Уважаемый студент, выполнение указанных заданий строго обязательно!

Группа ТЭК 1/1 Дата:09.12.2022г.

Дисциплина: ОДП Биология Преподаватель: Воронкова А.А.

Тема 3.2 Закономерности изменчивости

Цель: изучить типы мутаций, сформировать знания о генетике человека; научиться определять различные формы изменчивости, расширить знания обучающихся о формах наследственной изменчивости и определить их практическое значение.

Лекция

План

1. Типы мутаций. Мутагены. Генетика человека.

2. Генетика и медицина. Материальные основы наследственности и изменчивости. Генетика и эволюционная теория. Генетика популяций

Задание: выполнить работу по алгоритму

Алгоритм работы

- 1. изучите материал лекции; § 8(11);видео фрагмент: https://yandex.ru/video/preview/4628262078634732245 https://yandex.ru/video/preview/2891229920587310478
- 2. ответьте на контрольные вопросы в тетради

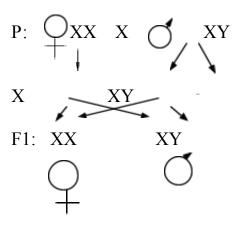
Вспомним!!!

Генетика пола.

Количественное расщепление новорождённых по полу.

Организмы	Женские особи	Мужские особи
Человек	49	51
Лошадь	48	52
КРС	50	50
Овцы	51	49
Собака	44	56
Мыши	50	50
Голуби	50	50

У многих организмов соотношение приблизительно 1:1.


Рассмотрим механизм определения пола с точки зрения генетики. У мужских и женских особей одного вида хромосомы одинаковы по форме, кроме одной пары.

Одинаковые хромосомы у мужских и женских организмов – аутосомы (22 пары у человека; 3 пары у дрозофилы и т.д.)

Одна пара хромосом всегда различна- это половые хромосомы.

Условно обозначаются XuY. Один пол гомозиготный XX (у дрозофилы женский); другой- гетерозиготный XY (у дрозофилы женский).

Механизм определения пола.

Пол организма определяется в момент оплодотворения.

Есть организмы, у которых вообще отсутствует У хромосома, тогда XO (жуки, прямокрылые).

У ряда животных гетерогаметны самки (птицы, бабочки).

Наследование, сцепленное с полом.

В том случае, когда гены расположены в аутосомах, наследование не зависит от того, какой из родителей является носителем изучаемого признака.

Когда признаки определяются генами, лежащими в половых хромосомах, ситуация меняется.

Пример: наследование черепаховой окраски у кошек.

А-чёрная; P: кошка $X^{A}X^{A}$ -чёрная, кот $X^{A}Y$ - чёрный;

 $X^{A}X^{a}$ - черепаховая $X^{a}Y$ – рыжий;

Х^аХ^а- рыжая.

Черепаховых котов не бывает.

У человека также известны признаки, сцепленные с полом.

Пример: гемофилия.

Н - нормальная свёртываемость.

н - гемофилия.

 $P: X^H X^H X X^H Y$

F1: X^HX^H ; X^HY ; X^HX^H ; $\underline{X}^{\underline{H}}\underline{Y}$.

заболевание

Женщина- носитель передаёт половине своих сыновей ген несвёртываемости крови. Все дочери будут иметь нормальную свёртываемость, так как получают ген X^H от отца. Пример: дальтонизм и др.

Хромосомные Соматические

- 1) Генные (точковые) мутации. Возникают при изменении отдельных генов. Изменяется последовательность нуклеотидов в ДНК. Образуются новые аллельные гены. Это приводит к формированию новой последовательности аминокислот при синтезе белковой молекулы, появляются изменения в генотипе организма. Мутации генов происходят очень редко: в среднем 1 на 10000 1000000. Но они способны накапливаться в генотипах. Изменяться могут все гены. Эти изменения могут быть вредными, нейтральными (ген не работает) и полезными (материал для естественного отбора).
- 2) **Хромосомные мутации**. Это перестройка (аберрация) хромосом, в результате которой изменяется их структура. Отдельные участки могут выпадать, удваиваться или перемещаться на другое место. А также межхромосомные перестройки. Чаще всего это происходит под влиянием мутагенов. Этот вид мутаций был изучен русским генетиком С.С.Четвериковым.

Пример: А Б В Г Д Е – нормальный порядок гена

А Б В В Г Д Е – удвоение участка

А Б В Д Е – нехватка участка

А Б Γ В Д E – поворот участка на 180°

А Б В У М К – перемещение участка на негомологичную хромосому

Значение: эволюционное преобразование видов.

3) Геномные мутации. Это мутации, приводящие к изменению числа хромосом. Наиболее распространена полиплоидия.

<u>Полиплоидия</u> — кратное увеличение числа хромосом. Встречается у простейших и растений. Возникает при нарушении расхождения хромосом при делении. Причины: - высокая или низкая температура;

- ионизирующее излучение; мутагены

- химические реагенты.

Возникают организмы с набором хромосом от 3пдо 12п.

Дополнительные примеры мутаций.

- 1) Ген у дрозофилы мутирует раз в 40 тысяч лет, но у неё несколько тысяч генов, поэтому каждая 20 половая клетка несёт мутацию.
- 2) Ежегодно рождается примерно 75 миллионов детей, 1,5- с наследственными болезнями, вызванными мутациями.
- 3) По подсчётам Д.Холдена и А.Дубинина удвоение числа мутаций происходит у человека, если он за 30 лет жизни получит лишние 10 рентген к нормальному фону Земли.
- 4) Случай рождения в Японии, в семье, пережившей ядерный взрыв, девочки, которая в раннем возрасте имела уровень развития 20-ти летней девушки. Однако она скоро умерла, т.к. организм не справился с нагрузкой.

Закон гомологических рядов наследственной изменчивости.

Автором является выдающийся русский биолог и генетик Н.И.Вавилов. Он долгие годы изучал наследственную изменчивость растений семейства злаковых и их диких предков. Генетически близкородственные виды он расположил в определённом порядке в соответствии с вариантами изменчивости. Это позволило обнаружить закономерность.

«Виды и роды генетически близкие, характеризуются сходными рядами наследственной изменчивости. Зная ряд форм в пределах одного вида, можно предвидеть нахождение параллельных форм у других видов и родов».

А также позволяет предсказать, какие мутации должны возникнуть у близкородственных видов. В основе закона лежит явление параллелизма генотипической изменчивости у особей со сходным набором генов. Используется в селекции.

Влияние среды на формирование признака.

Если у горностаевого кролика сбрить шерсть на участке тела, то окраска отросшей шерсти зависит от температуры. При +2 – белая; при более низкой – чёрная.

С течением жизни, они также приобретают чёрную окраску мордочки, лап и хвоста.

Наблюдается зависимость окраски цветов Примулы от температуры окружающей среды и влажности.

Значит: на проявление качественных признаков может влиять окружающая среда.

Методы изучения генетики человека.

На людях невозможны прямые эксперименты, поэтому используется множество косвенных методов.

1. Генеалогический метод.

Изучение родословной помогает установить закономерности наследования различных признаков, в том числе и болезней.

2. Близнецовый метод.

Близнецы составляют примерно 1% новорождённых. Они бывают разнояйцовые (неидентичные) и однояйцовые (идентичные) из одной яйцеклетки. Можно изучать роль среды в формировании генотипа.

3. Цитогенетический метод.

Микроскопическое исследование структуры хромосом у здоровых и больных людей. Это привело к открытию хромосомных болезней, вызванных нарушением числа и формы хромосом.

4. Биохимический метод.

Изучение аномалий, связанных с нарушением обмена веществ.

Генетика и медицина.

Факты наследственных заболеваний.

- А) Фенилкетонурия слабоумие, немота, смерть; рецессивная мутация, вызывающая разрушение ферментативных систем, способствующих переводу фенилаланина в тирозин; ребёнок должен получать пищу, лишённую фенилаланина.
- Б) Диабет аналогичные причины.
- В) Болезнь Дауна трисомия по 21 паре хромосом.
- Г) Трисомия по 18 паре массовые дефекты новорожденных: отсутствие шеи, недоразвитие скелетных мышц, вместо ушей лоскут кожи, короткая продолжительность жизни.

Задача медицины: распознавание уродств на ранних стадиях развития, по возможности, - действовать гормональными препаратами с целью лечения.

Изучение генетики человека – сложный вопрос.

- 1) Человек медленно размножается.
- 2) Даёт малое число потомков.
- 3) Генотипы очень гетерозиготны.
- 4) Социальное существо, неприменимы экспериментальные методы.
- В последнее время медицинская генетика развивается особенно интенсивно. Обнаружено более 100 аномалий, связанных с изменением числа хромосом, их строения. Стало возможным прогнозирование вероятности рождения детей с наследственными заболеваниями. В 1869 году английский антрополог Френсис Гальтон создал учение о наследственном здоровье человека и путях его улучшения, евгенику.

Большое значение имеют медико-генетические консультации. Воздействие на развитие может оказывать:

- резус-фактор крови родителей;
- близкородственные браки;
- вредные привычки;
- состояние окружающей среды.

Контрольные вопросы

- 1. Почему от взрыва атомной бомбы в Хиросиме до сих пор страдают люди?
- 2.Чем отличается внеядерная наследственность от ядерной (менделеевской) наследственности?

- 3. Как вы считаете, почему у родителей, состоящих в близком родстве, велика вероятность рождения детей, пораженных наследственными заболеваниями?
- 4. Каковы возможности лечения наследственных заболеваний?
- 5. Меняются ли гены при лечении наследственных заболеваний?
- 6.На чем основано медико-генетическое консультирование и какие цели оно преследует?
- 7. Как можно объяснить появление белой вороны (альбиноса) среди множества серых?
- 8. Почему человеку нужно жить в экологически чистой среде и вести здоровый образ жизни?
- 9. Как вы понимаете формирование резерва наследственной изменчивости?
- 10. Дальтонизм вызывается рецессивным геном, расположенным в X хромосоме. Определите фенотипы людей, имеющих генотипы:

$$X^{H}Y$$
; $X^{H}X^{H}$; $X^{H}X^{H}$; $X^{H}Y$.

11. Каковы вероятные генотипы и фенотипы детей от брака женщины- носительницы гена дальтонизма и мужчины с нормальным цветовым зрением?

Для максимальной оценки задание нужно прислать до 15.00 ч. 09.12.2022г. Выполненную работу необходимо сфотографировать и отправить на почтовый ящик <u>voronkova20.88@gmail.com</u>, <u>Александра Александровна (vk.com)</u>, добавляемся в <u>Блог преподавателя Воронковой А.А. (vk.com)</u> -здесь будут размещены видео материалы

-ОБЯЗАТЕЛЬНО ПОДПИСЫВАЕМ РАБОТУ НА ПОЛЯХ + в сообщении указываем дату/группу/ФИО

Основная литература:

Беляев, Д. К. Биология. 11 класс [Текст] : учебник для общеобразоват. организаций: базовый уровень / [Д. К. Беляев, Г. М. Дымшиц, Л. Н. Кузнецова и др.]; под ред. Д. К.Беляева, Г. М. Дымшица. – 3-е изд. – Москва : Просвещение, 2016. - 223 с.