

Treasury Proposal: Polkadot Virtual Machine (PVM)
Formal Specification Development
Proponent: 16MHmxX3ZFB1oWboA4XxMTowkSnKH3dKuesQx7oEv7otsLBo
Date: 13.08.2024
Requested DOT: 371,875 USD | 371,875 USDC
Short description: Develop a formal semantics of PVM (Polkadot Virtual Machine) using
the K Framework, ensuring robust verification and conformance testing for Polkadot developers.
Project Category/Type: Network Security
Previous treasury proposals: 2024-04-23-Polkadot-Treasury-KMIR

1.​ Context of the proposal

JAM and PVM

The Join-Accumulate Machine (JAM), described in the Gray Paper, integrates the robust,
scalable architecture of Polkadot with Ethereum-like smart contract functionality, creating
a hybrid, decentralized, and trustless environment.

PolkaVM (PVM) is a next-generation virtual machine for JAM based on a variant of the
RISC-V RV32EM ISA with some minor modifications to better suit the JAM chain. A JIT
compiler translates PVM directly to x86 for super fast execution, achieving 100x
compilation time speedup over the existing WebAssembly-based approaches with equal
or better execution performance.

Formal Semantics

Currently, there exists one prototype reference implementation of the PVM toolchain, but
no formal specification. We believe that producing such a formal specification is crucial
for ensuring the correctness, reliability, and security of PVM while also encouraging a
diversity of client implementation, with particular value for the JAM bounty program.
Additionally, it will lay the foundation for future developer tools, cross-chain
interoperability, and enhanced governance within the Polkadot network. This
foundational work supports Polkadot's long-term goal of becoming a leading multi-chain
ecosystem, enabling a wide range of decentralized applications and services.

https://docs.google.com/document/d/1oPs1Nx34tyOsOxde-w70tZUxfn5_LSJr6vskX22kIV4/edit
https://polkadot.subscan.io/account/16MHmxX3ZFB1oWboA4XxMTowkSnKH3dKuesQx7oEv7otsLBo
https://kframework.org/
https://jam.web3.foundation/

K Framework

The K Framework offers an environment for defining formal semantics of programming
languages or VMs in a user-friendly, modular, and mathematically rigorous manner.
From a single formal definition, K is able to automatically generate a suite of correct by
construction language tools, including interpreters and formal verifiers. Because of its
language-generic approach, any language formally defined in K can immediately take
advantage of the years of engineering effort put into making these language tools fast,
correct, and approachable. A K definition can then quickly enhance the reliability and
security of software systems, making it particularly valuable for blockchain infrastructure
and smart contracts.

Proposal Overview

This proposal outlines a comprehensive approach to developing KPVM, a formal
semantics of PolkaVM using the K Framework. The engagement is designed to span
approximately 4 months with 2 full time engineers, with possible future work to build
PVM tooling on top of the formal semantics proposed here.

Explicitly, by formalizing PVM in K, we gain several significant advantages which will
increase security and community trust in the Polkadot ecosystem, with immediate value
for the JAM bounty program:

-​ Client Diversity: Formal semantics provide a single source of truth for PVM’s
expected behavior not tied to any particular implementation. This eases the
development of new PVM clients, e.g., in the context of the JAM bounty, by
allowing developers to refer to a precise but high-level semantics rather than deal
with the complexities of a particular reference implementation.

-​ Conformance Testing: With a formal model, and the corresponding reference
interpreter generated from this model, we can conduct thorough conformance
testing of different PVM implementations, such as the PVM-to-x86 toolchain or
again submissions for the JAM bounty, ensuring consistency and reliability
across various platforms.

-​ Developer Tooling: Formal semantics provide a solid foundation for developing
various developer tools, with the K approach automating much of this process.
These tools can significantly enhance the development workflow, making it easier
for developers to write, test, and verify their code.

We at Runtime Verification (RV) are particularly well-equipped to complete this task,
having already successfully applied these techniques to the EVM ecosystem by creating
KEVM, a formal semantics of EVM. Our flagship product, the K Framework, has been

https://jam.web3.foundation/
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8429306

used to successfully analyze and verify software written in a variety of languages
including Solidity/EVM, Wasm, Michelson, and more, and our existing semantics for
RISC-V RV32EM will enable the rapid development of KPVM. In the past, we have used
similar formal semantics to develop tooling including

-​ Debuggers: Tools that allow developers to step through code execution to
identify and fix bugs.

-​ Property Testing Tools: Automated tools that generate test cases to verify that
the software adheres to its specifications.

-​ Symbolic Execution Frameworks: Tools that analyze the behavior of the
software across all possible inputs to ensure correctness and security.

We envision future proposals to develop such tooling based on KPVM.

Additionally, we are in close contact with Parity and the developers of PVM, and after our
discussions, Parity encouraged RV to apply to the Polkadot treasury to proceed with this
formal specification development. We have expertise in both formal verification and
blockchain systems, and RV has completed dozens of blockchain audits both inside and
outside of Polkadot and verified several blockchain consensus protocols.

2.​ Problem statement
With an increasingly digitized world, software correctness has never been of greater
importance. For blockchain applications in particular, with their massively distributed,
permissionless nature and intermingling of financial systems and software, absolute
correctness is crucial. As has been repeatedly demonstrated by numerous exploits,
traditional testing techniques and ad-hoc implementations are not sufficient to ensure the
security of these ever-growing and subtly complex software systems.

Instead, we must take a more principled approach - precisely and formally defining the
intended behavior of our programs, and developing approachable and user-friendly tools
and techniques to ensure our programs actually conform to this intended behavior.

Currently, PVM lacks such a formal specification, posing risks in terms of undetected
bugs and vulnerabilities, and hindering the development of new PVM implementations.
The K Framework provides a perfect environment to address this - allowing precise and
executable formal definitions, and providing a well-tested approach to developing tooling
on top of this definition. We believe creating a formal semantics of PVM using the K
Framework will play an essential role in achieving the required level of correctness,
security, and reliability for software systems on the Polkadot ecosystem.

3.​ Proposal objective(s) or solution(s)

Executive Summary

The objective of this proposal is to develop a formal semantics of PVM using the K
Framework. By creating such a formal model, we aim to validate PVM's operations,
provide a single source of truth for PVM’s behavior as a reference for client
implementers, and pave the road for a future suite of development tools, such as
debuggers and property testing frameworks and formal verification tools, enhancing the
reliability and efficiency of the Polkadot ecosystem.

Concretely, the following are the objectives of the proposal:

1.​ Establish a comprehensive PVM test suite: Establish a suite of tests capturing the

expected behavior of the PVM. These tests will help ensure the accuracy of the

developed formal semantics, the existing PVM-to-x86 toolchain, as well as

submissions to the JAM bounty program.

2.​ Develop a formal semantics of PVM in K: Create a precise, formal model of PVM

using the K Framework, helping to ensure PVMs security and reliability, acting as a

reference for PVM implementers, and laying a principled foundation for future tooling

development.

3.​ Provide a human-readable version of the semantics for PVM documentation:

Provide an accessible, in-browser formal specification of PVM based on the K

semantics, bolstering the PVM documentation analogous to the KEVM Jello Paper.

4.​ Fuzz the PVM-to-x86 Toolchain against the KPVM reference, analyzing both

correctness and performance: Ensure that the PVM-to-x86 toolchain conforms to

the KPVM semantics by comparing on randomly generating programs and resolving

any discrepancies. Additionally, analyze any unexpected execution performance for

particular inputs, e.g., JIT bombs, further increasing confidence in both

implementations.

5.​ Do a time-boxed development of a full-client in Rust using KPVM for execution:

Develop an initial full-client implementation on top of the KPVM reference to provide

an additional reference for the JAM chain.

https://jellopaper.org/

Follow-up Questions

Q: Why is the tool named KPVM?

A: The name comes from two sources: the K Framework and PVM (Polkadot Virtual Machine).
KPVM represents the formal semantics of PVM expressed in the K framework.

Q: How does KPVM integrate with PVM?

A: KPVM involves creating a formal, executable model of PVM using the K framework. This
model helps in understanding and verifying the behavior of PVM, ensuring that it adheres to its
specifications.

Q: Why focus on formal semantics for PVM?

A: Formal semantics provide a mathematically rigorous way to define and verify the behavior of
PVM, ensuring correctness, security, and reliability. This is crucial for building trust in the VM
and the applications running on it.

Q: What makes the K Framework uniquely suitable for this task?

A: The K Framework allows for the precise definition of programming languages and VMs.
Unlike other approaches, the formal K specification can be executed directly, and automatically
generates interpreters, compilers, and verifiers from a single source truth. This ensures a small
trust base, improving correctness and as well as the ease of future extension or modification.

Q: How will this project benefit the Polkadot ecosystem?

A: By developing KPVM, we enhance the security and reliability of PVM, providing tools for
conformance testing, formal verification, and debugging. This strengthens the overall
infrastructure and trust in Polkadot-based applications.

Project Team Members

Engineering Team:

1.​ Scott Guest, Formal Verification Engineer, FTE
Scott Guest is a compiler engineer with a broad interest in programming languages and
formal verification. He is passionate about both theory and practical implementation, with
experience that ranges from formalizing pattern matching semantics for the live
functional programming language Hazel to implementing compiler optimizations in a
widely-used MATLAB to C++ code generator. Scott received his B.S. in Mathematics and
B.S. in Computer Science from the University of Michigan. Outside of work, he enjoys
cooking plants, flying in wind tunnels, and jumping out of planes.

2.​ Georgy Lukyanov, Formal Verification Engineer, FTE

Georgy Lukyanov has extensive expertise in the design and implementation of formal
verification tools, and applying these tools to real systems at scale. Georgy holds a PhD
in Computer Engineering from Newcastle University, UK, where he worked on a
symbolic execution engine for a custom instruction set architecture for space satellites.
At Runtime Verification, Georgy works on the K Framework, both as one of the
developers of K’s symbolic execution backend and as a semantics engineer. In his free
time, Georgy enjoys playing guitar, spending time outdoors, and reading science fiction.

Project Management & Advisory team:

1.​ Yale Vinson, Project Manager
Yale Vinson has spent over fifteen years working in the FinTech industry building digital
financial services products. Ranging from SIM based payments to tokenized payments,
digital gift cards, and peer to peer transactions, he has focused on delivering secure
digital financial products that put the needs of consumers first. Most recently, Yale
worked on products which enabled crypto for the masses at Diebold Nixdorf and
MoneyGram. Yale has a B.S. and an M.S. in Electrical Engineering from Texas A&M
University.

2.​ Everett Hildenbrandt, Technical Advisor
Everett Hildenbrandt is a formal modeling engineer and CTO at RV. His interests include
automated system analysis via symbolic model checking, rigorous software development
via carefully designed development practices, and applying these techniques to the
software used in the other sciences (eg. physics, biology). He strongly believes that
programming languages and system description languages should not be put together in

https://runtimeverification.com/team#scott-guest
https://runtimeverification.com/team#georgy-lukyanov
https://runtimeverification.com/team#yale-vinson
https://runtimeverification.com/team#everett-hildenbrandt

an ad-hoc manner, rather they should be carefully designed using state of the art
language-building tools.

3.​ Gregory Makodzeba, Business Development Coordinator
​ Gregory brings a unique combination of technical education and business-related

blockchain expertise. With prior education in Aviation Management from Georgian
College and a Bachelors in Computer Science from the National Technical University of
Ukraine ‘Kyiv Polytechnic Institute’, Gregory has built a robust foundation in both
analytical and engineering disciplines. His entrepreneurial spirit is evidenced by his
co-founding role at Rektoff, a community-driven cybersecurity R&D company
specializing in Web3 security solutions, where he excelled in forging strategic
partnerships and spearheading innovative security strategies. Beyond his business
acumen, Gregory has actively contributed to the blockchain community as a mentor at
ETHGlobal Waterloo and ETHToronto, guiding participants through the complexities of
web3 development and security. At Runtime Verification, Gregory is leveraging his
comprehensive background to enhance business strategy, and client engagement and
drive the adoption of secure, reliable decentralized applications.

https://runtimeverification.com/team#gregory-makodzeba

Milestones

Here we provide high-level proposal milestones; see appendix for full details.

Technical Milestones

1.​ Map Implementation to Specification (2 FTEs, 3 weeks): Investigate the

existing PVM implementation to record the intended semantics of PVM,

producing a high-level plan for the architecture of KPVM.

2.​ Collect PVM Test Cases and Setup CI (2 FTE, 2 weeks): Establish a

comprehensive suite of test cases for PVM and set up continuous integration (CI)

to automate testing.

3.​ Develop KPVM Syntax and Semantics (2 FTE, 4 weeks): Create a formal

model of PVM using the K Framework, ensuring a precise and executable

representation of its operations.

4.​ Pass All Tests in the Selected Test Cases (2 FTE, 2 weeks): Ensure the

developed semantics correctly handle all identified test cases, validating PVM's

reliability.

5.​ Develop In-Browser Formal Specification for Integration into Official

Documentation (2 FTE, 1 week): Provide an accessible formal specification of

PVM integrated within its official documentation.

6.​ Fuzz Testing Between PVM-to-x86 Toolchain and KPVM (1 FTE, 5 weeks):

Verify conformance between KPVM and the PVM-to-x86 toolchain using fuzzing

techniques to identify and resolve discrepancies, both in terms of results and

unexpected execution performance (JIT bombs).

7.​ Develop time-boxed full-client implementation in Rust using KPVM for

execution (1 FTE, 5 weeks): Develop an initial full JAM-client implementation

which uses the KPVM reference for PVM execution.

Project Management & Advisory Milestones:

1.​ Project Management & Advisory Oversight (1 PM, 1 Technical Advisor, 1 BD
Coordinator - 17 weeks - Part-time):
​

Managing the project timeline, resources, and deliverables to ensure everything
stays on track. This includes holding strategic planning sessions, maintaining
high standards of quality and ensuring the deliverables meet the expected
performance metrics.

Timelines

Our expected timeline is roughly 4 months (17 weeks) with 2 full-time engineers (FTE), a
project manager, a technical advisor and some help from an busi/marketing coordinator.
Note that, given the large time frame, it’s possible that at some point during the project,
some engineers will need time off. Where possible, we will assign backup personnel to
avoid any impact on the overall schedule.

Budgets

We are billing at the following rates:

-​ Full-time employees: $25k/person-month
-​ Part-time employees: $12.5k/person-month

For 2 full-time engineers, 1 part-time project manager, 1 part-time technical advisor and
business development coordinator, we are asking for 371,875 USD.

Technical Milestones

1.​ Map Implementation to Specification (2 FTEs, 3 weeks):
○​ Cost: $37,500

2.​ Collect PVM Test Cases and Setup CI (2 FTEs, 2 weeks):
○​ Cost: $25,000

3.​ Develop KPVM Syntax and Semantics (2 FTEs, 4 weeks):
○​ Cost: $50,000

4.​ Pass All Tests in the Selected Test Cases (2 FTEs, 2 weeks):
○​ Cost: $25,000

5.​ Develop In-Browser Formal Specification for Integration into Official
Documentation (2 FTEs, 1 week):

○​ Cost: $12,500
6.​ Fuzz Testing Between PVM-to-x86 Toolchain and KPVM (1 FTE, 5 weeks):

○​ Cost: $31,250
7.​ Develop time-boxed full-client implementation in Rust using KPVM for execution

(1 FTE, 5 weeks):
○​ Cost: $31,250

Project Management & Advisory Oversight (1 PM, 1 Technical Advisor, 1 BD Coordinator -
17 weeks - Part-time):

●​ Cost: $159,375

Total: $371,875

4.​ Proposal report
Accountability is an important part of the grant process.

For that reason, each task in our milestones table has an accompanying code or
documentation artifact. We will consider the task complete when that artifact is available
in our GitHub project repository.

As we complete milestones, we will update the community on our progress via forum
posts on Polkassembly or Subsquare with links to any related deliverables. When the
project completes, we will prepare a final report documenting our progress using this
recommended report template.

5.​ Payment conditions
This submission represents a unified treasury proposal (i.e., one Treasury proposal that
represents all milestones). We are requesting 371,875 USD or 371,875 USDC in total
funds to be delivered to Polkadot address:
16MHmxX3ZFB1oWboA4XxMTowkSnKH3dKuesQx7oEv7otsLBo

The proposer Polkadot account is
16MHmxX3ZFB1oWboA4XxMTowkSnKH3dKuesQx7oEv7otsLBo.

The project has the following representatives available on Polkadot Direction:

-​ Everett Hildenbrandt: @ehildenb:matrix.org
-​ Gregory Makodzeba: @hyperstructured.greg:matrix.org

6.​ Comments, Qs&As

At this time, there have not been any public questions or comments.

7.​ Why Polkadot Network?

Polkadot is a thriving blockchain community, and we are excited to be a part!

8.​ We'd love to hear about how you got to know about the Polkadot
on-chain treasury.
Previously, we were encouraged by Web3 Foundation to apply for a Polkadot Treasury
grant for our previous KMIR proposal. For the KPVM work in this proposal, we were
encouraged to apply during previous discussions with Parity.

https://polkadot.polkassembly.io/opengov
https://polkadot.subsquare.io/discussions
https://docs.google.com/document/d/1PNCWkF4SXHqQu23Vs0yYMfo5g_rgIvli3Qkav8wfRHw/edit
https://polkadot.subscan.io/account/16MHmxX3ZFB1oWboA4XxMTowkSnKH3dKuesQx7oEv7otsLBo
https://polkadot.subscan.io/account/16MHmxX3ZFB1oWboA4XxMTowkSnKH3dKuesQx7oEv7otsLBo
https://matrix.to/#/#Polkadot-Direction:parity.io

Appendix: Milestones and References

1.​ Milestones

Technical milestones

Milestones Tasks Deliverables Notes

T1
Map
Implementation
to Specification

T1.1
Investigate the existing PVM
reference implementation to
determine the intended
semantics

Small document informally describing
the semantics of PVM

The deliverable is intended to aid the rest of KPVM
development rather than be documentation for public
consumption.

T1.2​
Architect a high-level outline of
the KPVM semantics

Description of high-level module
structure of KPVM semantics

We have an existing RV32EM semantics, so we will
also determine whether to fork or directly embed this
semantics to model PVM.

T2
Establish PVM
Test Suite

T2.1
Collect and develop PVM test
cases

A suite of PVM input test files and
expected results

T2.2
Set up CI

Bare-bones KPVM repository which
executes the full test-suite on CI

T3
Develop KPVM
Syntax and
Semantics

T3.1
Implement K syntax definitions
for human-readable PVM
assembly

Working K parser for human-readable
PVM assembly

T3.2​
Define PVM execution
semantics in K

K definitions with rules to evaluate each
PVM instruction

T4
Pass All Tests
in the Selected
Test Cases

T4.1
Pass all tests in the test suite
from T2, resolving any failing
tests.

CI results that show the full test suite
passing

T5
In-Browser
Formal
Specification

F5.1​
Add explanatory
documentation to KPVM
semantics

Updated K semantics files as literate
Markdown with interspersed
documentation

F5.2
Integrate documented
semantics into user-friendly
webpage

Web page for KPVM analogous to the
KEVM Jello Paper

T6
Fuzz Testing
PVM-to-x86
Toolchain and
KPVM

T6.1
Allocate machine with
containerized environment to
execute both PVM-to-x86 and
KPVM

Container able to execute and compare
test suite results between PVM-to-x86
and KPVM

T6.2
Build fuzzing tool to generate
random PVM programs

Tool which generates random PVM
programs

T6.3
Fuzz test the conformance of
the PVM-to-x86
implementation

Document analyzing any discrepancies
discovered through fuzzing, as well as
any unexpected execution

One machine to run continuous fuzzing for one
month. Done in parallel with the work on T7.

https://jellopaper.org/

T7
Time-boxed
full-client
implementation

T7.1
Develop an initial full-client
implementation of JAM using
KPVM for execution

Time-boxed implementation The implementation here is time-boxed, and done in
parallel with the work on T6 with separate engineers
assigned to each task.

Project Management & Advisory Milestones

Milestones Tasks Deliverables Notes

P1

P1.1 Establish and maintain
project governance frameworks

Comprehensive project management
plan

P1.2 Conduct regular advisory
and strategic planning sessions

Minutes and action items from meetings

P1.3 Quality assurance and
control procedures
implementation

QA reports and improvement logs

A1

A1.1 Conduct technical reviews
of project deliverables​

Detailed technical review reports

A1.2 Provide expertise on
advanced technical issues

Recommendations report for technology
and architecture

A1.3 Assist in technology
selection and architectural
decisions

Training materials and session
recordings

	Treasury Proposal: Polkadot Virtual Machine (PVM) Formal Specification Development
	Proponent: 16MHmxX3ZFB1oWboA4XxMTowkSnKH3dKuesQx7oEv7otsLBo
	1.​Context of the proposal
	2.​Problem statement
	3.​Proposal objective(s) or solution(s)
	2.​Georgy Lukyanov, Formal Verification Engineer, FTE
	2.​Everett Hildenbrandt, Technical Advisor

	4.​Proposal report
	5.​Payment conditions
	6.​Comments, Qs&As
	7.​Why Polkadot Network?
	8.​We'd love to hear about how you got to know about the Polkadot on-chain treasury.
	Appendix: Milestones and References
	1.​Milestones

