
Learn 2D game development with
Unity
By Rasmus Møller Selsmark

NOTE: New revisited version is available here: 2D-Unity-cannon-game

License for this book​ 2

Prerequisites​ 3

About this book​ 3

Introduction to Unity​ 4

Get started with Unity​ 5
Download and installation​ 5
Activation​ 6
Create 2D Unity project​ 7

Unity user interface​ 8
Unity editor​ 8

Window: Scene​ 8
Window: Game​ 9
Window: Hierarchy​ 9
Window: Project​ 9
Window: Inspector​ 9
Unity documentation​ 10
Window: Console​ 10

Customizing the editor layout​ 10

The CannonGame game​ 13
Graphics and introduction to GameObjects​ 13

Grass​ 14
Zoom in on game object​ 16
Game Objects and Components​ 17
Position and size of grass​ 18
Cannon graphics​ 19

Cannon Game Object​ 20
Save project/scene​ 22

“Grouped” gameobjects​ 22
Screen resolution of game in editor​ 23
Position of the cannon​ 23
Cannonball​ 24

1

https://docs.google.com/document/d/1nrAKrynJrv9abbNxhGLtQR8WiBJj8q00_URRm7oX7eE/edit#

Test the ”game” in Play-mode​ 25
Rigidbody - physical capabilities for game objects​ 26
Colliders​ 27

Scripting / programming in C#​ 27
Some notes about programming​ 28
Control the cannon using script​ 28

Some notes on code, errors and tools​ 32
MonoDevelop, Visual Studio or another editor​ 33

Testing and fixing first issue in game​ 34
Fire cannonball - “Prefabs”​ 35
Cannonball physics​ 38

Two players, points and simple UI​ 40
Explosions (!)​ 42
Collider and “tag” the cannon​ 43
UI​ 45
Implementing score and explosions​ 47

Build​ 49

Ideas for improving game​ 51

Appendix A: The final code​ 51
Cannon.cs​ 51
CannonBall.cs​ 53

License for this book
Dette materiale er udgivet under “Attribution 4.0 International (CC BY 4.0)”:

You are free to:

Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even
commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and
indicate if changes were made. You may do so in any reasonable manner, but not in
any way that suggests the licensor endorses you or your use.

2

No additional restrictions — You may not apply legal terms or technological
measures that legally restrict others from doing anything the license permits.

See more at http://creativecommons.org/licenses/by/4.0/

Prerequisites
In order to develop games using Unity, you need a newer PC or Mac computer, Unity does
e.g. not run on iPad. See “For development” section on
https://docs.unity3d.com/Manual/system-requirements.html for additional information.

About this book
Tip: Code including graphics for the game can be found at
https://github.com/rasmusselsmark/CannonGame-Basic

Github is a website, where you can store and version code, and is used by many
open-source projects. By using the link above you can download a zip-file with latest
version of game.

For this book, Unity 2017.1 has been used for building the game, but you can also use
other versions of Unity, however it’s normally recommended just to use latest available
version of Unity, which can be downloaded at (TODO: link)

Purpose of this book is to give an introduction to developing 2D games with Unity. The game
being used as example throughout the material is being developed for PC/Mac, but can later
be extended to also support mobile.

At the end of this book, the game will look like this:

3

http://creativecommons.org/licenses/by/4.0/
https://docs.unity3d.com/Manual/system-requirements.html
https://github.com/rasmusselsmark/CannonGame-Basic

Note that the game developed in this book is kept relatively simple, however the purpose is
to be able to create a game completely from scratch, i.e. not importing pre-made models or
already partly finished games. This way the intention is to learn Unity better, and give better
foundation when continuing with more advanced games later.

In this material, Unity 2017.1 on Windows 10 is used, however other versions of Unity can
be used as well, and except for the installation of Unity (which are different on Mac and
Windows), all steps and instructions apply to Mac users as well.

Unity also offers tutorials at https://unity3d.com/learn and documentation at
https://docs.unity3d.com, both which are good sites for getting started with game
development with Unity. You can also find lots of material for Unity on e.g. YouTube.

Despite lots of other Unity-based learning material, based on my experiences teaching kids
programming at the Coding Pirates organization (http://codingpirates.dk), I saw a need for a
more beginner/entry-level book for learning Unity and to some extend programming. This
book is the first in a (still planned) series of books based on the same cannon shooter game.

Introduction to Unity
Unity is a tool specifically aimed at developing games, and is used by more than 1 million
game developers worldwide, from small indie game developers to large game studios and
productions. Developing a game using Unity combines designing the game graphics with
programming the gameplay. In this book, the C# programming language is used, and to
beginners within programming, especially the programming part can be challenging and take
some time to learn, but learning how to program makes it possible to freely define the

4

https://unity3d.com/learn
https://docs.unity3d.com
http://codingpirates.dk/

gameplay of your game, and allows you to create any type of game you would like, for any
platform ranging from PC/Mac desktop to mobiles and consoles like Xbox and Playstation.

As introduction to programming, Unity and game development in general, provides a good
way into the concept of “objectoriented programming” as a game consists of tangible
objects, e.g. a player or enemy, so it’s often natural where the logic/code “belongs” in a
game.

The primary reason for choosing Unity (or other game engines) as development tool, is the
possibility to develop your game for multiple platforms. Typically you can e.g. release a
game for both Android and iOS without changing anything in the game code.

Unity is free to use as long as you are making less than 200,000 USD revenue per year, and
you can ship games made with the free version of Unity.

Get started with Unity

Download and installation
1.​ Open https://unity.com/download
2.​ Click the “Download for Windows” (or Mac/Linux) link to install the Unity Hub
3.​ Choose “Download Installer”

TODO: Show installation flow using Unity Hub

For our purpose, the following list of components are installed. Actually it’s just the “Unity”
component which is required to make a game with Unity and play it locally on your computer.
The other components are used if you want to distribute games to others or for other
platforms than used in this book.

Component Description

Unity 5.3.4f1 (TODO) The Unity editor application. This is the only required
component for developing games, e.g. if you just want to test
Unity.

Documentation Unity documentation installed on your PC. Useful if you are
offline, otherwise all documentation can also be found at
https://docs.unity3d.com

Standard Assets Collection of objects, characters and scripts which can be used
to quickly start building simple games.

Example Project Example project using Standard Assets.

5

https://unity.com/download
https://docs.unity3d.com

Windows Build Support
(TODO: still required?)

For at kunne bygge spil som kan køre direkte på Windows,
uden Unity installeret, f.eks. hvis du vil dele dit færdige spil.
Hvis du er på Mac, bør du vælge “Mac Build Support” i stedet.

Android Build Support If you want to build games for Android mobile devices. If you
don’t have an Android device, you don’t need to install this
component.

WebGL Build Support Publishing your game as HTML5 for playing in browser.

This book uses MonoDevelop for developing code for the game, so Visual Studio hasn’t
been selected above. If you want to use Visual Studio, just install this. MonoDevelop/Visual
Studio is the tool used for writing the code for our game.

Press the “Next” button to choose where to install Unity on your computer. In this case I
choose to name the folder with Unity version number, which makes it easier to install several
versions of Unity on the same machine. Note, it’s not possible to choose folder name when
installing on Mac, but you can simply rename the /Application/Unity folder after installation is
done on Mac.

(TODO: new screenshot)
Wait until Unity has been downloaded and installed on your computer, which can take a
while depending on which components you have selected, combined with speed of your
internet connection. In some cases up to one hour (based on experience of installing many
machines in same classroom over same internet connection, in these cases it can be a good
idea to download the installers to a USB and share this)

When the installation is done, you can choose “Launch Unity” in last part of the installation
guide: (TODO: new screenshot)

Activation
When you start Unity for the first time, you will be asked to register as user and activate
Unity. This requires internet connection from the machine.

6

(TODO: New screenshot)​

Follow the instructions to sign in or create a new account and activate Unity.

Create 2D Unity project
In the projects list, click the “New Project” button to create the project, and select project type
to be 2D:

(TODO: new screenshot)

In this case we’ll name the game ”CannonGame” (you can of course freely choose another
name) and store the project files under C:\UnityProjects folder, as well as specifying type
as 2D.

7

You can switch type between 2D and 3D later, but it’s easiest if you choose the correct type
from beginning, as it affects e.g. camera settings. Remember where you have stored the
project files, e.g. if you need to make a backup or share with others.

Finally click the ”Create project” button.

Unity user interface

Unity editor
When starting Unity editor, it will typically look like this:

The Unity editor is composed by windows/tabs, each which is used for editing or showing
properties for a part of the game. It’s possible to customize the layout of windows in the
editor, which we will get back to later.

In this section the most common windows in Unity are covered.

Window: Scene
This is where you work on the current ”scene”, i.e. can place game characters and other
objects. As scene is often the same as a level in your game. Later we’ll show how to insert
objects into the game.

8

Window: Game
The Game tab is where you can see how the game will look when played, and you can also
play the game in this window by clicking the “Play” button in the editor.

Window: Hierarchy
A scene typically is composed by a number of objects, e.g. player characters, enemies,
landscape etc. In the “Hierarchy” tab you can see a list of these game objects, which
especially in large games is easier than trying to find the visual object within the scene.

The objects shown in the Hiearchy window/tab are called “Game Objects”

Window: Project
Game objects can be reused across different scenes, so the “Project” tab contains list of all
objects/assets used in the game. When we later start to create graphics for our game, it will
also be located here.

For the more technical people, the folder structure in “Project” window is the same as for the
project files stored on disk.

Window: Inspector
This tab shows properties for the currently selected object in scene. If you e.g. select the
“Main Camera” game object in the Hierarchy Window, the position of the camera will be
shown with X, Y and Z coordinates:

Each of these are called “Components”, in above example the Transform and Camera
components, which each has their own “responsibility/capability” for the selected game
object.

9

Unity documentation
It’s possible to get context-specific help directly from the Unity editor, by clicking the small
blue book-icon next to each component. If you select Main Camera and click the help icon
for Transform component, you will see the documentation for Transform:

(TODO: new screenshot)
Likewise it’s possible to open documentation by clicking the menu item Help → Unity Manual
or Scripting Reference.

Window: Console
While developing a game (or any other software) you will often need to get additional
information about the game, in order to locate any errors in the game. The Console tab
shows this kind of information, and will also report if there are problems building the game
code.

Customizing the editor layout
Previously we saw how the Unity editor looks by default, however it’s possible to rearrange,
and I prefer to always have the Console window visible, in order to see any issues in game
reported here, instead of having it hidden behind the Project tab, which is the default layout.

The suggestion for layout presented here, is purely my personal preference. You can choose
to use it, or a different layout. And you can always change back to one of the built-in layouts.
The most important is that you find a layout which works for you. However in this material, I
will use the layout shown in this section.

10

Start by moving the Hierarchy tab to right side of Scene and Game tabs. This is done by
pressing the Hierarchy tab with the mouse, and dragging it while holding the mouse button
down.

(TODO: Update screenshot?)
The Hierarchy tab is now located to the right of Scene and Game tabs, and should look like
this:

In order to have better overview of the content of the Project tab, I prefer to show this as
“One Column Layout”, which is done by clicking the three horizontal lines next to the Project
tab.

11

Finally move following tabs:

1.​ Project to lower part of Hierachy tab (so Hierarchy stays above)
2.​ Console below Inspector
3.​ Game below Scene window

The Unity editor layout should then look like the following:

You can choose to save this layout, by clicking the upper-right button in the editor (says
”Default”), choose ”Save Layout” and specify a name for the layout (in my case saved it as
“Editor” which then shows up in the list)

12

The CannonGame game
We’re now almost ready to start developing our game. The game we’re going to develop is a
“Artillery game” style with two cannons, where goal is to hit the other player. As such a
relatively simple game, however still will let us work with e.g. controlling players, physics and
gravity, prefabs, colliders and programming C# scripts, which all are essential parts of game
development.

At the end of this book, the game will look as follows:

Graphics and introduction to GameObjects
For our game we will need the following graphics/art:

●​ Grass
●​ Cannon, composed by a wheel and barrel
●​ Cannonball

13

Often it’s possible to game art online for most types of games, either free or reasonable
priced. In this case however we will draw all the graphics for the game ourself, partly
because the graphics is relatively simple, but also in order to learn how to import and adjust
graphics settings in Unity.

Unity supports importing different kinds of assets from 3D models to simpler 2D graphics, in
this case we’ll be working with 2D images in PNG format. Here we’ll be using an online paint
tool, however you can freely choose any other tool, as long as it supports transparent
background.

First create a folder named ”Images”

1.​ Right-click in Project window and select Create→Folder​

​

2.​ Name the folder “Images”​

Later we will create similar folders for e.g. scripts, in order to keep files for our game well
structured. You can see which files are in your game by right-clicking in the Project window
and selecting “Show in Explorer” (“Show in Finder” on Mac)

Grass

1.​ Open https://sketch.io/sketchpad/ (or your favorite paint application)​

2.​ Select File→New to create a new drawing ​

14

https://sketch.io/sketchpad/

3.​ Specify size as 800 x 100 pixels and click Create​

​

4.​ Now draw a green box, by selecting the middle button in the top (likely shows a star
symbol), then select “Rectangle” and draw the entire area green:​

​

5.​ Download the picture to your computer, by selecting “Export” (the floppy-disc icon),
choose PNG format and click “Download”​

 ​

15

6.​ The image is then stored on your computer. Open the folder containing the
downloaded image file (in Firefox by pressing Ctrl/Cmd+J, in Chrome by by clicking
the arrow next to the file, and select “Show in folder”)​

7.​ Use the mouse to drag the file to the “Images” folder in Unity (requires you to have
both Unity and Windows Explorer/Finder windows visible), og rename the image to
“Grass”:​

​

8.​ Now drag and drop “Grass” into the Scene window above:​

​

We have now created the first game object in our game(!), so let’s take a look at properties
for this, including location and scale/size.

Zoom in on game object
When working with a single game object in the scene, it’s a often good idea to zoom in on
that object, which can simply be done by double-clicking on the game object (named “Grass”
in this case) in the Hierarchy tab, or alternatively:​

1.​ Select the Grass object
2.​ Move mouse cursor to Scene view (don’t click)
3.​ Press the “F”-key on keyboard

I you want to zoom additionally, this can be done by either

1.​ Use the scroll-wheel on your mouse (if you have)

16

2.​ Hold Alt-key on keyboard, right-click on mouse. You can now zoom in and out by
moving the mouse up and down

Game Objects and Components
Select the “Grass” game object in Hierarchy window:

Properties for the selected game object are now displayed in the the Inspector window, e.g.
X and Y coordinates of position. Z coordinate is also shown, although not used in a 2D
game. Reason for showing the Z coordinate is that Unity also is used for building 3D games,
and a 2D game as such is just a special projection/“subset” of a 3D game.

This game object currently has just the following two components:​

●​ Transform​

​
All game objects in Unity has a Transform component attached, which has
information about position, rotation and size/scale​

●​ Sprite Renderer​

​
This component draws the image in the game. Note the “Order in Layer” field, which
controls the order of images drawn, and can in a 2D game be used to control which
game objects are drawn on top of others, e.g. that player is drawn on top of
background

Later we will add additional components to Grass, e.g. to ensure that the cannonball will stop
when it hits the ground.

17

Position and size of grass
So far the grass is just a small box in lower part of the screen, so we need to place it as well
as change the size.

The position of a game element can be set in two different ways:

●​ Use the “gizmo”​
​
Select the “Pan” tool in toolbar at top of Unity editor window:​

​
This will show a “gizmo” with arrows in X and Y directions.​

​
By dragging the arrows, you can move the game object.​

●​ Enter X and Y coordinates​
​
Another way to change the position, is to directly enter the X and Y coordinates for
the game object in the Transform component, in this case changing Y coordinate to
-4.5:​

​
This method is typically best when you are fine-tuning location of an object, after
having placed it with the gizmo, as described above

The other buttons in the toolbar is used to rotate, scale and change size of objects, and
generally works in the same way as positioning the object.

In similar way we can change size of the grass to fill width of screen, by changing Scale to 3
for X-axis:

18

Cannon graphics
For the cannon, we need slightly more advanced graphics, as the cannon barrel needs to
move independently of its wheels. In your paint application, create a new image of size
100x100 pixels, and draw a barrel (90x20 pixels) and wheel (diameter 40 pixels).

Note that it’s important that barrel and wheel are drawn separately, i.e. not touching each
other.

The light chess background indicates that the background is transparent, which is important
for Unity to identify the two separate images. Above cannon is kept very simple, you are of
course welcome to add more details.

1.​ Import the image file into the Unity project, and name the imported asset “Cannon”:​

​

2.​ As this image consists of two separate objects, select “Multiple” as “Sprite Mode” and
click the “Apply” button.​

19

3.​ Now click the “Sprite Editor” button, followed by “Slice”, to indicate which “slices” the
image consists of:​
(TODO: image of showing where the Sprite Editor button is)​

​
​
Just select type “Automatic” to have Unity automatically detect the cannon barrel and
wheel in the image.​

4.​ Click “Apply” button and close the Sprite Editor window.​

5.​ Select “Cannon” in the Project window, and expand it by clicking the small triangle on
its left side. Unity has detected the two different objects in the image, which we will
use soon to compose the cannon game object.

We could have chosen to make the cannon barrel and wheels as two separate images,
however as it’s the same object, it makes sense to keep them in a single file. And then to
show that Unity can automatically slice an image consisting of multiple objects, which is
often the case e.g. with animated characters.

Cannon Game Object
As the cannon consists of multiple objects, the process of creating the game object is
different from when we created the grass.

20

1.​ Create an empty game object:​

​

2.​ Select the created object in the Hierarchy window, press F2 (Windows) / Enter (Mac)
and change the name to “Cannon”​

3.​ Now drag and drop the “Cannon_0” image under the create “Cannon” game object​

​

4.​ Also drag the “Cannon_1” image​

5.​ Rename “Cannon_0” to “CannonBarrel” and “Cannon_1” to “Wheel”, so our cannon
looks like this (doubleclick on “Cannon” to zoom in)​

​
If you cannot see the images for cannon, check that the coordinates are correct, i.e.
(0,0) for both Cannon, CannonBarrel and Wheel​

21

6.​ Set “Order in Layer” to “1” for Wheel, to ensure it’s drawn in front of CannonBarrel​

7.​ Move the cannon barrel to make it look like a cannon:​

​

As such we’re done designing the cannon, but still need to place it correctly in the scene, to
control it and not least be able to shoot cannonballs, which we will look closer at in next
chapters.

Save project/scene
As the scene now contains a few objects, let’s use the opportunity to save it, by selecting
File→Save Scene menu item, or simply press Ctrl+S (Windows) or Cmd+S (Mac), and then
specify scene filename, in this case “Battlefield”:

Just save the scene file in “root” of the project. If working on larger projects with many
scenes, it will be a good idea to structure scenes into subfolders.

“Grouped” gameobjects
The cannon we have designed, consists of two individual parts, wheel and barrel. As they
are part of the same object in game, we have chosen to make them sub-objects. This has
e.g. the advantage that we can move the entire object (with wheel and barrel) at the same
time.

22

Screen resolution of game in editor
When developing games, especially for mobile devices, you usually don’t know the
resolution of the screen where game is being played, which needs to be taken into
consideration, e.g. by dynamically with code positioning objects based on the actual screen
resolution.

Unity allows you to set the screen resolution in editor, to see how the game looks in different
resolutions, using the “Aspect” menu of the Game window. To keep it simple for now, just
select “Standalone”, as we currently are focusing on PC/Mac version of the game.

Position of the cannon
To place the cannon on the grass, do the following:

1.​ Select the toolbar button for moving objects.​

2.​ Select the Cannon gameobject in Hierarchy window and move it to lower left corner.​

Note: move the “Cannon” gameobject, and not the wheel or barrel individually.

The cannon should now be located in lower left corner in the Game window:

23

Cannonball
Before starting programming the game, we just need to add the cannonball. After all, the
game will be slightly more fun if we actually can shoot something...

Start by drawing a cannonball in a size which fits the barrel, approx. 18 pixels in diameter.

1.​ Open https://sketch.io/sketchpad/ (or a similar drawing tool), to draw a black circle.​

2.​ Create a new image​

​

24

https://sketch.io/sketchpad/

3.​ Draw a black circle, taking up almost entire image​

​

4.​ Save the image as CannonBall.png, and drag it to the Images folder in Unity:​

​

5.​ Drag the cannonball to the Scene window:​

Test the ”game” in Play-mode
We have now added all the elements needed for the game, i.e. simple landscape, a cannon
plus cannonball. Admittedly not a very interesting game yet, as a matter of fact, not even
playable, but we’ll get to in a minute.

In order to test our game so far, press the ”Play”-button in the toolbar, alternatively press
Ctrl+P/Cmd+P on keyboard.

25

As our game objects at this state only consists of images, nothing will happen when playing
the game, except you will notice that the Unity editor turns into a slightly darker color, which
indicates that the application is now in “Play-mode”.

Next we’ll apply physics to the cannonball, so it will be affected by gravity.

Press the Play-mode button again to get back into edit mode.

Tip: Properties, e.g. position, size etc, can still be changed for game objects in game while
in playmode, however when you leave playmode, objects will restore their original values.
This can be useful for testing changes to gameplay while playing, however you need to
remember which changes were done, if you want to apply some of them.

To make sure you are not by accident making changes while in playmode, it’s possible to
modify the “Playmode tint” color in Edit→Preferences...

My personal preference is a light green color, which clearly indicates that you are in
playmode

Rigidbody - physical capabilities for game objects
One of the advantages of using a game engine like Unity for building your games, is the
built-in “physics engine”, which simlutes physical capabilities as known from real life, e.g.
that objects are affected by gravity. By applying physics to the cannonball, it will follow a
more realistic (TODO: bane) when fired.

1.​ Select “CannonBall” in Hierachy window
2.​ Click “Add Component” button at the bottom of the Inspector window
3.​ Add “Rigidbody 2D” component

26

4.​ Enter Play-mode

The cannonball will now fall to the ground (and actually continue through the ground, as we
haven’t told it to stop…)

Colliders
In same way as physics capabilities were applied by adding the Rigidbody component, a
“Collider” component will tell Unity to register when an object collides with other objects in
the game, in this case the cannonball and ground, which will both have colliders attached.

1.​ Select the “CannonBall” game object​

2.​ Click “Add Component” and select “Circle Collider 2D”. If zooming in on the
cannonball in Scene window, a green circle is visible around the cannonball. This is
the collider boundary, i.e. where Unity will detect then the object touches/collides with
other objects:​

​
In order to change the size of the collider, click the “Edit Collider” button for game
object in the Inspector window:​

​

3.​ Next select the “Grass” game object​

4.​ Click “Add Component” and select “Box Collider 2D”

When entering playmode now, the cannonball will fall, but stop when it hits the ground.

Scripting / programming in C#
An important aspect of a game, beside the graphics, is the gameplay, i.e. the logic behind
the game, story, how controls are working etc, which is where programming applies. In Unity
it’s possible to program the game logic using either C# or UnityScript (a variant of the
JavaScript programming language).

More than 80% of all games developed using Unity are using C# as programming language,
and documentation and support is better for C# compared to UnityScript. For these reasons
the code in this book is written using C#.

27

The code in the book will be described briefly as we go along, and should be possible for
beginners to understand. However this book is not a full introduction to programming, and I
also believe that programming is best learnt by actually trying, and looking up the errors on
internet as they happen, and incrementally improve this way.

Some notes about programming
This will be a very brief introduction to programming for beginners. If you are already familiar
with programming, you can skip to the next section.

Programming is the way to describe for a computer how to solve a given task, which can be
performing calculations, e.g. in financial systems/calculating capabilities for
constructions/buildings, or in our case describing how the game should react to keypresses
in order to control our cannons.

By being able to describe a problem in code, usually also means that you also understand
the problem, so in my view learning to program also improves a person’s problem-solving
skills.

Control the cannon using script
For our game, we will control the cannon using arrow keys on the keyboard.

1.​ Select “Cannon” game object in Hierachy window​

2.​ Click the “Add Component” button, and choose “New Script” (at bottom):​

​

28

3.​ Name script “Cannon”, select “C Sharp” as programming language and click the
“Create and Add” button:​

The script has now been added to the project and can be found in the Projects window:

In order to keep the files easier maintainable, especially when working on larger projects, it’s
recommended to create a folder structure for the files in project, in this case a “Scripts” folder
for scripts in project. Move the created script into the folder, as shown in screenshot above.

Double-click on the Cannon script to open it in MonoDevelop/Visual Studio, and write
following code (don’t write line numbers, will be used later to describe the code):​

1: using UnityEngine;
2:
3: public class Cannon : MonoBehaviour
4: {
5: ​ public GameObject CannonBarrel;
6:
7:​ void RotateBarrel (int degrees)
8:​ {
9:​ ​ CannonBarrel.transform.Rotate (new Vector3 (0, 0, degrees));
10:​ }
11:
12:​ // Use this for initialization
13:​ void Start ()
14:​ {
15:​
16:​ }
17:​
18:​ // Update is called once per frame
19:​ void Update ()
20:​ {
21:​ ​ if (Input.GetKey (KeyCode.UpArrow))

29

22:​ ​ {
23:​ ​ ​ RotateBarrel (1);
24:​ ​ }
25:
26:​ ​ else if (Input.GetKey (KeyCode.DownArrow))
27:​ ​ {
28:​ ​ ​ RotateBarrel (-1);
29:​ ​ }
30:​ }
31: }

A brief explanation of the code follows.

Important: When programming, it’s necessary to follow some rules for the
“syntax”/structure of the code. For beginners in C#, especially the “curly brackets” { and },
which in C# are used to describe a “scope” of code. If not writing these curly brackets
correctly, the computer won’t be able to correctly interpret the code, and will report an error
when trying to play the game.

●​ Line 1: By including using UnityEngine in the code, we tell the computer to use

elements from the UnityEngine “namespace”. A namespace is used in C#, and other
programming languages, to ensure unique naming. In this case we want to use
elements/classes from Unity, which all are located under the UnityEngine
namespace.​

●​ Line 3: All classes in Unity which contains logic for a gameobject, must “inherit” from
the MonoBehaviour class, which contains declarations for e.g. the Update() method,
which we use in the example.​
​
Note: Give the C# class same name as the file, with same capitalization
(lowercase/uppercase) of characters.​

●​ Line 5: As we want to turn the cannon barrel (and not the entire cannon), we are
creating a reference to this, by creating a public variable, which will be available from
the editor.​

●​ Line 8: So far the Start() method is empty, but it will later contain code which will be
run when game starts, so we leave the method in the code for now. If you don’t need
some code, you should normally remove the code, as it can have impact on the
performance of the game.​

●​ Line 14: The method Update() is being called by Unity for each frame, i.e. each time
the game updates the graphics, normally at least 50 times per second. For this
example, we check if the player has pressed one of the arrow keys on keyboard, and
call RotateBarrel() method in that case.​

30

●​ Line 27: Here the RotateBarrel method is defined, which rotates the cannon barrel
around the Z-axis, i.e. rotating either up or down. CannonBarrel.transform returns
a reference to the “Transform” component of the CannonBarrel object, i.e. where we
can control position, rotation etc.​
​
By defining the method RotateBarrel, we can both reuse the code, and also makes
the code easier to read, when using meaningful names for the methods, describing
the purpose of the method, in this case rotating the barrel.

Switch back to Unity editor again and select the Cannon object. The public variable
CannonBarrel from the code, is now available in the Inspector window for the gameobject,
so we can tell Unity to use the CannonBarrel object.

Do this by

1.​ Selecting Cannon objektet​

2.​ Using mouse, drag CannonBarrel object to the “Cannon Barrel” field in Inspector
window, as shown in the figure below. It is important not to release the mouse button
until you have dragged the object all the way. This might cause a little trouble the first
couple of times (and likely also later…), alternatively click the small circle to the right
of the “Cannon Barrel” field in the inspector window, to select the object.​

Start the game again in playmode, and raise/lower the cannon using arrowkeys on
keyboard.

Tip: If the computer cannot “understand” the code, Unity will show an error similar to this:

At the same time, the Console window will show additional information about the error,
e.g.:

31

Double-click on the error message in the Console-window to show the code in either
MonoDevelop or Visual Studio.

It’s also possible in MonoDevelop to check your code for “syntax errors” (spelling errors),
by choosing menu item Build→Build All:

This will highlight any errors in the code.

Some notes on code, errors and tools
Contrary to natural/spoken languages, where it’s normally possible to understand the
meaning, even if there are spelling error, programming languages must be written precisely,
otherwise the computer will report errors. Writing correct programs means following the
syntax/structure of language, as well as not having any typos in the words used for
programming.

Typical compiler-errors when using the C# programming language:

Error Example

Curly brackets
doesn’t match

void Update ()
{
 if (Input.GetKey (KeyUp))
 {
 RotateBarrel (1);
 }
 else if (Input.GetKey (KeyDown))
 {
 RotateBarrel (-1);
 ← ERROR!

32

}

In this case, the KeyDown block of code hasn’t been properly
closed with a curly bracket.

Normal
parentheses
doesn’t match

if (Input.GetKey (KeyUp) ← ERROR!
{
 RotateBarrel (1);
}

The first line has two left parentheses, but only one right, which
means that we need to add one additional right parenthesis at the
end of line 1, to make the code compile.

Missing semicolon if (Input.GetKey (KeyUp))
{
 RotateBarrel (1) ← ERROR!
}

Similar to sentences in natural languages are ending with a period
“.”, statements in C# must end with a semicolon “;” to tell the
computer that we’re starting a new statement.

In this example, we therefore must add the missing semicolon to
end of line 3.

Incorrect use of
lower- and
uppercase letters

void update () ← ERROR!
{
 if (input.GetKey (KeyUp)) ← ERROR!
 {
 Rotatebarrel (1); ← ERROR!
 }
}

C# programming language is “case-sensitive”, i.e. lower- and
uppercase letters are different. In this example “update” should have
been “Update”, “input” -> “Input” and “Rotatebarrel” ->
“RotateBarrel”.

In this case Unity would have been able to detect some of the
errors, however not “update” as this is not a syntax error. But since
Unity will call the “Update” method (with uppercase beginning
letter), the code wouldn’t get executed.

MonoDevelop, Visual Studio or another editor
When installing Unity on Windows you can choose between MonoDevelop (installed by
default with Unity) and Visual Studio. On Mac it’s only possible to install MonoDevelop.

33

However it’s possible to use your favorite editor with Unity, which you can specify using the
menu item Edit→Preferences...

Testing and fixing first issue in game
When now playing the game in playmode, you should be able to control the rotation of the
barrel using up and down arrow keys, however you’ll see that we need to adjust the “pivot
point” for the barrel backwards, so it rotates where the wheel is attached. Currently it will
look something like this when rotating:

34

1.​ Select the Cannon sprite in the Project window:​

​

2.​ Click the “Sprite Editor” button and set Pivot to 0.25 on the X-axis and 0 on the
Y-axis, click Apply and close the Sprite Editor window.​

​

3.​ This however means that the cannon barrel will be moved a bit forward, so we need
to adjust the position for it.

Fire cannonball - “Prefabs”
Next step in our game is to be able to fire cannonballs. This is done by creating multiple
instances/copies of the same object. In Unity this is done by making a gameobject into a
“prefab”.

1.​ Create a new folder “Prefabs” in the Project window.​

35

2.​ Drag the CannonBall object to the created folder:​

​

3.​ The CannonBall gameobject in the scene is now written in blue text, which indidates
that it’s an instance of a prefab. In practice this means that all gameobjects based on
the same prefab, will share the settings from the prefab, e.g. size.

Now add the following code to the Cannon.cs file, to fire the cannonball.

Add the following lines to the beginning of the Cannon class, to make a reference to the
cannonball prefab and also set the default force used for shooting the cannonball:

 public GameObject CannonBallPrefab;
 private float _firePower = 10f;

Plus a FireCannon method, which will instantiate a cannonball and apply a physical force to
give it speed:

 private void FireCannon (float power)
 {
 Vector2 position =
 CannonBarrel.transform.position + CannonBarrel.transform.right * 0.8f;

 GameObject cannonBall = Instantiate (
 CannonBallPrefab,
 position,
 CannonBarrel.transform.rotation) as GameObject;

 cannonBall.GetComponent<Rigidbody2D> ().AddForce (
 CannonBarrel.transform.right * power,
 ForceMode2D.Impulse);
 Destroy (cannonBall.gameObject, 30);
 }

Brief description of the code:

36

●​ Find the position where the cannonball should be instantiated, in this case the pivot
position of the cannonbarrel (CannonBarrel.transform.position) plus 0.8 x length of
barrel. Although the position is of type Vector2 (which normally would indicate a
direction), we’re in this case just using it as position.

●​ Next we call Instantiate() to create a copy of the cannonball prefab as a
gameobject.

●​ Shooting the cannonball is done by the AddForce() method, which is a part of the
physics engine in Unity. As the method name indicates, AddForce() will apply a
physical force to an object, which results in the cannonball flying towards
CannonBarrel.transform.right (relative to the current rotation of the cannon barrel).

●​ Finally the Destroy() method is called, which will remove the cannon ball after 30
seconds. Note that this is not the most effective way to clean up objects, as this can
result in memory fragmentation. The solution to this is using an “object pool” for
game objects which are created and destroyed often, however this won’t be covered
in this book (just search internet for more information on object pooling in Unity)

As it can be seen from even this relatively simple game, we’re using both coordinate system,
vectors and physics. So developing games can be a way to practice what you have learned
in math and physics in school :)

Above we created the FireCannon() method, which we just need to call, using some
additional mode in Update()

 else if (Input.GetKeyUp (KeyCode.Space))
 {
 FireCannon (_firePower);
 }

Note that we use Input.GetKeyUp() instead of Input.GetKey(). This results in the cannon ball
being fired when the spacebar key is released, and not constantly while being pressed
down.

Switch back to the Unity editor, in order to specify our prefab.

1.​ Select Cannon object in the Hierachy window​

37

2.​ Drag the “CannonBall” prefab to the “Cannon Ball Prefab” field​

​
(Alternatively click the small circle to the right of the “Cannon Ball Prefab” field and
select the prefab)​

3.​ Delete the existing CannonBall object in the Hierarchy window, as new instances will
be created from code.

When playing the game, it’s now possible to fire cannonballs by pressing spacebar on the
keyboard.

Cannonball physics
As you can see, the cannonball gets fired and it’s trajectory is affected by gravity so it will
eventually hit the ground, which gives our game a realistic feeling. However when the
cannonball hits the ground, it will continue rolling, which on the other hand is both unrealistic

38

and inconvenient, as it means we would be able to simply hit somewhere in front of the other
player, and let the cannonball roll forward to hit the other players cannon.

Unity allows us to adjust the physical capabilities of objects using “PhysicsMaterial”, however
the simplest way to stop the cannonball when it hits the ground, is using code. Add a
CannonBall script to the CannonBall prefab:

And insert the following code:

using UnityEngine;​
​
public class CannonBall : MonoBehaviour​
{​
 void OnCollisionEnter2D(Collision2D collision)​
 {​
 if (collision.gameObject.name == "Grass")​
 {​
 GetComponent<Rigidbody2D>().isKinematic = true;​
 GetComponent<Rigidbody2D>().velocity = Vector3.zero;​
 }​
 }​
}

Brief explanation of the code:

●​ OnCollisionEnter2D is the method which Unity calls when our cannonball hits another
“collider”. In this case we’re simply checking by name “Grass”​

●​ Then physics for the cannonball is disabled by setting isKinematic = true and
settingvelocity = Vector3.zero to stop the cannonball. The reason for disabling
physics, is to avoid other cannonballs hitting this one, and making it move.

39

Again, remember to move the CannonBall.cs script to the Scripts folder, to keep the
structure for the files in your project.

Two players, points and simple UI
The game now consists of the basic elements needed, i.e. a cannon with ability to control
and fire a cannonball. To make the game slightly more challenging and interesting, we would
like to allow two players to play against each other, which requires some modifications to the
game:

1.​ Turn the Cannon into a prefab:​

​

2.​ Insert another instance of the cannon, by dragging Cannon from the Project window
to the scene and place it in the right side. Rename the cannon gameobjects to
“LeftCannon” and “RightCannon”. The cannon on right side should be rotated 180
degrees around the Y-axis:​

​

40

It’s possible to play the game now with both cannons, however they will react to the same
keypresses on keyboard, so we need to configure them individually. So far we have simply
checked for hardcoded keys, so we need to modify the Cannon.cs script.

First insert following fields in the beginning of the Cannon class:

 public KeyCode KeyUp;

 public KeyCode KeyDown;

 public KeyCode KeyFire;

This allows us from the editor to configure keys per cannon. Next modify the Update()
method to use these configured keys:

 // Update is called once per frame

 void Update ()

 {

 if (Input.GetKey (KeyUp))

 {

 RotateBarrel (1);

 }

 else if (Input.GetKey (KeyDown))

 {

 RotateBarrel (-1);

 }

 else if (Input.GetKeyUp (KeyFire))

 {

 FireCannon (_firePower);

 }

 }

Lastly we just need to choose the keys in the editor.

Suggestion for keys:

 LeftCannon RightCannon

Key Up W Up Arrow

41

Key Down S Down Arrow

Key Fire Left Shift Right Shift

Explosions (!)
And of course we need explosions, although relatively simple ones. Draw a star in your paint
application, of approx. size 210 x 180 pixels:

Save the file and drag it to the Images folder:

As we will show an explosion for every time we hit the opponent cannon, we should make a
prefab for the explosion image. Insert the image into the Scene window, and adjust the size
of it according to your cannon. Then drag it from Scene window to the Prefabs folder in
Projects window:

42

You can now delete the explosion gameobject from the scene, as we will use the prefab from
now on.

Collider and “tag” the cannon
To have Unity detect that the cannonball has hit a cannon, we add a collider to the cannon.

1.​ Start by dragging the cannon prefab into the scene, as we need to update the prefab.
This is how you currently modify a prefab in Unity, and we cannot use one of the
existing cannon game objects already in the scene, as we have e.g. set keys for
those, which would override the values in prefab.​

2.​ In order to easily “recognize” a cannon in code, we add a “tag” on the Cannon prefab.
Select the Cannon gameobject in Hierarchy window, click on the “Tag” dropdown list
and select “Add Tag...”:​

​

43

3.​ Add “Cannon” tag:​

​

4.​ And choose this for the Cannon object:​

​

5.​ Now add a “Collider 2D” component to the cannon, click the “Edit Collider” button to
specify the size of the area it’s possible to hit for the cannon:​

​
The green “collider box” controls when Unity detects the cannon as being hit, and our
code gets called. This way you as game developer/designer can control how
easy/hard it should be to hit the opponent.​

44

6.​ (Cannot do this yet, as the ExplosionPrefab field isn’t defined until page 49)​
At the same time update the “Explosion Prefab” field on the Cannon, so we can use
this from code.​

7.​ Click the“Apply” button to update the prefab, which then automatically also updates
the two existing cannons.​

8.​ Delete the temporary Cannon object again from the scene, as we now have updated
the prefab.

When selecting one of the existing Cannon objects (“LeftCannon” or “RightCannon”), you
can see that they now have the “tag” value updated and both have a collider added from the
prefab.

UI
Yet another important element of a game is to score points when hitting the other player.
Showing the scores is done by implementing UI (= “User Interface”) text elements to show
the scores for each player.

1.​ Right-click in the Hiearchy window and create UI→Text element​

​

2.​ Besides the text element, this will also create a UI canvas, which will contain all UI
elements for the game. To make it easier to support different screen resolutions, set
the “UI Scale Mode” field to “Scale With Screen Size” for the canvas.​

45

​

3.​ Create UI text element for both left and right player. It’s simplest to create the left
player score UI element and then copy it by right-clicking and selecting “Duplicate”​

46

Implementing score and explosions
Last part of this book is to implement the code changes in order to update score when the
opponent is hit as well as showing the explosion. This requires a number of changes to
code. If you have problems getting the game working, you can compare with the final code
listed in Appendix A

In order to know which player has scored a point, we need to know who fired the cannonball,
so first change is in the CannonBall.cs script, which will look like following (most of the file is
changing, so it’s easiest just to show the entire file):

using UnityEngine;

public class CannonBall : MonoBehaviour

{

 public Cannon FiringPlayer;

 void OnCollisionEnter2D (Collision2D collision)

 {

 if (collision.gameObject.name == "Grass")

 {

 GetComponent<Rigidbody2D> ().isKinematic = true;

 GetComponent<Rigidbody2D> ().velocity = Vector3.zero;

 }

 else if (collision.gameObject.tag == "Cannon")

 {

 Cannon cannon = collision.gameObject.GetComponent<Cannon> ();

 cannon.GotHit ();

 if (collision.gameObject.name != FiringPlayer.name)

 {

 FiringPlayer.Score += 1;

 FiringPlayer.Reset ();

 }

 Destroy (this.gameObject);

 }

 }

}

The code uses “Cannon” tag, to check that the cannonball actually hit cannon, as well as we
didn’t hit ourself. In this case, we give one point to the player who fired the cannonball.

For Cannon.cs script we’ll add a reference to the explosion prefab and the score UI text
element for the cannon:

 public GameObject ExplosionPrefab;

 public UnityEngine.UI.Text ScoreUIText;

47

And a variable for keeping track of points for the player:

 private int _score;

 public int Score

 {

 get { return _score; }

 set

 {

 _score = value;

 if (ScoreUIText)

 ScoreUIText.text = _score.ToString();

 }

 }

As the cannonball now needs to know which player fired it, we’re setting the FiringPlayer
property:

 cannonBall.GetComponent<CannonBall> ().FiringPlayer = this;

In the editor we assign the UI text element for each cannon, i.e. “ScoreLeftPlayer” for
“LeftCannon” and similar for the right cannon:

At this point we actually do have a game which can be played by two players in the editor.

48

Build
Until now we have only tested the game inside Unity editor using playmode, but in order to
let others play the game on their computers, it has to be “build” using File→Build Settings...
menu:

49

Choose “PC, Mac & Linux Standalone”, click “Build And Run” and specify a filename for the
game:

The game files can now e.g. be copied to a USB-stick and be played on another computer
which doesn’t need to have Unity installed.

It’s also possible to build the game for WebGL, i.e. HTML, which makes it possible to upload
the game to a website and play through a browser.

50

Ideas for improving game
If you would like to improve the game, here are some ideas for getting started:

●​ Turn-based, i.e. wait for other player to shoot
●​ Control the firepower, e.g. by how long the fire key is pressed
●​ Create an obstacle (hill, buildings etc) between players, which you need to shoot

across
●​ Be able to move cannon forwards/backwards
●​ Implement a computer/AI player, so game can be played alone against computer

Appendix A: The final code

Cannon.cs
using UnityEngine;
using System.Collections;

public class Cannon : MonoBehaviour
{
 public GameObject CannonBarrel;
 public GameObject CannonBallPrefab;
 public GameObject ExplosionPrefab;

 public KeyCode KeyUp;
 public KeyCode KeyDown;
 public KeyCode KeyFire;

 public UnityEngine.UI.Text ScoreUIText;

 private float _firePower = 10f;
 private int _score;

 public int Score
 {
 get { return _score; }
 set
 {
 _score = value;

 if (ScoreUIText)
 ScoreUIText.text = _score.ToString();
 }
 }

 // Use this for initialization
 void Start ()

51

 {
 Reset ();
 }

 public void Reset()
 {
 gameObject.SetActive (true);
 CannonBarrel.transform.localRotation = Quaternion.identity;
 }

 // Update is called once per frame
 void Update ()
 {
 if (Input.GetKey (KeyUp))
 {
 RotateBarrel (1);
 }
 else if (Input.GetKey (KeyDown))
 {
 RotateBarrel (-1);
 }
 else if (Input.GetKeyUp (KeyFire))
 {
 FireCannon (_firePower);
 }
 }

 void RotateBarrel (int degrees)
 {
 CannonBarrel.transform.Rotate (new Vector3 (0, 0, degrees));
 }

 private void FireCannon (float power)
 {
 Vector2 position =
 CannonBarrel.transform.position + CannonBarrel.transform.right * 0.8f;

 GameObject cannonBall = Instantiate (
 CannonBallPrefab,
 position,
 CannonBarrel.transform.rotation) as GameObject;

 cannonBall.GetComponent<CannonBall> ().FiringPlayer = this;
 cannonBall.GetComponent<Rigidbody2D> ().AddForce (
 CannonBarrel.transform.right * power,
 ForceMode2D.Impulse);
 Destroy (cannonBall.gameObject, 30);
 }

 public void GotHit ()
 {
 if (ExplosionPrefab)
 {
 GameObject explosion = Instantiate (

52

 ExplosionPrefab,
 this.transform.position,
 Quaternion.identity) as GameObject;
 Destroy (explosion, 1f);
 }

 this.gameObject.SetActive (false);
 Invoke ("Start", 2);
 }
}

CannonBall.cs
using UnityEngine;

public class CannonBall : MonoBehaviour
{
 public Cannon FiringPlayer;

 void OnCollisionEnter2D (Collision2D collision)
 {
 if (collision.gameObject.name == "Grass")
 {
 GetComponent<Rigidbody2D> ().isKinematic = true;
 GetComponent<Rigidbody2D> ().velocity = Vector3.zero;
 }
 else if (collision.gameObject.tag == "Cannon")
 {
 Cannon cannon = collision.gameObject.GetComponent<Cannon> ();
 cannon.GotHit ();

 if (collision.gameObject.name != FiringPlayer.name)
 {
 FiringPlayer.Score += 1;
 FiringPlayer.Reset ();
 }

 Destroy (this.gameObject);
 }
 }
}

53

	Learn 2D game development with Unity
	License for this book
	Prerequisites
	About this book
	Introduction to Unity
	Get started with Unity
	Download and installation
	Activation
	Create 2D Unity project

	Unity user interface
	Unity editor
	Window: Scene
	Window: Game
	Window: Hierarchy
	Window: Project
	Window: Inspector
	Unity documentation
	Window: Console

	Customizing the editor layout

	The CannonGame game
	Graphics and introduction to GameObjects
	Grass
	Zoom in on game object
	Game Objects and Components
	Position and size of grass
	Cannon graphics

	Cannon Game Object
	Save project/scene

	“Grouped” gameobjects
	Screen resolution of game in editor
	Position of the cannon
	Cannonball
	Test the ”game” in Play-mode
	Rigidbody - physical capabilities for game objects
	Colliders

	Scripting / programming in C#
	Some notes about programming
	Control the cannon using script
	Some notes on code, errors and tools
	MonoDevelop, Visual Studio or another editor

	Testing and fixing first issue in game
	Fire cannonball - “Prefabs”
	Cannonball physics

	Two players, points and simple UI
	Explosions (!)
	Collider and “tag” the cannon
	UI
	Implementing score and explosions

	Build
	Ideas for improving game
	Appendix A: The final code
	Cannon.cs
	CannonBall.cs

