BANGALORE INSTITUTE OF TECHNOLOGY

K. R. Road, V. V. Puram, Bengaluru - 560 004

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE OBJECTIVES AND OUTCOMES 2020-24

Course Title: Automata Theory & Computability Course Code: 18CS54

Number of Contact Hours/Week: 03 Exam Hours: 03

Total Number of Contact Hours.: 40 Exam Marks: 60

Prerequisites

1. Data Structures and Applications (18CS32)

2. Discrete Mathematical Structures (18CS36)

Course Learning Objectives

This course will enable students to

CLO1: Introduce core concepts in Automata and Theory of Computation.

CLO2: Identify different Formal Language Classes and their Relationships.

CLO3: Build Grammars and Recognizers for different formal languages.

CLO4: Prove or disprove theorems in automata theory using their properties.

CLO5: Determine the decidability and intractability of Computational problems.

Course Outcomes

The students should be able to

CO1: Acquire fundamental understanding of the core concepts in automata theory and Theory of Computation.

CO2: Learn how to translate between different models of Computation. (e.g., Deterministic and Non-deterministic and Software models).

CO3: Build Grammars and Automata (recognizers) for different language classes and become knowledgeable about restricted models of Computation (Regular, Context Free) and their relative powers.

CO4: Develop skills in formal reasoning and reduction of a problem to a formal model, with an emphasis on semantic precision and conciseness.

CO5: Classify a problem with respect to different models of Computation.

CO-PO-PSO MAPPING

	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
CO1	2	1												
CO2	1	2			3								2	1
СОЗ			3		3							1	2	1
CO4		3										1		
CO5		3										1		

CO-PO MAPPING WITH JUSTIFICATION

CO-1 O M	AIII	IG WII	11 J	USTIFICATION			
	CO 1	PO1	2	Apply the knowledge of Mathematics to understand the			
				fundamentals of Automata Theory & Computation.			
		PO2		The knowledge of Mathematical Principles help the			
			1	students to apply the same to identify and analyze the			
				engineering problems.			
	CO ₂	PO1	1	Apply the fundamental knowledge of Mathematics to			
				follow the procedures to translate between different			
				models of computation such as NDFSM to DFSM.			
		PO2	2	Enable's to analyse the requirement to verify/check to			
				the advantage of translating from one model to another			
				i.e. NDFSM to DFSM.			
		PO5	3	Able to illustrate Software Models to translate between			
				different models of computation.			
	CO 3	PO3	3	Able to build grammars and automata for different			
				models of computation such as Language Recognizers,			
18CS5				Communication Protocols and so on.			
4		PO5	3	Able to exhibit Simulators such as JFLAP to build			
				grammars and automata for different models of			
				computation.			
			1	Constant learning will help to build different types of			
		2		models for complex real world problems.			
	CO 4	PO2	3	Enables to analyze the problems before starting the			
				formal reasons such as to prove and disprove theorems			
				in automata theory.			
		PO1	1	Constant learning will help to state new theorems for			
		2		automata theory.			
				Enables to identify a problem with respect to different			
		PO2	3	models of computation in automata theory based on			
	knowledge acquired in the course.						

5

PO1		Constant learning will help to classify complex real
2	1	world problems with respect to different models of
		computation.

CO-PSO MAPPING WITH JUSTIFICATION

	CO2	PSO1	2	Graduates of the program will have the ability to translate between different models of computation which						
				can be used in various applications such as Web						
				Applications, Lexical Analyser and so on.						
		PSO2	1	Graduates of the program will have the ability to take up						
18CS54				research or higher studies in Machine Learning, Artificial						
				Intelligence and so on.						
	CO3	PSO1	2	Building of different models of automata enables						
				graduates of the program to employable in IT industry.						
		PSO2	1	Graduates of the program will have the ability to take up						
				research or higher studies in Machine Learning, Artificial						
				Intelligence and so on.						

Faculty In-charges

Course Coordinator Module Coordinator IQAC Programme Coordinator