
PMP Enhancements for memory access and
execution prevention on Machine mode

Version 0.9.1

Nick Kossifidis, Joe Xie, Bill Huffman, Allen Baum, Greg Favor, Tariq Kurd,
Fumio Arakawa, RISC-V TEE Task Group

Introduction
Being able to access the memory of a process running at a high privileged execution mode,
such as the Supervisor or Machine mode, from a lower privileged mode such as the User mode,
introduces an obvious attack vector since it allows for an attacker to perform privilege escalation
and tamper with the code and/or data of that process. A less obvious attack vector exists when
the reverse happens, in which case an attacker instead of tampering with code and/or data that
belong to a high-privileged process, will tamper with the memory of an unprivileged /
less-privileged process and trick the high-privileged process to use or execute it.

To prevent this attack vector, two mechanisms known as Supervisor Memory Access Prevention
(SMAP) and Supervisor Memory Execution Prevention (SMEP) were introduced in recent
systems. The first one prevents the OS from accessing the memory of an unprivileged process
unless a specific code path is followed, and the second one prevents the OS from executing the
memory of an unprivileged process at all times. RISC-V already includes support for SMAP,
through the sstatus. SUM bit, and for SMEP by always denying execution of virtual memory
pages marked with the U bit, with Supervisor mode (OS) privileges, as mandated on the
Privilege spec.

Terms:
● Ignored: All accesses are permitted to the address range configured in the PMP

entry
● Enforced: Only access types configured in the PMP entry are allowed; failures will

cause an access exception
● Denied: No access is permitted to the address range configured in the PMP entry;

failures will cause an access exception

Threat model
However, there are no such mechanisms present on Machine mode and with the current spec
it’s not possible to mitigate such attacks using physical memory addressing and Physical
Memory Protection. With the current spec, if we want a PMP rule to be enforced only on



non-Machine modes and denied on Machine mode, so that we can only allow access to a
memory region by less-privileged modes, we don’t have the option. We can only have a locked
rule that will be enforced on all modes, or a rule that will be enforced on non-Machine modes
and be ignored by Machine mode. So on any physical memory region not protected with a
Locked rule, Machine mode has unlimited access, including the ability to execute it.

Without being able to protect less-privileged modes from Machine mode, we can’t prevent the
mentioned attack vector. This becomes even more important for RISC-V than on other
architectures, since we also allow implementations where a hart will only have Machine and
User modes available, where the whole OS will run on Machine mode instead of the
non-existent Supervisor mode. In such implementations the attack surface is greatly increased,
and the same kind of attacks performed on Supervisor mode and mitigated through
SMAP/SMEP, can be performed on Machine mode without any available mitigations. On
implementations with Supervisor mode present attacks are still possible against the Firmware
and/or the Secure Monitor running on Machine mode.

Proposal

1) Machine Security Configuration (mseccfg) is a new Machine mode CSR, used for
configuring various security mechanisms present on the hart, and only accessible to
Machine mode. It is only available on harts with PMP support. It’s 64bits long and it’s
address is 0x747 on RV64 and 0x747 (low 32bits), 0x757 (high 32bits) for RV32. All bits
except bit0 - bit2 are reserved for now and all mseccfg fields defined on this proposal are
RW. The reset value of mseccfg is implementation-specific, otherwise if backwards
compatibility is a requirement it should reset to 0 on hard reset.

2) On mseccfg we introduce a field on bit2 called Rule Locking Bypass (mseccfg.RLB).
Note that it’s intended to be used as a debug mechanism, or as a temporary workaround
during the boot process for simplifying sw, and optimizing the allocation of memory and
PMP rules. Using this functionality under normal operation should be avoided since it
weakens the protection of M-mode-only rules. Vendors who don’t need this functionality
may hard-wire this field to 0.

a) When mseccfg.RLB is 1 PMP rules with pmpcfg.L bit 1 can be removed and/or edited.

b) When mseccfg.RLB is 0 and pmpcfg.L is 1 in any entry (including disabled entries),
then mseccfg.RLB is locked and any further modifications to mseccfg.RLB are ignored
(WARL).

3) On mseccfg we introduce a field on bit1 called Machine Mode Whitelist Policy
(mseccfg.MMWP). This is a sticky bit, meaning that once set it cannot be unset until a



hard reset. When set it changes the default PMP policy for M-mode when accessing
memory regions that don’t have a matching PMP rule, to denied instead of ignored.

4) On mseccfg we introduce a field on bit0 called Machine Mode Lockdown
(mseccfg.MML). This is a sticky bit, meaning that once set it cannot be unset until a
hard reset. When mseccfg.MML is set the system's behavior changes in the following
way:

a) The meaning of pmpcfg.L changes: Instead of marking a rule as locked and
enforced on all modes, it now marks a rule as M-mode-only when set and
S/U-mode-only when unset. The formerly reserved encoding of RW=01, and the
encoding LRWX=1111, now encode a Shared-Region.

An M-mode-only rule is enforced on Machine mode and denied on Supervisor or User
modes. It also remains locked so that any further modifications to the configuration or
address registers are ignored until a hard reset, unless mseccfg.RLB is set.

An S/U-mode-only rule is enforced on Supervisor and User modes and denied on
Machine mode.

A Shared-Region rule is enforced on all modes, with restrictions depending on the
pmpcfg.L and pmpcfg.X bits:

● If pmpcfg.L is not set the region can be used for sharing data between M-mode
and S/U-mode so it’s not executable. M-mode has RW access to that region and
S/U-mode has read access if pmpcfg.X is not set, or RW access if pmpcfg.X is
set.

● If pmpcfg.L is set the region can be used for sharing code between M-mode and
S/U-mode so it’s not writeable. Both M-mode and S/U-mode have execute
access on the region and M-mode may also have read access if pmpcfg.X is set.
The region remains locked so that any further modifications to the configuration
or address registers are ignored until a hard reset, unless mseccfg.RLB is set.

● The encoding pmpcfg.LRWX=1111 can be used for sharing data between
M-mode and S/U mode, where both modes only have read-only access to the
region. The region remains locked so that any further modifications to the
configuration or address registers are ignored until a hard reset, unless
mseccfg.RLB is set.



b) Adding a new M-mode-only or a Shared-Region rule with executable privileges is
not possible and such pmpcfg writes are ignored, leaving pmpcfg unchanged. This
restriction can be temporarily lifted e.g. during the boot process, by setting mseccfg.RLB.

c) Executing code with Machine mode privileges is only possible from memory regions
with a matching M-mode-only rule or a Shared-Region rule with executable privileges.
Executing code from a region without a matching rule or with a matching S/U-mode-only
rule is denied.

d) If mseccfg.MML is not set, the combination of pmpcfg.R=0, pmpcfg.W=1 remains
reserved.

Truth table when mseccfg.MML is set

Bits on pmpcfg register Result

L R W X M Mode S/U Mode

0 0 0 0 Inaccessible region (Access Exception)

0 0 0 1 Access Exception Execute-only region

0 0 1 0 Shared data region: Read/write on M mode, read-only on S/U mode

0 0 1 1 Shared data region: Read/write for both M and S/U mode

0 1 0 0 Access Exception Read-only region

0 1 0 1 Access Exception Read/Execute region

0 1 1 0 Access Exception Read/Write region

0 1 1 1 Access Exception Read/Write/Execute region

1 0 0 0 Locked inaccessible region* (Access Exception)

1 0 0 1 Locked Execute-only region* Access Exception

1 0 1 0 Locked Shared code region: Execute only on both M and S/U mode.*

1 0 1 1 Locked Shared code region: Execute only on S/U mode, read/execute on
M mode.*

1 1 0 0 Locked Read-only region* Access Exception



1 1 0 1 Locked Read/Execute region* Access Exception

1 1 1 0 Locked Read/Write region* Access Exception

1 1 1 1 Locked Shared data region: Read only on both M and S/U mode.*

*: Locked entries cannot be removed or modified until a hard reset, unless mseccfg.RLB
is set.

Visual representation of the proposal

Rationale (WiP)
1. Since a CSR for security and / or global PMP behavior settings is not available with the
current spec, we needed to define a new one. This new CSR will allow us to add further security
configuration options in the future and also allow developers to verify the existence of the new
mechanisms defined on this proposal.

2. There are use cases where developers want to enforce PMP rules on M-mode during the
boot process, that are also able to modify, merge, and / or remove later on. Since a rule that is
enforced on M-mode needs to also be locked (or else M-mode software can remove it at any
time), the only way for developers to approach this is to keep adding PMP rules to the chain and



rely on rule priority. This is a waste of PMP rules and since it’s only needed during boot, RLB is
a simple workaround that can be used temporarily and then disabled and locked down.

RLB is also there to allow the registration of the newly-defined Shared code regions during the
boot process. When MML is set though, according to 4b it’s not possible to add a
Shared-Region rule with executable privileges. So RLB can be set temporarily during the boot
process to register such regions. Note that it’s still possible to register executable
Shared-Region rules using initial register settings (that include MML being set and the rule
being set on PMP registers) on hardware reset, without using RLB.

Be aware that RLB introduces a security vulnerability if left set after the boot process is
over and in general it should be used with caution, even when used temporarily. Having
editable PMP rules on M-mode is a false sense of security since it only takes a few instructions
to lift any PMP restrictions this way. It doesn’t make sense to have a security control in place
and leave it unprotected. RLB is only meant as a way to optimize the allocation of PMP rules,
and allow the bootrom/firmware to register executable Shared-Region rules. If developers /
vendors have no use for such functionality, they should never set RLB and if possible hard-wire
it to 0. In any case RLB should be disabled and locked as soon as possible. Note that if
RLB is not used and left unset, it’ll get locked as soon as a PMP rule with the L bit set on
pmpcfg is added.

3. With the current spec M-mode can access any memory region unless restricted by a PMP
rule with the L bit set on pmpcfg. There are cases where this approach is overly permissive, and
although it’s possible to restrict M-mode by adding PMP rules during the boot phase, this can
also be seen as a waste of PMP rules. Having the option to block anything by default, and use
PMP as a whitelist for M-mode is considered a safer approach. This functionality can be used
during the boot process or upon hardware reset, using initial register settings.

4a. The current dual meaning of the pmpcfg.L bit that marks a rule as Locked and enforced on
all modes is neither flexible nor clean. With the introduction of Machine Mode Lock-down the
pmpcfg.L bit distinguishes between rules that are enforced only on M-mode (M-mode-only) or
only on S/U-modes (S/U-mode-only). The rule locking becomes part of the definition of an
M-mode-only rule, since when a rule is added on M mode, if not locked, can be modified or
removed in a few instructions. On the other hand, S/U modes can’t modify PMP rules anyway so
locking them doesn’t make sense.

This separation between M-mode-only and S/U-mode-only rules also allows us to distinguish
which regions are to be used by processes in Machine mode (L=1) and which by Supervisor or
User mode processes (L=0), in the same way the U bit on the Virtual Memory’s PTEs marks
which Virtual Memory pages are to be used by User mode applications (U=1) and which by the
Supervisor / OS (U=0). With this distinction in place we are able to implement memory access
and execution prevention on M-mode for any physical memory region that is not M-mode-only.



An attacker that manages to tamper with a memory region used by S/U mode, even after
successfully tricking a process running on M-mode to use or execute that region, will fail to
perform a successful attack since that region will be S/U-mode-only hence any access when on
M-mode will trigger an access exception.

In order to support zero-copy transfers between M-mode and S/U-mode we need to either allow
shared memory regions, or introduce a mechanism similar to the sstatus.SUM bit to temporary
allow the high-privileged mode (in this case M-mode) to be able to perform loads and stores on
the region of a less-privileged process (in this case S/U-mode). In our case after discussion
within the group it seemed a better idea to follow the first approach and have this functionality
encoded on a per-rule basis to avoid the risk of leaving a temporary, global bypass active when
exiting M-mode, hence rendering memory access prevention useless.

Although it’s possible to use mstatus.MPRV on M-mode to read/write data on an S/U-mode-only
region using general purpose registers for copying, this will happen with S/U-mode permissions,
honoring any MMU restrictions put in place by S-mode. Of course it’s still possible for M-mode
to tamper with the page tables and / or add S/U-mode-only rules and bypass the protections put
in place by S-mode but if an attacker has managed to compromise M-mode to such extent, no
security guarantees are possible in any way. Also note that the threat model we present here
assumes buggy software on M-mode, not compromised software. We considered disabling
mstatus.MPRV but it seemed too much and out of scope.

Shared-region rules can be used both for zero-copy data transfers and for sharing code
segments. The latter may be used for example to allow S/U-mode to execute code by the
vendor, that makes use of some vendor-specific ISA extension, without having to go through the
firmware with an ecall. This is similar to the vDSO approach followed on Linux, that allows
userspace code to execute kernel code without having to perform a system call.

To make sure that shared data regions can’t be executed and shared code regions can’t be
modified, the encoding changes the meaning of the X bit. In case of shared data regions, with
the exception of the LRWX=1111 encoding, the X bit marks the capability of S/U-mode to write
to that region, so it’s not possible to encode an executable shared data region. In case of shared
code regions, the X bit marks the capability of S/U-mode to read from that region, and since
RW=01 is used for encoding the shared region, it’s not possible to encode a shared writable
code region. Note that the capabilities marked by the X bit are always available on M-mode but
M-mode still can’t execute a shared data region, nor write a shared code region. A
Shared-region rule for a shared code region must be added after M-mode has written the code
segment there.

Using the LRWX=1111 encoding for a locked shared read-only data region was decided later on,
its initial meaning was an M-mode-only read/write/execute region. The reason for that change
was that the already defined shared data regions were not locked, so r/w access to M-mode
couldn’t be restricted. In the same way we have execute-only shared code regions for both



modes, it was decided to also be able to allow a least-privileged shared data region for both
modes. This approach allows for example to share the .text section of an ELF with a shared
code region and the .rodata section with a locked shared data region, without allowing M-mode
to modify .rodata. We also decided that having a locked read/write/execute region on M-mode
doesn’t make much sense and could be dangerous, since M-mode won’t be able to add further
restrictions there (as in the case of S/U-mode where S-mode can further limit access to an
LWRX=0111 region through the MMU), leaving the possibility of modifying an executable region
on M-mode open.

Note that for encoding Shared-region rules initially we used one of the two reserved bits on
pmpcfg (bit 5) but in order to avoid allocating an extra bit, since those bits are a very limited
resource, it was decided to use the reserved R=0,W=1 combination.

4b. The idea with this restriction is that after the Firmware or the OS running on M-mode is
initialized and MML is set, no new code regions are expected to be added since nothing else is
expected to run on M-mode (everything else will run on S/U mode). Since we want to limit the
attack surface of the system as much as possible, it makes sense to disallow any new code
regions which may include malicious code, to be added/executed on M-mode.

4c. In case mseccfg.MMWP is not set, M-mode can still access and execute any region not
covered by a PMP rule. Since we try to prevent M-mode from executing malicious code and
since an attacker may manage to place code on some region not covered by PMP (e.g. a
directly-addressable flash memory), we need to ensure that M-mode can only execute the code
segments initialized during firmware / OS initialization.

4d. We are only using the encoding RW=01 together with MML, if MML is not set the encoding
remains usable for future use.


