Creating a 5000-line app for
programming with algebra with Claude
Code

Ken Kahn - home page

4 November 2025

ldea and history of the idea

Twenty years ago | joined the EU-funded REMATH ('Representing mathematics with digital
media') project. Researchers from Greece, France, Italy, and the United Kingdom (where I've
been for more than twenty years) explored new digital tools to help students explore
mathematics. | lead the design and development of MoPiX. My idea was to create a
programming language and associated programming environment to enable the creation of
simulations, games, and animations solely by creating algebraic equations. Change of state was
handled by explicit references to time. A user’s program is just a function of time so it can run
forwards and backwards easily.

MoPiX 1 was implemented in Adobe Flash. When it became clear that HTMLS5 would be better |
implemented MoPiX 2. It was implemented in Java and automatically translated to JavaScript by
the Google Web Toolkit.

Here is a paper we published about MoPiX.

MoPiX 3: Designed by me and Claude Code;
Implemented by Claude Code

Claude Code for the web is available to me as a Pro subscriber (about $20/month). When | first
make a request it spins up a virtual machine. It creates and manages files and does testing in
this virtual machine. This way any bugs won'’t affect my files. Unlike prompts to the chat version
of Claude, Claude Code can come up with multi-step plans and work on them one after the
other.

| wanted to see what it was like to use Claude Code so | gave it access to the GitHub MoPiX 2
repository and asked it to make a modern version using JavaScript (and HTML and CSS). At
first it created a folder with about two dozen files along with complex instructions for running it

mailto:<toontalk@gmail.com>
https://docs.google.com/document/d/1r7oaUOGs1TGjtKYo1CCmfqTifH5cqpPny5ALx5EIT_8/edit?usp=sharing
http://remath.cti.gr/s/el/
https://en.wikipedia.org/wiki/Adobe_Flash
https://developer.mozilla.org/en-US/docs/Glossary/HTML5
https://en.wikipedia.org/wiki/Google_Web_Toolkit
https://docs.google.com/document/d/13wayDP0kLEAXAaixIzVDZsZOgHT65wN7/edit?usp=sharing&ouid=117320991080687983969&rtpof=true&sd=true
https://www.anthropic.com/news/claude-code-on-the-web
https://github.com/ToonTalk/mopix2/
https://github.com/ToonTalk/mopix2/

relying upon Node and TypeScript. | told it | wanted a single HTML file and it created this early
version of the app:

https://toontalk.github.io/AI/apps/MoPiX-3-start.html
https://toontalk.github.io/AI/apps/MoPiX-3-start.html

%> MoPiX Modern - Enhanced Demo

Full-fezstured visual programming with trails, dragging, and persistence

Interactive Demo (Click, Drag, Draw Trails)

» Click objects to select them

* Drag selected objects to reposition

* Toggle Pen to enable trail drawing

= Create new objects with equations or static placement

) Step Sack m StEp FOnarE =

Frame: 0O []
Speed: L ' 30 fps A Clear Trails

@ Object Management

e ohjEd selected CHES Dhjec.t

M save & Load

I Load from Browser L1 Export JSON L2 Import JSON

A4 New Features Added

That was a good start. The objects move and spin and | can create new objects. But critically |
can not create or edit equations. After a week we had this greatly enhanced fully functional app.
While it took a week my typical interaction pattern was:

Request a change or changes

Read other things for 5 to 60 minutes
Skim the response and changes
Load the latest version

Test it for a few minutes

Repeat

I e

| estimate | was working at most one fourth of the time on the new MoPiX. Claude also was
active about the same amount of time. Three fourths of the time | was doing other things. |
probably spent about 20 hours on this project.

The new version is over 5000 lines of code. Claude Code would update a branch on GitHub
(along with detailed documentation of the changes) and | merged it into the master version over
80 times.

Here is the in-app documentation generated by Claude:

. Available:

Variables: t (time), user variables (define in sidebar), object name.property
Constants: pi, e

Properties: x, y, width, height, rotation, red, green, blue, thicknessPen,
redColorPen, greenColorPen, blueColorPen, opacityPen, custom properties
Input: mouse.x, mouse.y, keyDown(key)

Previous Frame (t-1): prev.x, prev.object name.property

Operators: + - * / * (power), <, >, <=, >=, ==, I=

Math: sin, cos, tan, abs, sqrt, In, log, exp, floor, ceil, round, sign, fract
Logic: if(cond, true, false), and, or, not

Collision: overlaps(obj1, obj2)

Multi-arg: dist, angle, min, max, clamp, lerp, random, mod, pow, atan2
Easing: smoothstep(edge0, edge1, x), step(edge, x), ease(x, power), bounce(t),

wrap(val, min, max)

Each item displays tool tips if the mouse hovers over it.

https://toontalk.github.io/AI/apps/MoPiX-3.html
https://github.com/ToonTalk/mopix2/pulls?q=is%3Apr+is%3Aclosed

The programs are interpreted as equations where the only free parameter is t which is the time
or the frame number. For example, to make an object named ‘ball’ move right at a speed of 5
units per tick you can enter

X =prevx +95

Which is shorthand for this equation:

Xpalit = Xpait1 T O

Video demos on YouTube

Sample objects demo - 52 seconds

Four graphs demo - 47 seconds

Average of two bouncing balls demo - 2 minutes 11 seconds
Creating a clock demo - 2 minutes 50 seconds

The original MoPiX 2

This effort was much more than just translating or porting an old version of MoPiX to modern
technology. Here is what the old version looks like:

https://www.youtube.com/watch?v=cx3vVq6mrdU
https://www.youtube.com/watch?v=BzLagvchnPg
https://www.youtube.com/watch?v=SJBLRHZx9hg
https://www.youtube.com/watch?v=10RJffmXYf0
https://mopix2.appspot.com/

a A

Equations ofobjectg
delta59(objectg, t) = (mod(t,118) < 59) x -1 + (mod(t,118) 2 59) x 1
delta53(objecty, t) = (mod(t,106) < 53) x -1 + (mod(t,106) = 53) x 1
delta47(objectg, t) = (mod(t,94) < 47) x -1 + (mod(t,94) =2 47) x 1
blueColourPen(objectg, t) = blueColourPen(objects, t — 1) — delta53(objectg, t) x 2
greenColourPen(objects, t) = greenColourPen(objects, t — 1) — delta59(objectg, t) x 2
redColourPen(objectg, t) = redColourPen(objectg, t — 1) — delta47(objectg, t) x 2
thicknessPen(objectg, t) = 4
penDown(objectg, t) = (t > 1)
X(object,, 0) = 531.75
x(objectg, t) = (x(objecty, t) + x(objecty, t)) + 2
y(objectg, 0) = 123.35
y(objectg, t) = (y(object,, t) + y(objectg, t)) + 2

CLOSE

334 |1 \

RAICTINTICSN v

The new version has a great deal of new functionality.

The app

The app starts with sample objects. Documentation appears as needed. Try it out. If you create
something neat send it to me at toontalk@gmail.com.

Here are two models | created that you import. A much better average of two bouncing balls
than in the sample models and a clock.

https://toontalk.github.io/AI/apps/MoPiX-3.html
mailto:toontalk@gmail.com
https://toontalk.github.io/AI/MoPiX%20models/average%20of%20two%20balls.json
https://toontalk.github.io/AI/MoPiX%20models/mopix-clock.json

About me

I've been researching Al, creativity, and education for fifty years. | started when working on my
phd from the MIT Al lab. Most recently | wrote a book about how anyone can use chatbots to
co-create apps, adventures, illustrated stories, and discussions.

The Learner’s Apprentice: Al and the Amplification of Human Creativity

In the book | describe creating apps using the chat versions of LLMs. Here | explored how much
more can be done with the code agent version. | didn’'t need to read or write any of the 5000
lines of code.

You can follow me on LinkedIn, Facebook, Threads, or BlueSky.

https://cmkpress.com/product/learners-apprentice/
https://www.linkedin.com/in/ken-kahn-997a225/
https://www.facebook.com/ken.kahn.7/
https://www.threads.com/@kenkahn42
https://bsky.app/profile/kenkahn.bsky.social

	Creating a 5000-line app for programming with algebra with Claude Code
	Idea and history of the idea
	MoPiX 3: Designed by me and Claude Code; Implemented by Claude Code
	Video demos on YouTube
	The original MoPiX 2
	The app
	About me

