Speeding up Incremental Transfer
Patch Generation [external]

Author: Garret Rieger
Date: Oct. 18th, 2022

Introduction

In incremental font transfer a request for a patch is satisfied roughly by:
1. Compute a subset of the font that matches what the client currently has. (base
subset)
2. Compute a subset of the font that matches the state the client wishes to be in.
(derived subset)
3. Compute a patch/binary diff between the two subsets using shared brotli.

The simplest implementation of patch generation in step 3 is to use the generic brotli
encoder with the base subset set as a custom dictionary. Experiments on encoding the with
brotli have shown that the encoding time is roughly proportional to the size of the custom
dictionary:

Patch Generation times using Generic Brotli Encoder (Quality 5)

150

100

ms/request

50

2,000 4,000 6,000 8,000 10,000

Base Subset Size (codepoints)

For large bases, brotli encoding times are over 100ms which is too slow for dynamic usage.
This document discusses and experiments with a couple of ideas for improving the speed of
step 3:
1. What are the performance vs size tradeoffs for the different brotli quality levels when
using for patch generation?


https://w3c.github.io/IFT/Overview.html
https://datatracker.ietf.org/doc/html/draft-vandevenne-shared-brotli-format-08

2. How a custom brotli encoder, that is more aware of the incremental font transfer use
case, can be used to:
a. Cache pre-compressed data.
b. Provide guidance to the brotli encoder to further speed up patch generation.

There has been some prior research that is relevant: Fast and efficient recompression using
previous compression artifacts

Conclusions

The experiments found:

1. For dynamic usage brotli quality 5 offers a good tradeoff between encoding time and
encoded size.

2. Precompressing immutable tables is a viable approach and can be used to speed up
the generation of the initial response.

3. A custom brotli encoder that is aware of the font format provides massive speedups
in patch generation times, particularly with large bases (in one case times were
reduced from 130ms to 3.6ms).

Effect of Brotli Quality

The easiest way to improve performance of the patch generation is to tune the brotli encoder
quality level. This trades off increased compressed size in exchange for faster compression
times.

To better understand how brotli quality effects the encoding time vs size tradeoff | tested
encoding of a 750 codepoint japanese font across varying levels of quality:


https://dev.to/riknelix/fast-and-efficient-recompression-using-previous-compression-artifacts-47g5
https://dev.to/riknelix/fast-and-efficient-recompression-using-previous-compression-artifacts-47g5
https://docs.google.com/document/d/1immo-Ueadn1S1RSG-mv3yIWI3iLIySCkvm67F9SBU9A/edit

encoding size vs speed (varying brotli quality 0-9)
57,000
0
55,000

53,000

51,000

patch size (b)

49,000

47,000

45,000

patch time (ms)

From this it appears that brotli quality 5 is a sweet spot where further quality increases yield
only marginal gains while still increasing overall encoding time.

Custom Encoder

The incremental font specification only calls for the produced patch to be a valid brotli
stream. This leaves room for a custom encoder to be built that improves performance in this
particular use case vs the existing general purpose brotli encoder.

Broadly there are two techniques which could be used to speed up patch generation:
1. Precompress portions of the font and cache them. Re-use these precompressed
chunks to generate the final patch.
2. Use knowledge of the font format and patch use case to guide the encoder, for
example:

a. Instructing the encoder which segments of the font are unchanged to allow for
fast backwards reference encoding.

b. Instructing the encoder which parts of the shared dictionary are relevant. For
example when encoding a table, only consider the equivalent table in the
shared dictionary for use in generating backwards references.

c. Instructing the encoder when tables (or portions of tables) are significantly
different and to encode without considering the shared dictionary.

Brotli Concepts

Brotli File Organization

For a more complete overview see: Compressed Representation Overview



https://github.com/google/brotli
https://datatracker.ietf.org/doc/html/rfc7932#section-2

At a high level a brotli file consists of a header (specifies window length) followed by one or
more “meta-blocks”. Each meta-block uncompresses to 0 - 16mb of data.

Data in brotli is compressed using two main methods:
1. LZ77 style compression that uses back references (ie. copy data seen previously in
the uncompressed stream into the output).
2. Prefix encoding.

A meta-block is semi-indepedent of other meta-blocks. Prefix encoding is fully self
contained, but meta-blocks can have backwards references to data from a previous
meta-block.

Static/Shared Dictionary

Standard brotli has a static dictionary that is predefined by the specification. Backwards
references that exceed the current window are interpreted to be references into that static
dictionary.

Shared brotli adds a shared dictionary in addition to the static dictionary with a dictionary file
that can be provided to the encoder/decoder. Backwards references outside of the window
refer to this file.

Making Meta-Block Independent

By default meta-blocks are not fully independent from each other, however with a few small
encoding behaviour changes they can be made to be fully independent. The specification
specifically documents how this is done: Creating Self-Contained Parts within the
Compressed Data

Notably a self-contained meta-block:

Must use the same window length as the other meta-blocks in the stream.
Cannot reference data from a previous metablock.

Cannot reference the static or shared dictionary.

Should probably be byte aligned following: Aligning Compressed Meta-Blocks to Byte
Boundaries to allow for easy concatenation.

Incorporating a Custom Encoder

A custom encoder can be easily incorporated via the concatenation of independent
meta-blocks. Where existing encoder behaviour is desired the existing encoder
implementation can be used to produce the meta-blocks and where custom behaviour is
needed meta-blocks can be produced by an alternate encoder and concatenated into the
stream.


https://datatracker.ietf.org/doc/html/draft-vandevenne-shared-brotli-format-08#section-3.2
https://datatracker.ietf.org/doc/html/rfc7932#section-11.3
https://datatracker.ietf.org/doc/html/rfc7932#section-11.3
https://datatracker.ietf.org/doc/html/rfc7932#section-11.2
https://datatracker.ietf.org/doc/html/rfc7932#section-11.2

Case 1: Initial Request

To speed up the initial request we should find ways to precompress and cache portions of
the font. Parts of the font which don’t change with respect to the subset definition could be
compressed into self-contained meta-blocks which could be cached and re-used when
assembling the fully compressed subset. A more detailed algorithm follows:

Offline setup:
e Divide the tables of the font into two categories:
a. Immutable: these tables don’t change when the subset definition is changed.
Note that some table which would normally change with the subset can be
made immutable if retain gids is set and the table is added to the subsetter’s
passthrough list. For example GSUB/GPOS and COLRv1 may benefit from
being immutable in certain cases where the offset based nature of the table
render them difficult to patch efficiently.
b. Mutable: these tables do change when the subset definition is changed.
e Re-order the tables in the font. Place all the mutable tables first and the immutable
tables last.
e Compress, at the highest quality, the immutable segment into a collection of
self-contained meta-blocks, and cache the resulting stream of meta-blocks.

At request time:
1. Compute the font subset, dropping all immutable tables.
2. Using the computed subset and the list of immutable tables from the original font
compute a new table directory. Start a brotli stream and add the table directory to it.
3. Dynamically compress the tables from the subset result into the brotli stream.
4. Lastly, append the precompressed immutable segment to the stream and mark the
last metablock as the last.

Caching Glyph Blocks

For most fonts glyph data makes up the bulk of the font file. So if we can find a way to
precompress the glyph data that should yield significant performance improvements.
Precompressing glyph data should be possible by dividing the glyph set into blocks:

Offline setup:
e Divide the glyphs into sets that are commonly needed together.
e Re-order the glyphs in the font such that grouped glyphs are sequential.
e Compress and cache each glyph block into a self contained meta-block.

At request time:
e Identify the set of glyph blocks that overlap the users requested subset.
e Assemble the glyf/CFF table using the cached precompressed blocks.
e Glyph data that fall outside of these glyph blocks can still be added dynamically (eg.
in the case where only a small number of glyphs are needed from a block, then you
could choose to dynamically generate instead of using the block).


https://datatracker.ietf.org/doc/html/rfc7932#section-11.2

Results

In this experiment a 250 codepoint subset of Roboto was compressed with brotli in two
ways:
1. The layout tables (GSUB, GPOS, GDEF) were made immutable and precompressed
at quality 11. The remaining portions where compressed at a varying quality level.

2. The layout tables were left mutable and the entire subset was compressed at varying
quality levels.

Patch Size vs Brotli Quality

== precompess (b) == standard (b)

40,000
_-—-ﬁ-_._'——-—_
30,000 L
a
8 —_—
n ——
B 20,000
@
2
o
E
8 10,000
0
0 2 4 6 8
Brotli Quality
Request Time vs Brotli Quality
== precompress (ms/req) == standard (ms/req)
4
3
®
(<]
> 2
2
@
E
1
0
0 2 4 6 8

Brotli Quality



From these results we can see that precompressing reduces encoding times as expected,
as a tradeoff patch size is increased since the entire layout table is being included in the
precompressed case.

In the precompressed case future patches will be smaller due to not having to patch against
the layout tables:

Patch Size vs Brotli Quality (Roboto: 250 codepoint base + 250
codepoint)

== precompress (b) == standard (b)

60,000
s

5 40,000
N
w
o
[F}
?
o

5 20,000
[=}
&

0

0 2 4 6 8

Brotli Quality

Case 2: Patch Request

The caching of glyph blocks from the previous section can also be used in the generation of
patch responses. The process is the same, identify the set of new glyphs and then choose
precompressed blocks to be added to the subset. Compile the final brotli stream as a
concatenation of dynamically generated and precompressed glyph data.

An additional optimization that may yield performance improvements would be to manually
write out the back references for the known unchanged portions of the font (eg. all of the
glyph data in the clients existing subset) to avoid the encoder having to spend time to figure
them out.

Using these ideas | built a custom brotli font differ. See the design doc for a more detailed
description of how it works. Then the custom encoder was used to generate patches (adding
10 codepoints) against a varying base subset size. First, here is the encoding times using
the generic brotli encoder:


https://github.com/w3c/patch-subset-incxfer/blob/main/brotli/brotli_font_diff.cc
https://docs.google.com/document/d/1immo-Ueadn1S1RSG-mv3yIWI3iLIySCkvm67F9SBU9A/edit?usp=sharing

Patch Generation times using Generic Brotli Encoder (Quality 5)

150

100

ms/request

50

2,000 4,000 6,000 8,000 10,000
Base Subset Size (codepoints)
And here is the encoding times using the custom encoder:

Patch Generation times using Custom Font Diff Encoder (Quality 5)

== glyf (ms/req) == glyf, loca (ms/req) glyf, loca, hmtx, vmtx (ms/req)

ms/request

2,000 4,000 6,000 8,000 10,000

Base Subset Size (codepoints)

The different lines capture the encoding times when custom encoding is used for the
indicated list of tables (all other tables are encoded by the generic brotli encoder).

Here we see a massive speedup in using the custom encoder (from 130ms to 3.6ms at the
largest base size). The downside is that custom generated patches are slightly larger then
patches generated by the generic brotli encoder:



Patch Size vs Base Size (Quality 5)

== glyf (b) == glyf, loca (b) glyf, loca, hmtx, vmtx (b) == generic (b)

10,000

7,500
=)
8

P 5,000
L
Q
©
o

2,500

0

2,000 4,000 6,000 8,000 10,000

Base Subset Size (codepoints)

Experiment Code

The code used in these experiments can be found here.

Future Work

Fast and efficient recompression using previous compression artifacts provides a framework
for using information from a previously compressed version of the original font to speed up

compression of a subset of the original font. It should be possible to incorporate these
techniques into the custom encoder developed here.

In particular we should be able to use a compressed copy of the full font file to identify where
data is shared between data that is new to the derived subset (eg. new glyphs) and data that
exists in the base subset, which is currently not supported in the existing implementation.
This could both further speed up encoding times, and reduce the total patch size.

References
e Fast and efficient recompression using previous compression artifacts
e Brotli RFC
e Shared Brotli RFC
e Shared Brotli Diff Implementation in Incxfer


https://github.com/w3c/patch-subset-incxfer/blob/main/util/precompress-test.cc
https://dev.to/riknelix/fast-and-efficient-recompression-using-previous-compression-artifacts-47g5
https://dev.to/riknelix/fast-and-efficient-recompression-using-previous-compression-artifacts-47g5
https://datatracker.ietf.org/doc/html/rfc7932
https://datatracker.ietf.org/doc/html/draft-vandevenne-shared-brotli-format-08
https://github.com/w3c/patch-subset-incxfer/blob/main/patch_subset/brotli_binary_diff.cc

	Speeding up Incremental Transfer Patch Generation [external] 
	Introduction 
	Conclusions 
	Effect of Brotli Quality 
	Custom Encoder 
	Brotli Concepts 
	Brotli File Organization 
	Static/Shared Dictionary 
	Making Meta-Block Independent 

	Incorporating a Custom Encoder 
	Case 1: Initial Request 
	Caching Glyph Blocks 
	Results 

	Case 2: Patch Request 

	Experiment Code 
	Future Work 
	References 

