
Chapter 8

Age-related diseases
Many diseases occur almost exclusively at old age. These age-related diseases include
cancer, osteoarthritis, failure of specific organs such as heart failure, kidney failure and
lung failure and neuro-degenerative diseases such as Alzheimer’s disease and Parkinson’s
disease.

In this chapter we will understand the common origin of these diseases and the
universality of their dynamics. We will also discuss treatment. These diseases are
currently treated one by one, and we will see how future medicine can take a major step
forward by treating aging itself in order to address all of these diseases at once.

Age-related diseases are diverse and affect different systems. It is therefore striking that
they share a common pattern in their incidence curves. Incidence is the probability to get
the disease at a given age. It is often calculated by considering 100,000 people without
the disease at age t and asking how many will be diagnosed over the following year.

The incidence of age-related diseases rises exponentially with age and drops at very
old ages (Fig 8.1). The slope of exponential increase is similar for different diseases, but
not identical, around 3-8% per year.
Understanding this exponential rise is a major aim of this chapter. We need to understand
why age 30 is different from age 70 in ways that makes these diseases so much more
likely. We will also understand why incidence drops at very old ages.
Another goal of this chapter is to explain the causes of several diseases of unknown
origin. In doing so we will see mathematical analogies between diseases. This will form
columns in the periodic table of diseases featured in the next and final chapter of our
book.



Diseases caused by threshold-crossing of senescent cells have an exponential
incidence curve

To understand age-related disease
incidence, we will use a simple
model based on the senescent cell
theory of the previous chapter.
This model was developed by Itay
Katzir during his PhD with me
(Katzir et al. 2021).
The basic idea is that diseases of
old age are due to a phase
transition in which a parameter in
a physiological circuit crosses a
threshold. Once the threshold is
crossed, the circuit behaves
differently: cells grow without
control as in cancer or die without
control as in degenerative
diseases.
If we accept that disease onset is a
threshold-crossing event, we can ask how
aging comes into play. Aging causes the
parameters of the circuit to change and
move towards the threshold. In particular,
senescent cell load X induces systemic
inflammation and reduces regeneration,
which changes the circuit parameters until
they cross the threshold. Thus in the
model, a disease occurs when senescent
cells cross a threshold that is specific for
each disease. We call this threshold the
disease threshold .𝑋

𝑐

Although each disease has its own threshold Xc, the underlying senescent cell dynamics
are common to all diseases. These dynamics are described by the saturating removal
model of chapter 7, eq 7.3. When the concentration of senescent cells X crosses the
disease threshold the individual gets the disease (Fig 8.2). Each individual crosses the𝑋

𝑐
threshold at different times, due to the stochastic nature of the dynamics of senescent
cells.
The time of onset is therefore the time when senescent cell accumulation first crosses
the threshold - a first-passage time problem. 𝑋

𝑐



Conveniently, we don't need to do the math again because in the previous chapter we
already solved this first-passage-time problem. The solution is an exponential hazard
curve—the Gompertz law—that slows at very old ages. The probability of crossing the

threshold rises exponentially with age, , with an exponential slope of𝑋
𝑐
 𝑒α𝑡

approximately

, α≈
η𝑋

𝑐

ϵ
where and are the senescent cell production and noise parameters.η ϵ
This explains the exponential rise of disease incidence curves. Since diseases have
different exponential slopes, each disease has its own threshold . The disease 𝑋

𝑐
threshold must not exceed , otherwise the model would predict that death 𝑋

𝑑𝑒𝑎𝑡ℎ
= 17

precedes the disease, and we would not observe the disease.

Decline of incidence at very old ages is due to population heterogeneity
If this were all, everyone would cross the disease threshold in the model and get the𝑋

𝑐
disease. In reality only a fraction of people ever do. This is where the second parameter
in the model comes into play—only a fraction of the population are susceptible. Theϕ 
parameter ranges between zero and one. Some conditions are rare with low , othersϕ ϕ
like hypertension and osteoarthritis are more common, with exceeding 0.1. Theϕ 
precise value of the susceptibility depends on genetic and environmental factors, as we
will discuss.
The susceptible fraction stems from the notion of population heterogeneity in the fields
of epidemiology and genetics. People differ in their risk for a given disease. To model this
we assume that only a fraction of the population has a low disease threshold . Theϕ 𝑋

𝑐
remaining population has higher values of the disease threshold that are not reached
during normal aging. We call these the non-susceptible fraction of the population.

The susceptible fraction explains the decline of incidence curves at very old ages.
Recall that incidence is computed from the population without the disease. At very old
ages, most of those that are susceptible have already had the disease. At very old ages
the disease-free population is dominated by the
non-susceptible fraction. This results in the decline
in incidence rate.

The model thus has two parameters for each
disease: the disease threshold and the
susceptibility.
Let’s solve the model for the incidence curve to see
where the rise and fall originate (see Solved
exercise 8.1 for more details about the
approximations involved). The idea is that incidence
I(t) is approximately equal to the hazard h(t) – the
probability to cross the disease threshold at age𝑋

𝑐



t, multiplied by the disease-free survival curve F(t) – the fraction of the population who
still did not get the disease. Thus Since h rises and F declines, their𝐼(𝑡) = ℎ(𝑡) 𝐹(𝑡).
product is a curve with a peak incidence.Writing disease-free survival in terms of hazard
results in this equation for the incidence

𝐼 𝑡( ) = ϕ ℎ 𝑡( )𝑒
−

0

𝑡

∫ℎ(𝑡)𝑑𝑡

and by plugging in a Gompertz-like hazard we obtain an analyticalℎ = ℎ(0)𝑒α𝑡

incidence formula

(1) 𝐼 = ϕℎ(0) 𝑒α𝑡𝑒
− ℎ(0)

α 𝑒α𝑡−1( )
At first, incidence rises exponentially (Fig 8.3), until at very old ages the last term
dominates, since it is an exponential of an exponential, and incidence plummets.

Note that susceptibility simply multiplies the incidence in Eq 1, and thus determines itsϕ
overall height; the shape of the incidence curve, including its slope, intercept and age of
peak incidence, is determined by a single parameter - the disease threshold . Using the𝑋

𝑐
saturated removal model of the previous chapter, one can find how the disease threshold
determines the shape parameters in Eq 1: to a good approximation, the slope is

and the hazard intercept is for theα =  0. 009𝑋
𝑐

− 0. 02 𝑙𝑜𝑔10(ℎ(0)) = 4. 14 − 𝑋
𝑐

relevant range of disease thresholds between 10 and 16 (Katzir et al. 2021).𝑋
𝑐

Armed with Eq. 1 we can now find the best-fit values of Xc and for a given empiricalϕ
incidence curve and see how well the disease-threshold model captures the data.

The model describes well the incidence curves of a wide range of age-related diseases
To test this model requires a global set of incidence curves. We turn to the large
medical-record database from Clalit health services that we used in chapter 3 on
hormone seasonality. The data includes about 900 disease categories, each found in the
records of at least 10,000 people. The categories are international disease codes, called
ICD9 level 2. Of these, about 200 diseases rise at least 20-fold between ages 30 and 80,
and can be defined as strongly age-related diseases.

These diseases include some of the most common age-related conditions such as
Parkinson’s disease, glaucoma, congestive heart failure, end-stage renal disease, liver
cirrhosis, cataract, hypertension and osteoarthritis (Fig 8.4).

The disease-threshold model captures the data well (Fig 8.4). The model captures more
than 90% of the variation in over 90% of these diseases. The goodness of fit has a

median of , where is a perfect fit. The typical disease threshold values𝑅2 = 0. 97 𝑅2 = 1
range between 12 and 16.𝑋

𝑐



The model does not, however, describe well the incidence of several age-related
diseases. A notable example is osteoporosis in women (Fig 8.4B). The incidence curve
rises sharply after age 50, due to effects related to menopause, in a way that the model
cannot capture. On the other hand, osteoporosis in men is well described by the model
(Fig 8.4C). This suggests that menopause-related changes go beyond the current
framework.

An interesting case occurs in Alzheimer’s disease and dementia. The incidence curves of
these diseases have an exceptionally large slope of about 20% per year. The model can



only explain this large slope with a disease threshold =20 that exceeds the threshold𝑋
𝑐

for death (black line in Fig 8.4C). The best fit with the maximal values𝑋
𝑑𝑒𝑎𝑡ℎ

= 17 𝑋
𝑐

equal to the death threshold = underestimates the incidence slope (blue lines in𝑋
𝑐

𝑋
𝑑𝑒𝑎𝑡ℎ

8.4C).

This suggests that the age-related factor X in dementia might be distinct from total body
senescent cells and has its own saturating removal dynamics. This might make sense
because the brain is a unique protected organ with its blood-brain barrier and its own
version of immune function. One candidate for this damage might be accumulation of
prion-like protein aggregates in neurons which saturate their mitochondrial-based removal
systems. This is consistent with the damaged mitochondria and protein aggregates that are
universally linked to neurodegenerative diseases.

All in all, the model seems to explain an astonishingly large fraction of the incidence
curves of age-related diseases.

To understand what the
disease-threshold model is capturing,
let’s explore in more detail the patterns
in the incidence data. One such pattern
concerns the timing of the peak
incidence, and its relationship to the
slope of the incidence curve. Naively,
one may think that the steeper the
slope, the earlier the peak incidence –
steeper curves max out earlier (Fig 8.5).
But the data shows otherwise: the
steeper the curve, the later the peak
incidence. Why? Because steeper
incidence curves begin lower, as defined
by their intercept, namely the



extrapolated incidence at age zero (See Fig. 8.5, age=0).

Remarkably, the disease-threshold model captures this pattern. The steeper the slope,
as described by a higher disease threshold Xc, the later the peak incidence (Fig 8.6). The
reason is that the slope rises linearly with the disease threshold , but the intercept at𝑋

𝑐
age zero drops exponentially with this threshold. To understand this recall the𝐼(0)
analogy with a particle in a potential well: a high threshold makes it exponentially harder
for for noise to generate enough senescent cells to cross the threshold at young ages;
the zero intercept thus decays exponentially with threshold , namely𝑋

𝑐
.𝐼 0( )~ 𝑒𝑥𝑝(− β 𝑋

𝑐
/ϵ)

Thus, the disease-threshold model captures some of the deep patterns in the data with
only two free parameters per disease, of which only one, Xc, affects the shape of the
curve. This is impressive.

But how does each specific disease occur when senescent cells cross a threshold? We
need to link senescent cells and the physiology of each disease. To do so, we now focus
on several classes of pathologies and specify, for each case, the mechanism for their
onset at the threshold-crossing.

We begin with cancer and infection. We then consider an age-related disease in which
the lungs fail, called Idiopathic Pulmonary Fibrosis (IPF). Its cause is a mystery. We will
use our approach to explain this disease as an outcome of fundamental principles of
tissue homeostasis. We will then show that a seemingly unrelated disease of the joints,
osteoarthritis, belongs to the same ‘mathematical class’ as IPF.

Cancer incidence curves can be explained by threshold-crossing of tumor growth and
removal rates

Cancer risk rises by 4000% between age 25 and 65. The incidence curves of most cancer
types show the familiar exponential rise with age and drop at very old ages. To explain
this in our model, we need to find out why cancer is like a threshold-crossing
phenomenon, and how senescent cells can push physiology across this threshold.
Cancer cells arise continuously in the body due to accumulation of mutations. If
conditions are right, the mutant cells grow faster than their neighbors. These cancer
cells are removed by immune surveillance, primarily by the innate immune cells such as
NK cells and macrophages, and at later stages by adaptive immunity including T-cells. If
the cancer cells manage to grow beyond a critical number of roughly 106 cells, they
organize a local microenvironment that can prevent further immune clearance.
A classic explanation for the age-dependence of cancer is called the multiple-hit
hypothesis: the need for several mutations in the same cell to turn it into a cancer cell
(Armitage and Doll 1954; Nordling 1953). Most cancers require a series of mutations,
called oncogenic mutations, in order to knock-out pathways that prevent the cell from
growing out of control. Such a multiple-hit process has a likelihood that rises roughly as
the age to the power of the number of mutations. Cancer in the young often occurs



because one of the mutations is already present in the germline and thus in all cells of
the body.
This ‘multiple hit’ hypothesis, however, cannot explain why incidence drops at very old
ages. It also fails to explain why cancers which require a single mutation, such as some
leukemias, also have an exponentially rising incidence with age. Even colon cancer, the
poster child for a multiple-mutation progression, has exponentially rising incidence with
age rather than a power law.
The present theory can provide a mechanism
for the incidence curves of cancers. Consider
cancer cells that proliferate at rate p, and are
removed at rate r (Fig 8.7). The rate of change
of the number of cancer cells C equals
proliferation minus removal:

𝑑𝐶
𝑑𝑡 = 𝑝𝐶 − 𝑟𝐶

Cancer grows when proliferation exceeds
removal, , and shrinks otherwise (Fig.𝑝 > 𝑟
8.8). This is just the knife's-edge equation we
saw in chapter 2.
Both growth and removal of cancer are affected by senescent cell load X. With age,
rising senescent cell levels inhibit the capacity of the immune system to remove cancer
cells. The main cells that remove early cancer cells, NK cells and macrophages, also
remove senescent cells. They become saturated when senescent cells become abundant
and cannot keep up with the demand for cancer removal services. The garbage trucks
are overloaded. Thus, removal rate r drops with the number of senescent cells,

.𝑟 = 𝑟(𝑋)
A second cancer-inducing effect is chronic
inflammation caused by the factors that
senescent cells secrete. One may think of
many cancers as an AND-gate between
chronic inflammation and oncogenic
mutations. Inflammation reduces the
growth rate of healthy cells, giving mutant
cancer cells a relative growth advantage.
Many cancers arise only after chronic
inflammation causes cells to become less
differentiated - to undergo metaplasia. Thus,
inflammation can raise cancer proliferation
rate p, so that proliferation rises with
senescent cell levels p=p(X).
Both effects, raising proliferation p and
lowering removal r, push cancer towards the
threshold where proliferation exceeds



removal. The senescent cell level where this occurs is our disease threshold (Fig 8.8).𝑋
𝑐

Individuals susceptible to a given form of cancer include those with genetic
factors (e.g., BRCA mutations for breast and ovarian cancer) and exposure to
environmental factors such as smoking for lung cancer and UV for skin cancer. These
factors increase the probability of sporadic occurrences of the cancer cells in the tissue.
The proliferation rate, p, and removal rate, r, both depend on conditions in the local
tissue niche, as well as the mutational and epigenetic state of the cell. Hence, the more
occurrences of cancer cells in the tissue, the higher the chance that for one of𝑝 > 𝑟
these cells, allowing it to proliferate and generate a tumor.

Cancer incidence is well documented, allowing a good test for theory. One
comprehensive database, called SiteSEER, has incidence curves of 100 cancer types in
the US. Of these cancers, 87 are at least mildly age-related. Of these, 66 are

well-described by the disease threshold model (Fig. 8.9). The typical values(𝑅2 > 0. 9)
of are 13-15, and the susceptibilities for different types of cancer range from 10-4 to 𝑋

𝑐
 

0.1.
There are several types of cancer with a poor fit to the model (Fig 8.9 B), namely cancers
that are common at young ages such as testicular cancer, Hodgkin’s lymphoma and
cervical cancer (which has a viral origin).



All in all, the disease-threshold model seems to describe a wide range of age-related
cancers very well.

Many infectious diseases have age-related mortality
A general theory such as the
disease-threshold model can be used
to make connections between very
different diseases. To demonstrate
this connection across disease
classes, we consider infectious
diseases, such as pneumonia, flu,
and COVID-19. For many infectious
diseases, mortality rate rises
exponentially with age (Fig 8.10).
Infections are diverse. Each
pathogen has ingenious ways to
resist the immune system. But
despite this complexity, pathogens
share a mathematical unity, which is analogous to the cancer model we just saw.
A virus or bacterium has proliferation rate, p, because all pathogens come from
pathogens. It is removed at rate r by the immune system. The number of pathogens N
thus obeys the same knife's-edge equation as cancer cells, 𝑑𝑁/𝑑𝑡 = (𝑝 − 𝑟)𝑁
Infections become deadly when they grow exponentially, that is when p>r. The host is
killed by damage caused directly by the pathogen, or more commonly by the collateral
damage unleashed by the immune system trying to fight the pathogen.
In young healthy individuals pathogen removal usually exceeds proliferation. The
pathogen is handily eliminated by the immune system. However, just as in the case of
cancer, senescent cells X can reduce the removal rate r(X) in multiple ways. Senescent
cells overload the immune cells, including NK cells and macrophages, whose job is to
fight pathogens. They also contribute to the decline of the adaptive immune system,
including T-cells, with age.
Such effects lower the removal rate of the pathogen, so that r(X) decreases with X. At old
age, a critical threshold Xc is reached, where removal equals proliferation r(Xc)=p.
Beyond this threshold a given infection that would be removed at young ages, now has
p>r and grows exponentially.

Thus, the age-dependence of both cancer and infection belong to the same mathematical
class — they are eliminated at young ages, but have a phase transition to growth at a
critical point Xc. The likelihood of crossing Xc rises exponentially with age, due to the
first-passage-time solution of the saturating-removal model, giving rise to the observed
incidence curves.

Let’s now turn to a different class of diseases, progressive fibrotic diseases. But first, to
recognize that we are doing a lot of work here, let’s take a nice deep sigh of relief.



A theory for IPF, a disease of unknown origin

A striking feature of the disease-threshold theory is that it can offer new explanations for
age-related diseases that are poorly understood. To see this, we consider IPF, which
stands for idiopathic pulmonary fibrosis. Its very name indicates that the cause is
unclear: ‘Idiopathic’ means disease of unknown cause, ‘pulmonary’ means lungs, and
‘fibrosis’ means excess scarring.
In IPF, lung capacity is progressively lost due to the scarring of tissue that is essential for
breathing (Martinez et al., 2017a; Raghu et al., 2012). It is a chronic progressive disease
that has no cure; patients often die within 1- 3 years. The lifetime susceptibility to IPF is
about . Its incidence rises exponentially with age and then drops (Fig 8.1).ϕ = 10−4

To understand IPF, let’s survey the relevant organ structure. The lung is made of
branching tubes that end in small air sacs called alveoli (Fig 8.11). The alveoli let oxygen
from the air go into the blood and let out. The alveoli are made of an inner epithelial𝐶0

2
layer that is one-cell thick surrounded by an interstitial layer. IPF scarring occurs in the

interstitial layer around the alveoli (Fig 8.12).
The thin epithelial layer is made of two types of cells. The first cell type (alveolar type-1
cells) are large flat barrier cells, which we will call the differentiated cells D. The second
type (alveolar type-2 cells) are
smaller stem-like cells we will call S
(Fig 8.13). These stem cells can
divide to form new S cells or
differentiate into D cells. The S cells
also secrete a soapy surfactant that
shields the cells from air particles
and prevents collapse of the alveoli
when we exhale.
The interstitial layer around the
alveoli contains fibroblasts and



macrophages, the stars of chapter 5 on fibrosis. Macrophages are ready to gobble up
bacteria and particles that make it through the epithelial layer of S and D cells. The
fibroblasts produce the fibers which make the elastic sheath around the alveoli.
When there is injury to the D cells, they signal (with molecules such as TGF-beta) to S
cells coaxing them to differentiate into new D cells (Fig 8.14). These injury signals also
cause S cells to activate inflammation in the interstitial layer to start a healing process.
The S cells signal the fibroblasts to become activated myofibroblasts, which proliferate
and secrete extra fibers.
In normal healing, once the new D cells are

made, the excess fibroblasts undergo
programmed cell death, and the extra fibers
are removed. S cells divide and renew the
tissue, and the injury is repaired.
In IPF, an unknown factor causes an ongoing
injury. The S cells multiply and reach higher
numbers relative to D cells than in normal
alveoli (Fig 8.15). They activate the
fibroblasts to multiply and lay down excessive
fibers, causing fibrosis. The interstitial tissue
around the alveoli becomes a thick scar that
reduces the ability of oxygen and CO2 to flow
in and out. It makes the alveoli stiff and less
able to expand and contract. Eventually more
and more alveoli become dysfunctional, leading to lung failure.
A major unknown in IPF is the origin of the injury. We can use what we have learned so
far to make a theory for the source of the injury and explain why the risk of IPF rises
exponentially with age, and why it occurs in only a small fraction of the population. We
rely on research that shows that senescent cells are important for IPF: the affected alveoli
have enhanced cellular senescence, especially in S cells (Martinez et al. 2017), and
removing senescent cells by senolytic drugs reverses fibrosis in IPF mouse models
(Hernandez-Gonzalez et al. 2021; Lopes-Paciencia et al. 2019).

We will thus explore how the accumulation of senescent cells might cause IPF. The main
idea is that senescent cells slow down the rate of stem-cell proliferation; when stem-cell
proliferation rate drops below removal rate, both S and D cell populations vanish -- the
alveolar tissue locally reaches zero cells.

Stem cells must self-renew and supply differentiated cells
To understand IPF, we thus need to understand how stem-cell-based tissues work. Stem
cells are found in organs that need to generate large numbers of cells. One class of such
organs are barrier organs exposed to the outside world, like the lung, intestine and skin.
Because of this exposure, cells can be damaged and need to be replaced.
These organs divide labor: the majority of cells, D, do the main tissue work, and the
minority (1-5%) are stem cells, S, in charge of regenerating the D cells and themselves.
Thus .𝑆→𝐷



Stem-cell-based
tissues differ from the organs
we considered in part 1 of the
book, where differentiated
cells like adrenal cortex cells
gave rise to their own kind,
without need for stem cells
(Fig. 8.16).

Recall that in such
tissues steady state requires
that cell proliferation rate
equals cell removal rate, otherwise the tissue grows or shrinks. In contrast, in stem-cell
based tissues, the proliferation of stem cells S must exceed their removal, because some
of the S divisions are needed to make the D cells. For stem cells, therefore, proliferation
must balance two processes: stem-cell removal plus differentiation (Fig 8.16).
The stem cell removal rate in many tissues is low because the stem cells are in a
protected niche, where they are shielded from damage. Examples include the blood stem
cells hidden in the bone marrow, skin stem cells in the deep epithelium, and the gut stem
cells tucked away at the bottom of crypts (Fig. 8.17).

In contrast, the lung alveoli are an example of a tissue where both S and D are on the
front lines. Stem cells and differentiated cells are both exposed to damage, such as air
particles, pathogens and the mechanical stress of breathing. There is no other choice: the
alveoli must be a thin monolayer of cells to allow diffusion of gasses and can’t afford a
deep layer for the stem cells. We call such tissues ‘front line tissues’.
We are now ready to propose a mechanism for IPF.

Incidence of idiopathic pulmonary fibrosis can be explained by stem cell removal

exceeding proliferation

In front-line tissues stem cells are exposed to damage and removed often. Homeostasis is
harder to achieve than in tissues in which stem cells are protected, because of the high
rate of removal of stem cells.



To understand this, let’s analyze the circuit that
maintains organ size in front-line tissues. We will see
that front line tissues crash when removal exceeds
proliferation.
Let’s first write down the basic equations (Fig. 8.18)

(Katzir et al., 2021). These equations account for
stem cell proliferation at rate p, and their
differentiation to make differentiated cells D at rate
q. The removal rate of S and D cells is :𝑟

(1) 𝑑𝑆
𝑑𝑡 = 𝑝𝑆 − 𝑟𝑆 − 𝑞𝑆

(2) 𝑑𝐷
𝑑𝑡 = 𝑞𝑆 − 𝑟𝐷

Note that differentiation means that an S cell is lost
and a D cell is gained. As a result, the term in− 𝑞𝑆
the first equation, namely the rate of differentiation
of an S to a D cell, shows up as a term in the second equation.+ 𝑞𝑆
To maintain the proper amounts of S and D cells, there is a feedback loop. As mentioned
above, D cells signal to S cells by secreting factors like TGFbeta that increase the rate of
differentiation q (Zhao et al., 2013). Thus q=q(D). This feedback acts to restore
homeostasis when cell numbers are perturbed, as analyzed in solved exercise 8.2.
Pioneering work on such stem-cell circuits is due to Arthur Lander and colleagues
(Lander et al. 2009).
We will now see that this circuit has a failure point. It breaks down when proliferation p
falls below removal -- the cell population shrinks exponentially. To see this𝑟
mathematically, we bound our equation from above by a simpler equation which declines
to zero. We first add the two equations Eq 1,2 to get an equation for the total number of
cells S+D

𝑑 𝑆+𝐷( )
𝑑𝑡 = 𝑝𝑆 − 𝑟𝑆 –𝑟 𝐷 =  𝑝𝑆 − 𝑟(𝑆 + 𝐷)

This addition eliminates the feedback term q(D), so our conclusions will work for any
form of feedback! We increase the right-hand-side by changing S to S+D because S+D is
always greater than S,

𝑑 𝑆+𝐷( )
𝑑𝑡 < 𝑝(𝑆 + 𝐷) − 𝑟(𝑆 + 𝐷) = (𝑝 − 𝑟)(𝑆 + 𝐷)

We end up with the knife-edge equation for total number of cells T=S+D
𝑑𝑇
𝑑𝑡 = (𝑝 − 𝑟)𝑇.  



Thus, when the proliferation rate falls below
removal, , the total cell number is bounded𝑝 < 𝑟
below an equation that goes to zero exponentially
fast with time. Both S and D must go to zero (Fig
8.19).
After the collapse, attempts at tissue repair
cannot proceed by regeneration and instead rely
on processes such as fibrosis, cell migration and
metaplasia. Fibrosis reduces tissue function and
pathology occurs.
Next, we need to understand how aging can
cause the threshold crossing of proliferation and
removal rates, namely the failure point.
Senescent cells affect proliferation and removal in
a way that pushes the tissue towards the
threshold (Fig 8.20). Senescent cells secrete SASP
that slows down the proliferation of progenitor
cells throughout the body. Thus, p is a declining
function of X, p(X), Fig 8.20. When senescent cells
cross a threshold proliferation drops below 𝑋

𝑐
removal, and tissue collapse is predicted to occur.
S and D cells vanish. Simulations of the circuit with its feedback loop show how the
alveolar cells D go to zero at different times for different individuals (Fig 8.21), as
determined by times that senescent cells cross the disease threshold (Fig 8.22)

IPF is thus a threshold crossing disease, and accumulation of senescent cells with age can
induce this threshold crossing. According to our theory we expect an exponential rise of
incidence with age, as senescent cells stochastically cross the disease threshold, with a
decline at old ages. This is indeed observed (Fig 8.23).



The circuit also explains the clinical observation
that the amount of S cells relative to D cells
begins to rise close to the disease onset. This is
due to the feedback in the system, which
attempts to ward off the collapse by increasing
stem cell numbers (by inhibiting differentiation
q) when proliferation rate drops and approaches
removal rate. This is a last-ditch attempt to
supply the needed number of divisions per unit
time to supply the removal rates.
Mathematically, we can see the rise in S relative to D cells as follows. From Eq 2 at
steady state we obtain that and thus . From equation 1 at𝑞𝑆

𝑠𝑡
= 𝑟𝐷

𝑠𝑡
𝑆

𝑠𝑡
/𝐷

𝑠𝑡
= 𝑟/𝑞

steady state, we see that , and thus . Combining these two𝑝 − 𝑟 − 𝑞 = 0 𝑞 = 𝑝 − 𝑟
facts, we find that the ratio of S to D cells at steady state diverges when proliferation p
comes close to removal rate r, namely .𝑆

𝑠𝑡
/𝐷

𝑠𝑡
= 𝑟/(𝑝 − 𝑟)

Such a critical threshold for failure does not exist in the circuit for protected stem cells,
with low stem cell removal rate (see exercise 8.5). Thus, only front-line tissues are
expected to show progressive age-related fibrotic diseases.

Now that we understand the origin of the disease threshold, let’s also understand the
biological origin of the susceptibility to this disease.

Susceptibility to IPF involves genetic and environmental factors that increase stem
cell death
Who is susceptible? Most people are not. Their stem cell proliferation rate is much higher
than the removal rate. With age, proliferation rate drops but still stays above removal.
The lungs work fine, there is no disease.
But in a fraction of people, the stem cell removal rate is higher than in the rest of the
population. This is fine at young ages, because proliferation still exceeds removal. But in
these individuals, aging can push proliferation down below removal, causing tissue
collapse and IPF onset.
To understand this, we can examine the genetic risk factors for IPF (Martinez et al.,
2017b). About 15% of IPF cases cluster within families. First-degree relatives of a patient
have a 5-fold higher risk of contracting IPF.
There are two classes of gene variants that increase the risk of IPF. The first class is in the
surfactant genes expressed by S cells. These variants produce unfolded surfactant
proteins that damage the S cells and increase their removal rate r. Increasing cell removal
rate lowers the IPF threshold (Fig 8.24). Thus, these gene variants make the disease𝑋

𝑐
much more likely.
The other class of genetic risk variants also affects S cells. These are telomerase genes.
Stem cells have an enzyme called telomerase that allows them to divide indefinitely, by
restoring their telomeres after each division. The telomerase risk variants reduce S cell



proliferation rate p and increase their death rate r, or equivalently their removal by
becoming senescent.
IPF also has environmental risk factors. Smoking doubles the risk of IPF. Smoking is
mutagenic, increasing the rate of local senescent cell production, and also increasing
removal rates. Exposure to toxins such as asbestos also increases removal and the risk of
IPF.
The involvement of high removal in IPF also explains why fibrosis begins at the outside
of the lung, and then progresses inwards. At the outside of the lung, the mechanical stress
on the alveoli, and hence removal rate, is highest.
Thus, genetic and environmental risk factors for IPF tend to lower . Whereas most𝑋

𝑐
people have a threshold that is higher than the death threshold, so that IPF never occurs,
those susceptible have low Xc that is crossed at old age.

To sum up, the homeostasis circuit of a front-line tissue, such as the alveoli, is fragile to a
reduction in stem cell proliferation. As proliferation drops to approach stem cell removal
rate, the fraction of stem cells in the tissue rises. When proliferation drops below
removal, cell numbers crash to zero, which sets off fibrosis in a doomed attempt to repair
the tissue. The age-related decline in proliferation is caused, at least in part, by senescent
cells that accumulate with age. The statistics of senescent-cell fluctuations explain the
exponential rise of IPF incidence with age. The drop of incidence at very old ages occurs
when most of those susceptible have already gotten the disease.

IPF is mathematically analogous to another age-related disease, osteoarthritis.
The understanding that IPF is due to a threshold-crossing in which removal exceeds
proliferation can be generalized to other front-line organs. In this way, understanding one
disease can help us understand a range of seemingly unrelated diseases.
One such disease is the joint disease osteoarthritis, a common condition that occurs in
about 10% of those over 60 (Martel-Pelletier et al. 2016). In osteoarthritis the protective
cartilage that cushions the ends of the bones wears down over time. It most commonly
affects joints in knees, hips, hands and spine.
The symptoms are pain and stiffness in the
joints, which can be debilitating. It is a
progressive disease with no cure except
joint-replacement surgery.
The joint is made of a tough fibrous cartilage.
The business end of the cartilage is a smooth
edge where the two parts of the joints meet.
This is the front line, where the wear-and-tear
occurs. The cartilage is constantly remodeled
by chondrocyte cells, D, that make the fibers
for strength and elasticity, including
collagen-2. These D cells are generated by
stem-like progenitor cells, S (Koelling et al.
2009). The progenitor cells in the joint are at
the front line, just like in the alveoli. The reason is that cells have limited mobility



through the cartilage, and thus S cells need to be close to where new D cells are needed,
namely at the front line.
The joints suffer mechanical stress, especially in regions that support the body’s weight.
In the young, this stress doesn’t do much and the joints are fine for 50 or more years. But
at old ages, osteoarthritis can set in. In a process that takes many years due to the very
slow turnover of the chondrocytes, D cell number reduces, and the fraction of S cells
increases. The S cells make tougher fibers than in normal cartilage, such as collagen-1

instead of collagen-2, making the tissue stiffer and less elastic. As a result, cracks form,
leading to a hole that often goes right down to the bone.
This hole occurs in the part of the joint that bears the most weight, and thus has the
highest cell removal rates (Fig. 8.25). People with knees that bend inward or outward
have the damage at the appropriate side of the knee where load is highest.
Like IPF and virtually all age related diseases studied so far, removing senescent cells
with senolytic drugs alleviates this disease in mice.
Thus, the two diseases IPF and osteoarthritis have a mathematical analogy. The removal
rate of stem and differentiated cells is similar because both are at the front line. The
removal rate varies across the organ and is highest where the most pressure occurs.
Reducing the proliferation rate of S cells down towards their removal rate leads to a rise
in the stem cell fraction S/D and eventually the cells are lost altogether. This reduction in
S proliferation can be caused by SASP secreted by the senescent cells in the body, as well
as local senescent cells in the joint.
Susceptibility to osteoarthritis, as in IPF, is due to genetic and environmental factors. The
main environmental risk-factors for osteoarthritis is being overweight, which increases
the load on the joints (Fig 8.26). To see this, note how the higher the body-mass index
(BMI, mass divided by height squared), the larger the susceptible fraction s; BMI does
not seem to affect the threshold .𝑋

𝑐
Genetic factors are also important, and osteoarthritis has about a 50% heritability. Risk
genes include fiber components like certain collagens (including collagen-2) and other
cartilage components, as well gene-variants for the signaling molecules IGF1 and
TGF-beta relevant to the feedback circuit that helps S and D cells maintain homeostasis.



It is intriguing that diseases as different as a lung disease and a knee disease might have
common fundamental origins. In our periodic table in the next chapter, we can expect that
other front-line tissues will have similar progressive fibrotic diseases. They form one
column in the table.

The disease-threshold model thus reveals how diseases that seem very different are in fact
deeply connected according to the type of threshold that is crossed. Cancer and infectious
disease both involve exponential growth when proliferation exceeds removal.
Progressive fibrotic diseases occur in the opposite transition, an exponential decline of
cells when proliferation of front-line stem cells drops below their removal. When the
stem cell population crashes the tissue cannot be renewed causing an injury that cannot
be repaired.

We are ready to use the disease-threshold model to explore the dynamics of treatment for
age related diseases.

Removing senescent cells can rejuvenate the incidence of age-related diseases by
decades
Age-related diseases are currently treated one at a time. A change of paradigm is to treat
them all at once by addressing their core underlying risk factor—aging itself. With our
mathematical picture in hand, we can evaluate potential treatments for aging as a core
process. We can ask what happens to disease incidence if senescent cells are removed.
In the previous chapter we mentioned at least three treatment strategies: reduction of
senescent cell production by inhibiting the mTor pathway, senolytic drugs that kill
senescent cells, and immune therapy that targets senescent cells.



Suppose a 60-year-old starts taking a drug once per month that removes senescent cells.
We can simulate this using the saturating removal model by adding a killing term that
represents removal of senescent cells due to the drug. Since senescent cells are reduced,
they cross the disease threshold at older ages. This predicts dramatic consequences for
disease incidence - a rejuvenation on the order of decades. The incidence curve of a
typical disease shifts within months to resemble the curve of a younger population
(dashed line in Fig 8.27).
Even killing only half of the senescent cells once every month rejuvenates by decades.
This works even if we assume, as in Fig 8.27, that senescent cells account for only 25%
of the damage responsible for the age-related disease, and the rest is due to currently
unknown forms of damage not affected by the drug.
Notably, rejuvenation is predicted even when treatment begins at old ages (Fig 8.28).
Now there was nothing special about the disease we picked for Fig 8.27 and 8.28.
Removing senescent cells should similarly reduce the incidence of all age-related
diseases. Treating the major risk factor, aging itself, rather than treating one disease at a
time can be a turning point in medicine,

Let’s take a nice deep sigh of relief to celebrate. We are ready to sum up the book in a
periodic table of diseases.



Further Reading

Senescent cells and the incidence of age-related diseases. (Katzir et al. 2021)

The Geroscience Hypothesis: Is It Possible to Change the Rate of Aging? (Austad 2016)

A Disease or Not a Disease? Aging As a Pathology. (Gladyshev and Gladyshev 2016)

Pursuing the Longevity Dividend. (Olshansky et al. 2007)
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Solved example 8.1: Find an analytical form for the incidence curve and age of peak
incidence for low s

The purpose of this exercise is to find an analytical form for disease incidence, using
some approximations. An analytical form is often useful for understanding the more
complex reality.
Let’s assume that we have a cohort of susceptible individuals. The ‘disease free’ fraction
at age t is F(t). The incidence I(t) is given by the number of disease-free individuals of
age t that get the disease in the following year. The disease free individuals are made of
those susceptible, F(t), and those non-susceptible that survive to age t , (1- ) S(t). Thusϕ ϕ

, where denotes the susceptible fraction in the population.𝐼 𝑡( ) =−
ϕ 𝑑𝐹

𝑑𝑡

ϕ𝐹+ 1−ϕ( )𝑆 ϕ

If we ignore the death rate of the non-susceptible population by setting S=1, and assume
that is small, as it is for most diseases, we obtain I(t)=- dF/dt.ϕ ϕ

Let’s write incidence in terms of the first-passage-time hazard rate of the disease - the
number of people per year that get it out of the remaining disease free individuals,

. Thus , andℎ =− 1/𝐹 𝑑𝐹/𝑑𝑡 ℎ =− 𝑑 𝑙𝑜𝑔𝐹/𝑑𝑡 𝐹 = 𝑒
−

0

𝑡

∫ℎ𝑑𝑡

Writing incidence in terms of hazard we have , or𝐼(𝑡) = ϕ ℎ 𝐹

𝐼 𝑡( ) = ϕ ℎ 𝑡( )𝑒
−

0

𝑡

∫ℎ𝑑𝑡

Now let’s make a simple approximation for the SR-type model, by approximating the
first passage time to cross a threshold goes as the Gompertz law without slowdown,

.ℎ = 𝐴𝑒α𝑡

We thus find an analytical formula

𝐼 = ϕ𝐴 𝑒α𝑡𝑒
− 𝐴

α 𝑒α𝑡−1( )
Taking the log of incidence, we see a linear rise with slope and then a drop at late timesα
when the exponent term becomes large (Fig. 8.28)

  𝑙𝑜𝑔 𝐼( ) =   𝑙𝑜𝑔 ϕ𝐴( ) + α𝑡 − 𝐴
α 𝑒α𝑡 − 1( )

We can now find the time of peak incidence. Taking yields α , and𝑑𝑙𝑜𝑔𝐼/𝑑𝑡 = 0 = 𝐴𝑒α 𝑡
thus the time of peak incidence is .𝑡

𝑚𝑎𝑥
= 1

α ln α
𝐴( ) 

Solved example 8.2: Front line circuit maintains homeostasis using feedback
In order to keep the tissue at homeostasis, and in particular to maintain a proper
concentration of D cells, front-line tissues need to have a feedback loop. In this
feedback loop, D and S cells signal to each other by secreting molecules that affect
differentiation and proliferation rates. If there are too few D cells, for example, these
signals act to increase D cell production and restore homeostasis.



In the feedback loop found in the lung and joints, as well as in other stem-cell based
organs like the skin, D secretes a signaling molecule that increases S differentiation
(one such molecule is , a strong signal for differentiation). S cells also𝑇𝐺𝐹 − β
secrete factors that increase their differentiation rate. Thus, differentiation rate is an
increasing function of D and S concentrations, .𝑞 = 𝑞(𝑆, 𝐷)

Let’s see how this
feedback works.
Suppose there is a
loss of D cells (Fig
8.29). Since D cells
signal to increase
differentiation, fewer
D cells mean lower
differentiation rate q.
Thus, at first one
makes even fewer D
cells. This seems paradoxical. But the reduction in differentiation means that more S
divisions go to making new S cells instead of D cells. S levels rise, and eventually the
larger S cell population supplies more differentiation events per unit time than before
the perturbation. D levels rise back. The timescale of this recovery in the alveoli is
months, due to the turnover rate of about a month of the D cells (alveolar epithelial
cells). In joints, the turnover time is probably much slower.
This feedback process shows damped oscillations and settles down to a proper steady
state. As an aside, we can speculate, as in chapter 3, that such damped oscillations
might entrain to the seasons and lead to seasonal changes in alveolar composition,
with more S cells and thus more surfactant in some seasons and less in others.

We can also solve the model for various proliferation rates p to observe the rise in S
and then the crash as p approaches r. We use a simple form for the feedback

.𝑞(𝑆, 𝐷) = 𝑞
0
 𝑆 𝐷

Let’s see what happens when the maximal proliferation rate, p, drops to approach the
stem cell removal rate, . To keep homeostasis, the feedback loop increases the𝑟
number of S cells, compensating for the reduction in their proliferation rate.
When proliferation rate drops, the ratio of stem to differentiated cells S/D rises (Fig
8.30):

𝑆
𝑠𝑡

𝐷
𝑠𝑡

= 𝑟
𝑝−𝑟

The fraction of S cells in the tissue diverges as proliferation p drops towards the
S-removal rate (Fig 8.30). When p<r, both S and D cells reach zero (Fig 8.31)𝑟



Exercises:
8.3 Stem cell feedback that keeps constant S: Consider the following feedback loop in
a labile tissue. Both stem cells and D cells secrete factors that increase differentiation
rate. The differentiation rate is .𝑞 𝑆, 𝐷( ) = 𝑞

0
𝑆𝐷

(a) Write down the equations for this circuit.
(b) Simulate this circuit (or use linear stability analysis) and test whether the steady-state
is stable.
(c) Show that the steady-state concentration of S cells is independent on S proliferation,
p.
(d) What is the concentration of D cells as a function of p?
(e) Is the effect of this feedback biologically useful?

8.4 Oscillations in front-line tissue circuit: consider a feedback loop with a single
interaction in which D increases differentiation rate .𝑞 𝑆, 𝐷( ) =  𝑞

0
𝑆𝐷

(a) Write the equations and simulate them.
(b) Explain the resulting oscillations in S and D numbers intuitively.
(c) Read about the predator-prey model in ecology called the Lotka-Volterra model.
What is the analogy?
(d) Why are ecology population models for species population an interesting resource for
modeling cell circuits?

8.5 Protected stem cells: Consider a tissue in which the stem cell removal rate r1 is
negligible, whereas the D cells have a sizable removal rate r2.
(a) Suppose that a feedback loop provides a stable-steady state. What happens to the S/D
ratio as S proliferation p is lowered? Is there a point of collapse?
(b) What diseases might characterize such tissues, more often than tissues with stem cells
at the front line (high r1)?
(c) Design a feedback loop that provides D levels that are insensitive to variations in
stem-cell proliferation p.

8.6 NK cell homeostasis circuit: NK cells are constantly produced by stem cells in the
bone marrow. They have a high removal rate r2, with a lifetime of hours, unless they go



into the body's tissues and find cells that make a survival signal (IL15-IL15R). Most cells
of the body produce this survival signal. When NK cells touch the donor cells, they
receive the signal, and their death rate drops to zero. NK cells constantly patrol the body
and go into and out of the blood stream and into the tissues.
(a) Write equations for NK cell numbers.
(b) What determines the NK cell lifetime of about a week in humans?
(c) NK cells were introduced into a mouse mutant that cannot produce its own NK cells.
These cells lasted for at least six months. Explain this result.
(d) Explain how this homeostasis mechanism ensures that the number of NK cells
matches the number of cells in the tissues that require NK cell surveillance.

8.7 Stem cell symmetric and asymmetric divisions: Consider the case where a stem
cell can divide to form either two stem cells or two differentiated cells, 2S or 2D. This is
called symmetric division. Asymmetric division is the case where there is also a third
possibility of dividing to produce one D and one S cell.
(a) What is the difference in the mathematical equations for the S and D populations in
the two cases?
(b) How does this affect the S/D ratio as proliferation p approaches removal ?𝑟

1

8.8 Two disease thresholds: Consider two age-related diseases with senescent cell
thresholds and . Suppose the two diseases can occur in the same person (the𝑋

𝑐1
𝑋

𝑐2
person is susceptible to both diseases). What would you expect about the relative timing
of the diseases in the same person? How would you test this hypothesis? What are some
confounding factors?

8.9 Osteoarthritis: Explain why osteoarthritis occurs in certain regions of the joint. In
the hip it occurs in the top part of the joint. In the knee it occurs at the inside rim in
people with legs oriented slightly as an X-shape, and at the outside rim of the knee in
people with a bowlegged, O-shaped configuration.

8.10 Removal rates: In healthy alveoli tissue there are approximately twice as many AT2
cells (S) than AT1 cells (D). Since S cells are smaller they make up only 7% of the
surface area Am Rev Respir Dis. 1982). Estimate using the simple calculations in the
lecture what is the ratio between S proliferation and removal rates. In the knee joint,
progenitor cells (S) amount to about 4% of the total cell population, rising to about 8% in
OA. What is the ratio of proliferation to removal rates?


