
Organic chemistry 1

1. Use the flow chart below to answer the questions that follow:

- (a) What observation would be made in process **K**?
- (b) Name another conditions necessary for process **J** to take place
- (c) Give the name of substance V
- 2. But-z-ene undergoes hydrogenation according to the equation given below

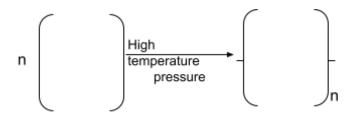
- (a) Name the product formed when but-z-ene reacts with hydrogen gas
- (b) State **one** industrial use of hydrogenation
- 3. Write the structures of the following compounds:-
 - (a) But—2-yne
 - (b) 2,2-dimethylpropane
- 4. a) What is meant by Isomerism?
 - b) Draw and name **two** Isomers of butane.
- 5. Study the information in the table below and answer the questions that follow:

Ion	No. of protons	No. of electrons
P^{3-}	7	10
Q^+	19	18
\mathbb{R}^{2+}	12	10

- a) Write the electron arrangement of element P.
- b) Give the group and period to which elements Q and R respectively.

Q

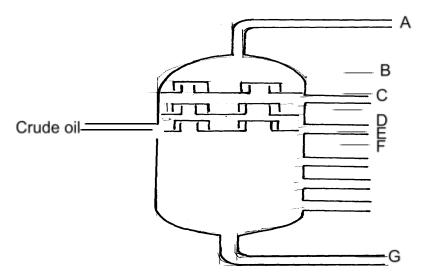
R


6. Compound W reacted with chlorine to form compound X only. The structural formula of X is shown below:

- (a) Give the structural formula and name of compound **W**
- (b) Name compound **X**
- 7. In petrol chemical industries, long chain alkanes are broken down in to simpler substances in a process called cracking

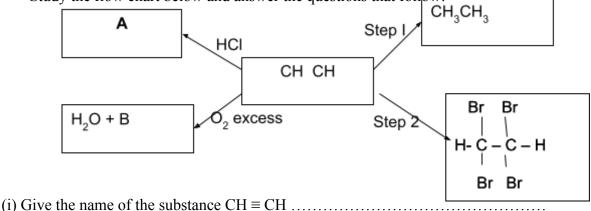
- a) Why is cracking necessary?
- b) State the **two** conditions required in cracking
- c) Draw the structure of 1-chloro-2, 2-dimethylpropane
- 8. In a reaction an alcohol **K** was converted to hex-1-ene
 - a) Name reagent and condition necessary for the reaction in 6 (a) above to occur
- 9. (a) Give the IUPAC systematic names of compounds **Q** and **R**

Q: CH₂CHClCHlCH₂CH₃ **R**: CH₃CHClCH₂ClCH₃

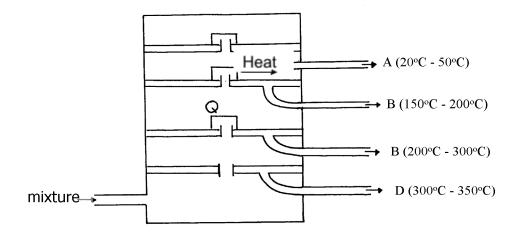

- (b) The organic compounds **Q** and **R** in **(b)** above, are formed when one mole of hydrocarbon **N** reacts with two moles of hydrogen chloride gas;
- (i) Structural formula of N
- (ii) The IUPAC systematic name of N
- 10. Distinguish between the isotopes and isomers
- 11. Polymerisation of ethene takes place as shown in the equation below

Name the type of polymerisation undergone by ethene in the reaction above

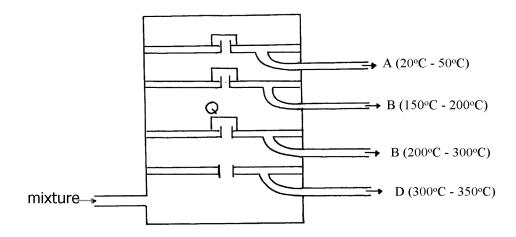
- 12. (a) State Gay Lussac's law
- 13. 10cm³ of methane (CH₄) gas is exploded with 150cm³ of air containing 20% oxygen and 80% nitrogen. The products were allowed to cool to room temperature. What will be the total volume of the gases at the end of the reaction?
- 14. Give the open structures of:-
 - (i) 3-chlorohex-l-yne
 - (ii) CH₃OH
- 15. A fixed mass of gas occupies 105cm³ at -14°C and 650mmHg pressure. At what temperature in degrees Celsius will it have a volume of 15cm³ if the pressure is adjusted to 690mmHg pressure?
- 16. Write an equation for the reaction that takes place between ethene and concentrated Sulphuric (VI) acid


17. Petroleum (crude oil) is a mixture of several compounds which are separated in a Changamwe refinery by means of apparatus as shown below:

- (a) (i) What is the name of the apparatus above
 - (ii) What is the name of the process which is used in separation of crude oil
 - (iii) What physical property of compounds in the mixture does the separation depend
 - (iv) Use the letter A to G to describe where the following could be formed:.
 - I. The fraction that represents gases
 - II. The fraction that represents the largest molecules
 - III. The fraction that represents liquids with the lowest boiling points
 - (b) State the use of product produce at


G..... C.....

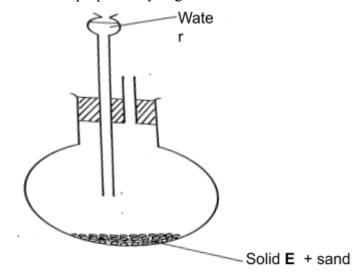
- (c) Draw apparatus for the separation of the product produce at **D** and water
- 18. Study the flow chart below and answer the questions that follow:



.....

- - (ii) To which group of hydrocarbons does the substance in (i) above belong?
 - (iii) Give **two** reagents that can be used to prepare the substance named in (i) above
 - (iv) State **two** physical properties of the substances in (i) above
 - (v) Give the names to the process in step I and 2
 - (vi) Write an equation to show how substance A is formed
 - (iv) Identify substance **B**
- 19. The diagram below represents a large-scale fractional distillation plant used to separate the components A, B, C and D in a mixture

- (a) The components have the following average relative molecular masses not necessarily in that order; 282, 184, 44 and 128.
 - (a) (i) What is the physical state of $\bf B$ at the position marked $\bf Q$?
 - (ii) Which component has an average relative molecular mass of 128? Explain
 - (iii) State with a reason whether C is pure or impure
 - (iv) Explain how the mixture is separated into its components
 - (v) Name **two** naturally occurring mixtures that are separated using this process
- 20. The diagram below represents a large-scale fractional distillation plant used to separate the components **A**, **B**, **C** and **D** in a mixture



- (a) The components have the following average relative molecular masses not necessarily in that order; 282, 184, 44 and 128.
 - (a) (i) What is the physical state of **B** at the position marked **Q**?
 - (ii) Which component has an average relative molecular mass of 128? Explain
 - (iii) State with a reason whether C is pure or impure
 - (iv) Explain how the mixture is separated into its components
 - (v) Name **two** naturally occurring mixtures that are separated using this process
- a) The table below gives information about the major constituents of crude oil. Study it and answer the questions that follow:

Constituent	Boiling point °C
Gases	Below 40
Petrol	40-175
Kerosene	175-250
Diesel	250-350

Lubricating oil	350-400
Bitumen	Above 400

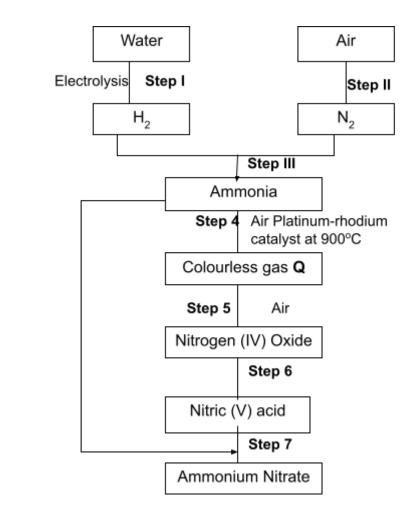
- i) Which of the constituents of crude has molecules with the highest number of carbon atoms? Explain
- ii) Name the process you would use to separate a mixture of petrol and diesel and explain how the separation takes place
- iii) Explain why the constituents of crude oil do not have a sharp boiling point
- iv) Name the gas that is likely to be a constituent of crude oil and write its formula
- b) i) What condition could cause a poisonous gas to be formed when kerosene is burnt. Explain
- ii) Give one use of bitumen
- 22. (a) The set-up below was used to prepare ethyne gas

)

- (i) Identify solid E
- (ii) Complete the diagram to show how the gas can be collected
- (iii) Write an equation to show how the gas is formed
- (iv) Complete the equation below:

$$C_2H_2 + 2I_2$$

- (v) What is the role of sand in the experiment?
- (b) (i) Explain the meaning of esterification
 - (ii) Complete the equation below:


$$CH_3COOCH_3 + H_2O$$

- (iii) What type of reaction is occurring above
- (c) Given the reaction:

$$C_8H_{18}$$
 Solid F $N + C_2H_4$

(i) Identify substance:

- (ii) Name the process represented above?
- (d) Give one use of substance N

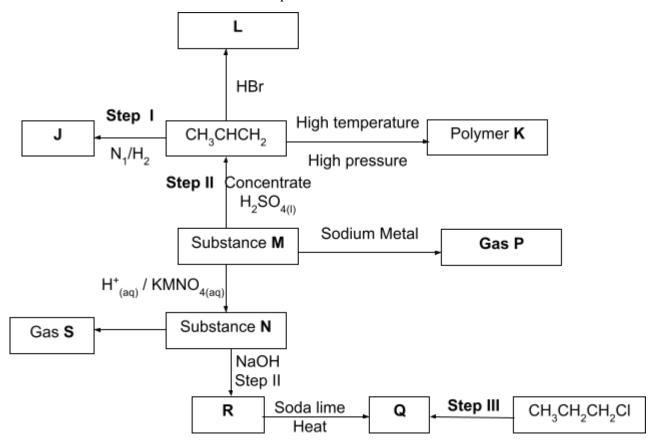
- (i) Name another source of hydrogen apart from electrolysis of water
- (ii) What conditions are necessary for **step III** to occur?
- (iii) Write the equation for the formation of colourless gas **Q**
- (iv) Give **one** use of nitric (V) acid

23.

- (b) State and explain the observations that would be made if a sample of copper metal is heated with concentrated nitric (V) acid
- 24. (a) Give the systematic names of the following compounds:-

(i)
$$CH_2 = C - CH_3$$
Br

- (ii) $CH_3CH_2CH_2C \equiv CH$
- (b) State the observations made when buton-l-ol reacts with:-
 - (i) Acidified potassium dichromate (VI) solution
 - (ii) Potassium metal
- (c) Ethanol obtained from glucose can be converted to ethene as shown below:-


$$C_6H_{12}O_6$$
 Step I C_2H_5OH Step II $CH_2 = CH_2$

Name and describe the processes that take place in steps I and II

- (d) Compounds **A** and **B** have the same molecular formula $C_3H_6O_2$. Compound **A** librates Carbon (IV) Oxide on addition of aqueous sodium carbonate while compound **B** does not. Compound **B** has a sweet smell. Draw the possible structures of:-
- (e) Give **two** ways how the disposal of polymers such as polychloroethene by burning pollutes

the environment

25. (a) Name the following compounds (CH₃)₃ C CH₂ CH₂ CH₃ Use the flow chart below to answer the questions that follow:-

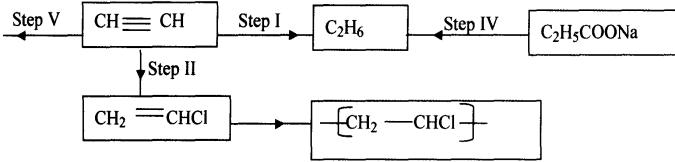
(b) (i) Name the following:-	
I. Gas S	()
II. Gas P	
III. J	
(ii) Name the processes involved in the following steps:	
I. Step I	
II. Step II	
III. Step III	
(iii) Write a chemical equation for the complete combustion of substance M	
(iv) Name the condition and reagent in step III	
Condition	
Reagent	

- (v) Calculate the mass of salt **R** that would be formed by using 21.9 tonnes of **N** when it reacts with excess sodium hydroxide (C=12.0 H=1.0 Na=23)
- (vi) Draw the structure of polymer **K**
- II. State one use of the above polymer

- (c) (i) Name the class to which the following cleansing agents belong:-
- i) R - COONa+

26. The molecular formula of a hydrocarbon is C_6H_{14} . The hydrocarbon can be converted into two other hydrocarbon as shown by the equation below:

$$C_6H_{14}$$
 ______C₂ $H_6 + X$


- (i) Name and draw the possible structural formula of X
- (ii) State and explain the observations that would be made if a few drops of bromine water were added to a sample of **X**
- (iii) Write an equation for the complete combustion of C₃H₈
- 27. (a) Give the names of the following
 - (i) CH₃CH₂CH₃
 - (ii) CH₃CCCH₃
 - (b) Ethene is used in making polyethene bag in a process called polymerization
 - (i) Name the type of polymer that is formed when ethane polymerise
 - (ii) Describe a simple chemical test that can be used to identify ethane gas in the laboratory
 - (c) Study the information in the table below and answer the questions that follow:-

No. of carbon atoms	R.M.M of the Hydrocarbon
2	28
3	42
4	56

- i. Write the general formula of the hydrocarbons in the table above
- ii. Determine the molecular of a hydrocarbon with 5 carbon atoms and draw its structural formula

 Molecular formula

 Structural formula
- (d) Study the scheme below and answer the questions that follow

(i) Name the reagents in

Step I
Step II
Step IV

- (ii) Write an equation for the complete combustion of CH ≡CH
- (iii) Give **two** uses of CH₄
- 28. Give the systematic names of the following compounds;

i)
$$CH_3 = C - CH_3$$

$$CH_3$$
ii) $CH_3CH_2CH_2C \equiv CH$

29. Study the data given in the following table and answer the questions that follow. The letters are not the actual symbols of elements.

Element	Number of protons	Melting point	Bpt °C
A	11	98	890
В	12	650	1110
C	13	60	2470
D	14	1410	2360
E	15	442	280
		590	
F	16	113	445
		119	
G	17	-101	-35
Н	18	-189	-186

- (i) State and explain the trend in melting point in A B C
- (ii) Explain why the melting point and boiling points of element **D** is the highest
- (iii) Explain why the element represented by letter **E** has two melting point values
- (iv) Write down the chemical formula between element C and sulphate ions
- (v) Name the chemical family in which **H** belong and state one use of the element
- (vi) What is the nature of the oxide of the elements represented by letters C and F?
- 30. a) The table below gives information about the major constituents of crude oil. Study it and answer the questions that follow:

Constituent	Boiling point °C
Gases	Below 40
Petrol	40-175
Kerosene	175-250
Diesel	250-350
Lubricating oil	350-400
Bitumen	Above 400

- i) Which of the constituents of crude has molecules with the highest number of carbon atoms? Explain
- ii) Name the process you would use to separate a mixture of petrol and diesel and explain how the separation takes place
- iii) Explain why the constituents of crude oil do not have a sharp boiling point
 - iv) Name the gas that is likely to be a constituent of crude oil and write its formula
- b) i) What condition could cause a poisonous gas to be formed when kerosene is burnt. Explain
 - ii) Give **one** use of bitumen
- 31. Study the information in the table below and answer the questions that follow

Number of carbon atoms per molecule	Relative molecular mass of the hydrocarbon
2	28
3	42
4	56

- i) Write the general formula of the hydrocarbons in the table
- ii) Predict the relative atomic mass of the hydrocarbons with 5 carbon atoms
- iii) Determine the relative atomic mass of the hydrocarbon in (ii) above and draw its structural formula (H=1.0, C=12.0)
- 32. Substance " \mathbf{M} " with a general formula C_2 Hy burnt in chlorine gas with a red flame producing a cloud of black specks and colourless gas \mathbf{G} .
 - (a) State the collective name for compounds which 'M' belongs
 - (b) With reason, state the identity of the black specks and colour gas "G".

- 33. 2.63g of a solution of sodium chloride at 20.0° C was reacted with silver nitrate. After filtration, washing and drying, 2.36g of silver chloride was obtained. Determine the solubility of sodium chloride at 20.0° C. (Na=23, Cl= 35.5, Ag = 108)
 - (b) Determine the number of moles of carbon (IV) Oxide gas produced when sodium carbonate reacted with dilute sulphuric (VI) acid (Molar gas volume =24dm³)
- 34. Write down all the isomers of but-z-ene and give their IUPAC names
- 35. (a) A hydrocarbon compound **Z** decolourizes bromine liquid in the presence of light but does not decolourize acidified potassium manganate (VII). Name and draw the structural formula of the eighth member of this homologous series
- 36. (a) What is meant by **isomerism**?
 - (b) Draw and name **two** isomers of Butyne