)

+ OnSensorError()

StartSensor(configuration: PlatformSensorConfiguration): boal

StopSensor()

CheckSensorConfiguration{ configuration: PlatformSensorConfiguration): bool

+ Create(type, sensor_manager): std::unique_ptr<PlatformSensorReaderwin=

+ SetClient(client: Client)

+ GetMinimalReportingintervalMs(): unsigned long

+ StartSensor(configuration: PlatformSensorConfiguration): bool

+ StopSensor()

- GetSensorForType(sensor_type, sensor_manager): base:win::ScopedComPtr<|Sensor=>
- SetReportingintervall configuration: PlatformSensorConfiguration): bool

- ListenSensorEvent()

- SensorReadingChanged(report: ISensorDataReport, reading: SensorReading): HRESULT
- SensorError()

The adaptation layer for Generic Sensors on Windows platform uses Windows Sensor API that
provides COM interfaces to interact with platform sensors. The adaptation consists of three
main classes: PlatformSensorProviderWin, PlatformSensorWin and

PlatformSensorReaderWin.

All Windows Sensor APl COM objects and PlatformSensorReaderWin are created on sensors
thread, while PlatformSensorProviderWin and PlatformSensorWiin live on IPC thread and
communicate with Generic Sensor API mojo interfaces.

The PlatformSensorProviderWin implements PlatformSensorProvider interface, it is
responsible for creation of PlatformSensorWin and PlatformSensorReaderWin instances. It
also manages COM object ISensorManager and sensor thread where all COM objects are

created.

The PlatformSensorReaderWin communicates with ISensor interface to configure it and get
readings from ISensor COM object. The EventListener class implements ISensorEvents
interface to get notifications about sensor state changes and delivers sensor readings to parent
class PlatformSensorReaderWin that in turn, forwards sensor readings to
PlatformSensorWin through PlatformSensorReaderiWin: :Client interface that is
implemented by PlatformSensoriWin.

The PlatformSensorWin implements PlatformSensor and controls
PlatformSensorReaderWin state using StartSensor() and StopSensor() methods.
Implements PlatformSensorReaderWin: :Client interface to receive notifications about new
readings or error conditions.

Simplified runtime view.

Hlsdi RuntimeView)

& PlatformSensaorProviderwin L PlatformSensorwin

T

CreateSensorlnternal(ﬂype. mapping, callback)

[
[
|

Create(type, sensor_manager)

Y :PlatformSensorReader. ..

L :EventListener

SensorReaderCreated(type, m

B=========

pping, callback, sensor_reader)

v

Eventlistener(platform_sens

-4

r reader)

-
[

PlatformSensorWin(type, mappi

3
L+ i

StartSensor(configuration)

. provider, sensor_thread runndr, sensor_reader)

OnReadingUpdated{reading)

N

S |

SensorReadingChanged{repo}r‘t. reading)

A

Implementation on Chrome OS and Linux

ChromeQOS (CrOS) and Linux Operating Systems (OS) share the same code base except for
some auxiliary data structures, which are used to read sensor values in a right order and in
accordance to Generic Sensor API specifications, and functions, which are used to apply
scaling value, offset value and other values to keep readings in single units of measurement.

Sensor data is read using Industrial Input/Output (110) APls. There are two ways to read data:

1. Using sysfs paths.
2. Using device node interface.

Our implementation is using sysfs for both CrOS and Linux platforms. The problem with the
device node interface is that it requires device nodes to be accessible not only by root but by a
user without root rights, who runs Chromium or Chrome browser. While the mentioned problem
concerns only Linux distributions, CrOS involves another problem - data cannot be read by
multiple clients simultaneously, which is true for Linux platform as well. As far as we know, there
is an AccelerometerReader that uses this interface to read accelerometer data for CrOS
specific components in the browser. To be more precise, the interface uses a ring buffer, whose
values are erased after reading happens or buffer is full. If there are two simultaneous clients
trying to read from the same buffer, both of them will miss data which will cause performance
and reliability issues. There is a new feature in the latest kernel - two and more simultaneous
reads can be done for the same device node interface, but this feature is still in staging.

The implementation on CrOS and Linux involves several classes - a
PlatformSensorProviderLinux, derived from a PlatformSensorProvider, a
PlatformSensorLinux derived from a PlatformSensor, a SensorDeviceManager and a
SensorReader, which is a base class for a PollingSensorReader.

«Includes

PlatformSensorProviderLinux

- sensor_nodes_enumerated_: bool
- sensor_nodes_enumeration_started_: bool
- sensor_devices_by_type_: SensorDeviceMap

«Includes
(generic_sensor
PlatformSensorLinux

- polling_thread: std::unique_ptr<base:: Thread>
- sensor_device_manager_: std::unigue_ptr<SensorDeviceManager>
- file_task_runner_: scoped_refptr < base :: SingleThreadTaskRunner >

+ Getinstance(): PlatformSensorProviderLinu

- default_configuration_: PlatformSensorConfiguratic

- reporting_mode_: mojom::ReportingMed

- sensor_reader_: std::unigque_ptr<SensorReade

- old_values_: SensorReadin

- weak_factory : base:WeakPtrFactory=PlatformSensorLinux

+ SetSensorDeviceManagerForTesting(sensor_device_manag
+ SetFileTaskRunnerForTesting(task_runm
CreateSensorinternal(type, mapping,
AllsensorsRemoved(

SetFileTaskRunner(file_task_runne
- SensorDeviceFound(type, mapping.
- StartPollingThread(}: boc

- StopPollingThread(

- Shutdown()

callback creates

—————— =

callback, sensor_devic

+ GetReportingMode(): mojom::ReportingMoc

+ UpdatePlatformSensorReading(readin

+ NotifyPlatformSensorError(

StartSensor(configuration): boc

StopSensor(

CheckSensorConfiguration{ configuration): bo:

GetDefaultConfiguration(): PlatformSensorConfiguratic

- GetSensorDevice(type): =Undefined=

- GetAllSensorDevices(

- ProcessStoredRequests

- CreateSensorAndNotify(type,
- OnSensorlodesEnumerated|
- OnDeviceAdded(type, sensor_device
- OnDeviceRemoved(type, device_node

sensor_device

H sensorDeviceManager.::Delegat:

+ OnSensorNodesEnumerated|()
+ OnDeviceAdded(type, sensor)
+ OnDeviceRemoved(type, device_node)

«includes
= PollingSensorReade

- sensor_file_paths_: std:vector<base::FilePat!

- scaling_value_: double

- offset_value_: doubl¢

- apply_scaling_func_: SensorPathsLinux:ReaderFunct
-timer_: base::RepeatingTime

-weak_factory_: base::WeakPtrFactory<PollingSensorReade

+ StartFetchingData(configuration): bot
+ StopFetchingDatal

- InitializeTimer(configuration)

- PollForDatal

«lnclude»
] sensorReader

«Include»
SensorDeviceManager

sensors_by node_: SensorDeviceMsz

sensor_: PlatfermSensorLinu

polling_task_runner_: scoped_refptr = base :: SingleThreadTaskRunne

task_runner_: scoped_refptr<base::SingleThreadTaskRunne
is_reading_active_: boc

thread_checker : base:ThreadCheck:

observer_: ScopedObserver<=DeviceMonitorLinuyx, DeviceMoniterLinux: Obsery,
delegate_: Delegat

task_runner_: scoped_refptr<base::SingleThreadTaskRunne

+ Create(sensor_device, sensor,
+ StartFetchingData(configuration): boo
+ StopFetchingData()

NotifyReadError(;

+ Start(delegate

GetUdevDeviceGetSubsystem(dev): std::strint

GetUdevDeviceGetSyspath(dev): stdistring

GetUdevDeviceGetSysattrvalue(dev, attribute): std::strir
GetUdevDeviceGetDevnode(in dewv): std::strin

OnDeviceAdded(udev_device]

OnDeviceRemovad(udev_device.

H sensorDeviceManager::Delegat

CrOS/Linux UNML class diagram

polling_thread_task_runner): std::unique_ptr=Sensor

PlatformSensorProviderLinux is a singleton class that processes requests for new sensors.
It uses composition and holds a unique pointer to a SensorDeviceManager object, which sends
notifications about added and removed iio sensors back to it using a Delegate pattern. The
PlatformSensorProviderLinux has a SensorDeviceMap cache, which is an unordered map
that stores a pair of a mojom: :SensorType key and a std: :unique_ptr<SensorInfolLinux>
structure, which represents a structure of an existing iio device. The structure’s members will be
discussed further along with the implementation of the SensorDeviceManager.

The SensorDeviceMap is a cache, which is used to store type to structure pairs of all known [IO
sensors provided by an OS and is used to create sensors of requested types. When a request
for a specific type of sensor comes

(PlatformSensorProviderLinux: :CreateSensorInternal is called), the provider checks if
the SensorDeviceManager has been started and enumeration has been done. If not, the
provider starts the manager and waits until it enumerates all iio devices available to create
PlatformSensorLinux sensors asynchronously, otherwise the provider checks if it has a
SensorInfolLinux for a specific sensor type in its cache. Then it creates a platform sensor
passing SensorInfolinux to it, which will use the structure to set own frequency, reporting
mode and then passes the structure to a SensorReader created by that sensor.

Once enumeration is done, the provider starts to process stored in
std: :vector<mojom: :SensorType> requests according their types by enumerating own cache
and looking for a SensorInfolLinux structure that represents the requested type of a sensor.

As previously said, the PlatformSensorLinux creates a SensorReader and passes a
SensorInfolLinux structure to it. The reader has a static factory method

SensorReader: :Create, which creates a PollingSensorReader (we will implement triggered
sensor reader, which will use the device node interface in the future once all problems regarding
this reading strategy are resolved). The reader uses the SensorInfolLinux structure and stores
sysfs paths, which are used to read iio sensor values, offset value, scaling value and a functor -
SensorPathsLinux: :ReaderFunctor, which is used to apply scaling and offset values and
invert signs if needed. A base: :RepeatingTimer is used to instantiate readings using a
frequency provided by a PlatformSensorLinux.

SensorDeviceManager is a class that uses LinuxDeviceMonitor to enumerate devices, listen
to "add/removed" events and then notify the PlatformSensorProviderLinux about added or
removed |10 devices. It has own cache to speed up an identification process of removed
devices. The LinuxDeviceMonitor is a class that listens for notifications from libudev about
connected/disconnected devices. When the manager is started, it adds itself as an observer to
the LinuxDeviceMonitor and asks to enumerate devices. During enumeration, the provider
gets notifications about found sensors and updates its cache.

Elsd: Runtime\-’iew)

I_TI:P|atformSenSOrPrgviderLinu}‘ | '_T':SensorDeviceManage‘ ‘ |_'r':PIatformSemsorLinu>- ‘ ‘ '_T':SensorReade

CreateSensorinternal(type, mapping, callback

-
|
-«

PR = R

Start{delegate

Y

onsensorNodesEnumerated!

i
I
I
I
i
I
I
I
i
I
L
I
i
I
I
i
i
I
I
I
i ProccessStoredRequests
I

I

I

I

[l

|

|

|

|

|

|

|

|

|

|

|

|

|

| |

| |

| |

| |

| |

d |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

A I I
| |
| |
| |
| |
|

PlatformSensorLinux{type, mappingli. provider, sensor_device, polling! thread_task_runne

L

Create(sensor_device, sensor, task_runne

i
StartFetchingData(configurﬂon

Simplified runtime diagram on CrOS/Linuwy platform

Chrome OS and Linux: threading model

The threading model differs from other Generic Sensor API's platform implementations. Three
threads are used to preserve Chromium or Chrome fast and responsive. Those are an 1/O
browser thread, a browser file thread and a custom polling thread.

The PlatformSensorProviderLinux and PlatformSensorLinux use the I/O browser thread
and all the communications with another Generic Sensor framework code happens there. The
SensorDeviceManager uses the browser file thread and communicates with the
PlatformSensorProviderLinux using I/O thread’s task runners. The polling thread is created
and owned by the PlatformSensorProviderLinux and stopped once there are no sensors
left. The provider passes the polling thread’s task runner to the PlatformSensorLinux, which
uses that to communicate with the SensorReader. The SensorReader is created on a I/O
thread, but detached in it's constructor and attached to a custom polling thread once it’s
methods are called by the sensor.

Implementation on macOS

The implementation for Mac platform consists of two classes: PlatformSensorProviderMac
(singleton) and PlatformSensorAmbientLightMac. The reason of a precise naming of the
sensor class is that the platform has only ambient light sensors embedded into hardware.

PlatformSensorProviderMac implements PlatformSensorProvider’s interface and is
responsible for creation of PlatformSensorAmbientLightMac object. Both of them live on I/O

browser thread and communicate with the rest Generic Sensor API code using mojo interfaces.

PlatformSensorAmbientLightMac utilizes I0Kit to get information from the platform and
callback

when the value of the sensor is changed. In order to get a right callback notification,
I0ServiceAddInterestNotification is used.

«lncludes
PlatformSensorProviderMa

CreateSensorinternal(type., mapping, callback

creates

«ncludes
E PlatformSensorambientLightMac

-light_sensor_service : base:mac;:Scopedl00bject<io_service |
-light_sensor_port_: base:mac:: ScopedlONotificationPortF

- light_sensor_object_: base:mac:Scopedl00bject=io_object_|

- light_sensor_notification_: base::mac::Scopedl00bject<io_object |

- light_sensor_busy notification_: base:mac:Scopedl00bject<io_object |
- current_lux_: double

+ GetReportingModel): mojom::ReportingMoc

+ StartSensor(configuration): boc

+ StopSensor(’

CheckSensorConfiguration(configuration): bo

GetDefaultConfiguration(): PlatformSensorConfiguratic

- ReadAandUpdate(): boc

- IDServiceCallback{ context, service, message type, message _argumer

Mac UML class diagram

Hlsd: RuntimeviewMac J

= .PlatformSensorProviderMa Y :PlatformSensorambientLightMar

-

PlatformSensorAmbientLightMac(type, mapping, provid

I
i
I
I
I
I
i
I
I
I
i
I

CreateSensorinternal(type, mapping, c:allbac:HI
I
i
I
I
I
i
I
I

¢r

StartSensor{configuration

ReadandUpdate(

>
I
:
|
|
|
|
|
|
|
:‘
:
|
|
|
|
|
|
i
|
I:_:
|
|
|
|
|
|
|
|

Simplified runtime diagram for Mac platform

Security and Privacy

Generic Sensor APIs can be only accessed by top-level secure browsing contexts. Only
focused browsing context is able to access sensor data. When browsing context (tab) is
unfocused, sensors that are associated with are stopped to reduce power consumption and
avoid exposing sensor data. Generic Sensors API specification addresses security and privacy
in chapter 5. Security and Privacy considerations.

Generic Sensor implementation in Chromium is using Permission mojo service to obtain
permission from the user.

In order to avoid privacy information leakage, sensors that might expose privacy sensitive data
must be protected by permission system and maximum allowed polling frequency should
capped to complicate ‘gyrophone’ [1] or keylogger [2,3,4,5] type of attacks.

The ambient light sensor is prone to keylogging attacks [5], therefore, must have separate
permission token, so that UA / web page is able to control access to data provided by the
sensor. The data could be rounded to its integer part and only illuminance values returned to the
users of the API without exposing RGB data. Also, ambient light sensor might be used to track
what end-user is watching at the moment on the TV or tell whether user has moved from one
room to another.

The accelerometer and gyroscope sensors might be used for keylogger type of attacks [2,3,4]
or, for example, identify users by walking patterns, therefore, must be protected by separate
permission token.

The magnetometer sensor provides information about magnetic field and in theory, can expose
location of a user. For example, attack vector could be pre-magnetized surface in a particular
location, or mapping between location and constant magnetic field disturbances caused by the
building. Due to non-uniform strength of the Earth’s magnetic field, another attack vector could
be exposure / validation of user location. For example, if end-user is connected through VPN,
magnetic field associated with GEO IP information can be compared with magnetometer
readings at real location, therefore, tell whether user is using VPN or not.

Orientation sensor that provides quaternion or rotation matrix data is a fusion sensor that uses
accelerometer, gyroscope and optionally magnetometer. It fuses data from different sources,
therefore, it is difficult to reconstruct original data provided by low-level sensors. Research paper
[6] indicates that orientation sensors can be used for keylogger type of attacks.

To avoid out-of-band communication between different origins, actual polling frequency is not
exposed to JS objects.

https://w3c.github.io/sensors/#security-and-privacy
https://w3c.github.io/sensors/#security-and-privacy

Generic Sensor APIs functions the same in incognito and regular windows.

Discussion of past issues discovered in Blink’s Device Orientation and Motion APIs is here, we
believe they are all addressed by the above mitigations.

Sensor permissions considerations

Given the privacy and security risks described above the most sensitive data is fetched from the
low-level sensors (accelerometer and gyroscope in particular), therefore access to these sensor
interfaces is better to be protected with permission mechanism.

Proposed security policies

Fusion Access to low Security impact Proposed

sensor level data security policy
Accelerometer No Easy High auto-grant +
opt-out
LinearAccelerationSensor | Yes Easy High auto-grant +
opt-out
GravitySensor Yes Difficult High auto-grant +
opt-out
Gyroscope No Easy High auto-grant +
opt-out
Magnetometer No Easy Medium ? auto-grant +
upt-out Ul
AmbientLight, rounded lux | No Easy Medium ? auto-grant +
upt-out Ul
AbsoluteQOrientation Yes Difficult High auto-grant +
opt-out
RelativeOrientation Yes Difficult High auto-grant +
opt-out
GeomagneticOrientation Yes Difficult High auto-grant +
opt-out

https://bugs.chromium.org/p/chromium/issues/detail?id=598674
https://w3c.github.io/accelerometer/
https://w3c.github.io/accelerometer/
https://w3c.github.io/accelerometer/
https://w3c.github.io/gyroscope/
https://w3c.github.io/magnetometer/
https://w3c.github.io/ambient-light/
https://w3c.github.io/orientation-sensor/
https://w3c.github.io/orientation-sensor/
https://w3c.github.io/orientation-sensor/

Proposed security tokens

Sensor Security tokens

Accelerometer “accelerometer”

LinearAccelerationSensor “accelerometer”

GravitySensor “accelerometer”

Gyroscope “gyroscope”

Magnetometer ‘magnetometer”

AmbientLight, rounded lux “ambient-light-sensor”
AbsoluteQOrientationSensor [“accelerometer”, “gyroscope”, “magnetometer’]
RelativeOrientationSensor [‘accelerometer”, “gyroscope’]
GeomagneticOrientationSensor | [“accelerometer”, “magnetometer”]

Chrome Ul

The site settings Ul could contain single option entry dedicated for sensors. The user might
forbid access, thus disabling sensors that are under ‘opt-out’ group. If the default permission
policy for particular sensor is ‘ASK’ web page could request permissions using Permission API,
thus, triggering permission dialog. Therefore, localized strings and possibly icons would be
required for the UI.

https://w3c.github.io/accelerometer/
https://w3c.github.io/accelerometer/
https://w3c.github.io/accelerometer/
https://w3c.github.io/gyroscope/
https://w3c.github.io/magnetometer/
https://w3c.github.io/ambient-light/
https://w3c.github.io/orientation-sensor/
https://w3c.github.io/orientation-sensor/
https://w3c.github.io/orientation-sensor/

Mock (opt-out) Ul

Simple site settings Ul

-

Bl Sensor info X

& C | & https://genericsensors.appspot.com

Apps [

Secure connection

Your information (for example, passwords or o
credit card numbers) is private when it is
sent to this site. Learn more
@ Cookies
0in use
@ Location Ask (default) ~
& Sensors Allow (default) ~
® Camera v Use global default (Allow)
Always allow on this site
¢ Microphone Always block on this site
& Notifications Ask (default) ~
<> JavaScript Allow (default) ~
M Flash Detect (default) ~
M Images Allow (default) -
[Popups Block (default) ~
& Background Sync Allow (default) ~
Automatic Downloads Ask (default) ~
M MIDI devices full control Ask (default) ~
Site settings

If “always block” is selected by the user, Chrome should (options):
e Block all sensors?
e Block particular set of sensors?

Site settings Ul with granular permission settings

-

Bl Sensor info X

<« &
Apps [

Sensor i

@ https://genericsensors.appspot.com

Secure connection

Your information (for example, passwords or
credit card numbers) is private when it is
sent to this site. Learn more

@ Cookies
0 in use
¥ Location Ask (default) ~
& Sensors Allow (default) -
4 in use
B Camera Ask (default) =
& Microphone Ask (default) =
& Notifications Ask (default) ~
<> JavaScript Allow (default) =
® Flash Detect (default) ~
M Images Allow (default) ~
L& Popups Block (default) ~
& Background Sync Allow (default) ~
¥ Automatic Downloads Ask (default) ~

M MIDI devices full control ~ Ask (default) ~

Site settings

Pros:
[]
[]

Cons:
[]

Sensors used by this page
Allowed Blocked

The following sensors are used when you view this page:

-

CEN Gyroscope

» [Accelerometer
» 1 Magnetometer
» 1 Ambient light

Block

Close

User is able to see what sensors are being used by the web page.
Block all sensors or particular sensor in “granular” Ul, similar to cookies.

Unclear whether this can be implemented on mobile devices, e.g., Android.

Android infobar (popup)

3 12:52

@ https:/genericsensors.appspot.com [3] 3

Sensor info (+)

I Sensor type: Ambient light
Frequency hint: default
Sensor activated: false

J» Sensor type: Accelerometer
Frequency hint: 60 Hz
Sensor activated: false

J» Sensor type:
AbsoluteQOrientation
Frequency hint: 40 Hz
Sensor activated: false

«" This site is accessing sensor data from your X

device.
BLOCK ALLOW

3 12:52

@ https:/genericsensors.appspot.com

Sensor info

&

I Sensor type: Ambient light
Frequency hint: default
Sensor activated: false

J» Sensor type: Accelerometer
Frequency hint: 60 Hz
Sensor activated: false

J» Sensor type:
AbsoluteQOrientation
Frequency hint: 40 Hz
Sensor activated: false

I Sensor type: Magnetometer
Frequency hint: default
Sensor activated: false

This site is accessing sensor data from your

device. You can block this from Settings. X

Desktop infobar (popup)

- Sensor info - Chromium - + X

Bl Sensor info x

< C ‘ @ Secure | https://genericsensors.appspot.com ¥r

it Apps

o This site is accessing sensor data from your device. You can block this from Settings. ®

Sensor info

™ Sensor type: Ambient light
Frequency hint: default
Sensor activated:

10 Sensortype: Magnetometer
Frequency hint: default
Sensor activated:

™ Sensor type: Accelerometer
Frequency hint: default
Sensor activated:

1 Sensortype: Gyroscope
Frequency hint: default
Sensor activated:

hd sensor info - Chromium - + ® v sensor info - Chromium -+ X

El Sensor info X Bl Sensor info X
& c | @ Secure | https://genericsensors.appspot.com 's}| : & C | @ Secure | https://genericsensors.appspot.com ¥
i Apps x | HAPPS | 5 This site is accessing sensor data from x|

genericsensors.appspot.com wants to:

your device. You can block this from Settings.
=@l o Access sensor data from your device (+]

Block Allow

Sensor type: Ambient light
Frequency hint: default
Sensor activated:

Sensor type: Magnetometer
Frequency hint: default
Sensor activated:

Sensor type: Accelerometer
Frequency hint: default
Sensor activated:

Sensor type: Gyroscope
Frequency hint: default
Sensor activated:

Sensor type: Ambient light
Frequency hint: default
Sensor activated:

Sensor type: Magnetometer
Frequency hint: default
Sensor activated:

Sensor type: Accelerometer
Frequency hint: default
Sensor activated:

Sensor type: Gyroscope
Frequency hint; default
Sensor activated:

References

[1] - Michalevsky, Y., Boneh, D. and Nakibly, G., 2014, August. Gyrophone: Recognizing Speech from
Gyroscope Signals. In USENIX Security (pp. 1053-1067).
URL: h /lcr .stanford. rophone/fil romic.

[2] - Owusu, E., Han, J., Das, S., Perrig, A. and Zhang, J., 2012, February. ACCessory: password
inference using accelerometers on smartphones. In Proceedings of the Twelfth Workshop on Mobile
Computing Systems & Applications (p. 9). ACM.

[3] - Mehrnezhad, Maryam, et al. "Touchsignatures: identification of user touch actions and pins based on
mobile sensor data via javascript." Journal of Information Security and Applications 26 (2016): 23-38.

URL: https://arxiv.org/pdf/1602.04115.pdf

[4] - Spreitzer, R., Moonsamy, V., Korak, T. and Mangard, S., 2016. SoK: Systematic Classification of
Side-Channel Attacks on Mobile Devices. arXiv preprint arXiv:1611.03748.

URL: hitps://arxiv.org/pdf/1611.03748.pdf

[5] - Spreitzer, Raphael. "Pin skimming: Exploiting the ambient-light sensor in mobile devices."
Proceedings of the 4th ACM Workshop on Security and Privacy in Smartphones & Mobile Devices. ACM,
2014.

URL: https://arxiv.org/pdf/1405.3760.pdf

[6] - Xu, Z., Bai, K. and Zhu, S., 2012. TapLogger: Inferring User Inputs On Smartphone Touchscreens
Using On-board Motion Sensors.
URL: https://pd emanti

https://crypto.stanford.edu/gyrophone/files/gyromic.pdf
https://pdfs.semanticscholar.org/3673/2ae9fbf61f84eab43e60bc2bcb0a48d05b67.pdf
https://arxiv.org/pdf/1611.03748.pdf
https://arxiv.org/pdf/1405.3760.pdf
https://pdfs.semanticscholar.org/c860/4311321f1b8f8fdc8acff8871a5bad2ad4ac.pdf

	Sensor APIs implementation in Chromium: Generic Sensor Framework
	Objective
	Background
	Generic Sensor Framework requirements

	Overview/Scope
	Detailed Design
	Generic sensor component
	Sensor module in Bink
	Sensor shared buffer
	Sensor configurations management

	Platform Implementation details
	Implementation on Android
	Implementation on Windows
	Implementation on Chrome OS and Linux
	Chrome OS and Linux: threading model
	Implementation on macOS

	Security and Privacy
	Sensor permissions considerations
	Proposed security policies
	Proposed security tokens
	
	Chrome UI
	Mock (opt-out) UI
	Simple site settings UI
	​Site settings UI with granular permission settings

	granular_permissions.png
	
	Android infobar (popup)
	Desktop infobar (popup)

	
	References

