
Problem A: Hexagonal Packing

With some observation, it’s obvious that the hexagonal structure will touch the circumference of
the circle to maximize the utilized area. Let, the side length of a hexagon be a. Then, we can
say, a2+ 3(2n-1)2a2 = 4r2. Solving this equation we get a. Now, all we need to do is print the area
of a regular hexagon with side length equal to a.

You may also use binary search.

Problem B: Game of Rocks

This problem is a variant of the “Maximum sum rectangle in 2D matrix” problem.

Let's convert every rock in the grid into a and every empty cell into a . Now, we need to find0 1
the maximum perimeter of a rectangle enclosed by 's.0

We pre-calculate the prefix sum of each row and each column.

Now, a possible naive solution is to choose a top-left and a bottom-right corner for a rectangle

and check if it satisfies our conditions. It has a complexity, obviously too slow for this𝑂(𝑁4)
problem.

To reduce the complexity, we can do the following:

We choose the top and bottom row of the rectangle. We calculate the cumulative sum of each
column. Now, only the columns with a zero cumulative sum qualify as the left/right side of the

rectangle. Once we have listed these columns, it only takes a search to find the best result𝑂(𝑁)

for the chosen pair of rows. The complexity of this solution is .𝑂(𝑁3)

Please refer to the setter's solution for implementation details.

Code:

#include <bits/stdc++.h>

using namespace std;

#define vlong long long

#define pii pair<int,int>

#define pll pair<LL,LL>

#define ff first

#define ss second

#define MP make_pair

#define pb push_back

#define MOD 1000000007ll

int n, m, sum[300];

int grd[300][300];

char str[300];

int main() {

//freopen("input.txt", "r", stdin);

int t = 1, tc=0;

scanf("%d", &t);

while (tc < t) {

tc++;

//cerr << "\nCase -> " << tc << " ------------\n" << endl;

scanf("%d", &n);

scanf("%d", &m);

for (int i=0; i<n; i++) {

scanf("%s", str);

for (int j=0; j<m; j++) {

if (str[j] == '.') {

grd[i][j] = 1;

}

else {

grd[i][j] = 0;

}

//cerr << grd[i][j] << " ";

} //cerr << endl;

} //cerr << endl;

int best = 0, area = 0, flag, st, len, wid, prm, tmpa;

for (int i=0; i<n; i++) {

for (int j=0; j<m; j++) {

sum[j] = grd[i][j];

}

for (int j=i+1; j<n; j++) {

for (int k=0; k<m; k++) {

sum[k] += grd[j][k];

}

flag = 0;

for (int k=0; k<m; k++) {

if (grd[i][k] == 1 || grd[j][k] == 1) {

flag = 0;

}

else {

if (sum[k] == 0) {

if (flag == 1) {

len = j-i+1;

wid = k-st+1;

prm = 2*(len+wid) - 4;

tmpa = (len-2) * (wid-2);

if (tmpa <= 0) {

continue;

}

if (prm < best) {

continue;

}

else if (prm == best) {

area = max(area,tmpa);

}

else {

best = prm;

area = tmpa;

}

}

else {

flag = 1;

st = k;

}

}

}

}

}

}

if (area > 0) {

printf("%d %d\n", best, area);

}

else {

printf("No solution\n");

}

}

return 0;

}

Problem C: Rectangle Division

Let’s think about another problem before solving this. What is the easiest way to divide a
rectangle into two equal(area wise) part? An easy way is to draw a diagonal.
Now think about the diagonal. You can just rotate the diagonal around 360 degree(assuming
mid-point of diagonal as origin) and get infinite amount of line and every line will divide the
rectangle into two equal(area wise) part.

Fig : Here red line is the diagonal. All the dotted lines are some of the instances of the diagonal
while rotating around 360 from mid-point of the the diagonal .

Now From this observation, we can solve the problem easily. Create a line(not segment) with
given point and the mid point of any diagonal. The points which intersect the sides(as a
segment) of the rectangle are the solution. It was told in the problem “there will never be infinite
amount of solution” means the given point will never be the midpoint of the diagonal.

Problem D: Chemical Reaction II

For this problem you need to create a bridge with two 3D points. Assume this bridge as a
segment. Now to connect any point to the bridge(segment) you need to calculate the shortest
length from the point to segment(bridge) in 3D cartesian coordinate system which turns into a
problem like “point to segment distance in 3D”.
As N is very small, you can use ternary search to calculate “point to segment distance in 3D”
instead of using geometric laws.

The calculation of the cost function is straightforward.

● To create a bridge = Square root distance between 2 points.
● To add a point to the bridge = Point to segment distance(calculated by ternary search or

geometric laws)

Now there could be many combination of points to create one or multiple bridges and connect
points to the bridges if needed to minimize the result. We can use a bitmask dp(as N is very
small) to calculate the answer.
One way to solve with bitmask dp : State will be just an integer number used as a mask where
0’th to (n-1)’th bit of that integer represent chemical compound’s index number(position in the
array). If the compound is already used, the position(bit position) of that compound in the mask
will be set to one. Now in each state, try all pairs of unused compounds to create a bridge. Say
you have 5(0,1,2,3,4) compounds(each number represents a compound). 4(0,1,2,3) of them are
unused. There are 6 different pair({0,1},{0,2},{0,3},{1,2},{1,3},{2,3}) of points here. Say for one
case you have created a bridge with 0 and 1. You have remaining 2 and 3 which are also
unused. So there are 4 (try to add both 2 and 3, try only 2, try only 3, do not add any compound)
ways to add 2,3 to the bridge. Try all possible of those. And finally try this process with all
possible pair of points. Some small details are not discussed here. While implementing dynamic
programming be careful about some points,

● To create a bond, at least two compound needs to create a bridge.
● All the compounds will participate to at least one bond
● No two chemical bonds will interfere with each other while doing the simulation of the

chemical reaction.

Problem E: A Multiplayer Action Game

Let’s define some symbols first.
i1 = initial position of first n-D sphere
i2 = initial position of second n-D sphere
v1 = velocity of first n-D sphere
v2 = velocity of second n-D sphere
r1= radius of first n-D sphere
r2= radius of second n-D sphere

Now, at any time t the position of first sphere will be i1 + v1t and second sphere will be at i2 + v2t.
Vector arithmetic rules apply everywhere. Distance between any two n- points can be found by
extending the Pythagorean theorem to nthdimension. Now, we need to find the time when the
distance between two spheres will be abs(r1-r2). As the time vs distance graph will be a
parabolic one, so may have at most 2 time stances where distance between 2 sphere is
abs(r1-r2). One will be before reaching the minimum distance and one after. We need to find the
first one. We can use calculus or Ternary search and Binary search to solve the problem. We’ll
discuss the solution using ternary search and binary search. Now to solve the problem, we first
use ternary search to find the minimum distance in the given time range and the time when it

happens. If the minimum distance between two sphere is less than abs(r1-r2) for 0 ≤ 𝑡 ≤ 105

then the solution exists, Otherwise print -1. If solution exists then, we do a binary search
between 0 and the time when the distance is minimum to find the first time stance when the
distance was abs(r1-r2). Worth to mention, if r1=r2 then no sphere eats another one, as one is not
bigger than the other.

Problem F: Gaaner Koli

This problem can be solved using grundy numbers and bitmask DP. Observation: we only need
the starting character and the unique characters of any string. We’ll keep last character used
and mask for unused strings in our state. At any state (ch,mask) we can go to any character of
any unused song that starts with ch. Say, that character is x and our selected string is y. Then,
our next state will be (x,mask|(1<<y)). Now, the grundy value of (ch,mask) is the mex value for

all possible (x,mask|(1<<y)). We’ll try to start with each of the n songs present. If for any song
the first player can win then we print YES, otherwise NO.

Problem G: Gretchen and Strange Function

To understand what the H_function does, we can simulate the steps for different cases.

But simulation takes too long to answer all the queries. Observing the nature of the function
closely, you can understand that, can only have the value and for this problem. Now,𝐶 1 − 1
given a starting value , and another value ,𝐴 𝐵

* If is negative, the function finds the smallest number , that is a term of the𝐶 𝑐𝑢𝑟𝐴 > 0
arithmetic series with as the first term and as the difference between two consecutive𝐴 − 𝐵
terms.

* If is positive, the function finds the highest number , that is a term of the arithmetic𝐶 𝑐𝑢𝑟𝐴 ≤ 𝑁
series with as the first term and as the difference between two consecutive terms.𝐴 𝐵

Then it calls the next instance of itself with and .𝐴 = 𝑐𝑢𝑟𝐴, 𝐵 = 𝐵 + 1 𝐶 = − 𝐶

We have to find the value of when .𝑐𝑢𝑟𝐴 𝐵 = 𝑁

Simulation is too slow, because we have to repeat the same calculations over and over. We can

try a DP approach, memorizing results for all possible pair in complexity and then(𝐴, 𝐵) 𝑂(𝑁2)
answering the queries in [Online method]. But it would take too much space to memorize𝑂(1)
all the results. (Some of the solutions used “short” data types to reduce the space required.
Such solutions passed marginally.)

So, instead we can have a bottom up approach to our DP solution. Since the results of the
queries with some particular depends on the results of the queries with , we𝐵 = 𝑖 𝐵 = 𝑖 + 1

only need to keep track of the last stage of calculations. We can write an iterative DP solution
now.

Although we reduced the space being used, the overall complexity remains .𝑂(𝑁2)

Code:

#include <bits/stdc++.h>

using namespace std;

#define MAXN 10004

#define MAXT 1000006

#define pii pair<int,int>

#define ff first

#define ss second

vector< pii > qry[MAXN];

int dp[MAXN][2], tmp[MAXN][2], res[MAXT];

int main() {

int t, tc=0, N, A, B;

scanf("%d %d", &t, &N);

while (tc < t) {

tc++;

scanf("%d %d", &A, &B);

qry[B].push_back (make_pair(A,tc));

// Collect all queries with the same 'B' in the same place

}

for (int i=1; i<=N; i++) { // Results for A = N+1

dp[i][0] = dp[i][1] = i;

}

for (int i=N; i>=1; i--) {

// Bottom up DP approach to calculate result for B = i

for (int j=1; j<=N; j++) {

int jmodi = j%i, nmodi = N%i;

int curA1 = N - nmodi + jmodi;

if (curA1 > N) curA1 -= i;

// Where would I stop if I started at A=j and went forward

int curA0 = jmodi;

if (curA0 == 0) curA0 += i;

// Where would I stop if I started at A=j and went backward

tmp[j][1] = dp[curA1][0];

tmp[j][0] = dp[curA0][1];

}

for (int k=0; k<qry[i].size(); k++) { // answer queries

int a = qry[i][k].ff;

int q = qry[i][k].ss;

res[q] = tmp[a][1];

}

for (int j=1; j<=N; j++) {

dp[j][1] = tmp[j][1];

dp[j][0] = tmp[j][0];

}

}

for (int i=1; i<=t; i++) {

printf("%d\n", res[i]);

}

return 0;

}

Problem H: Infinite Game

The area covered by Oditi is a circular area. And the area covered by Sam and Ron is actually a
rectangle. So we can calculate both of these areas using basic geometry formula. The main part
is how to calculate the area of Tom which is the intersected area of the circle and that rectangle.

In this picture let’s we want to calculate the lined area of ACP. The radius of the circle is R and

the equation of the circle is x^2 + y^2 = R^2. So the area of ACP is dx. Then the
𝑥1

𝑅

∫ (𝑅2 − 𝑥12)

intersection area of CD with the circle is CEPFD = 2*ACP.

Similarly the area of BEP is dx. and the intersection area of EF with the circle is
𝑥2

𝑅

∫ (𝑅2 − 𝑥22)

EPF = 2*BEP.

Finally the intersected area of the circle and the rectangle will be CEFD = CEPFD - EPF. Using
the integration we can find a general form of that equation which is R (x2 * sin (acos (x2/R))
- x1 * sin (acos (x1/R))) - R^2 * acos (x2/R) + R^2 * acos (x1/R). Solving this we get the
area Tom gets. Then we can easily find the area Oditi, Sam and Ron gets using the area
formula of circle & rectangle.

Note : Both or any of the straight line created by Sam and Tom may be outside the circle. So
handle these cases carefully.

Solution : http://pastebin.com/v7m59Umc

Problem I : Flyover in Twinland

First of all we can run a DFS to find all the islands and then mark them with distinct colors using
a map or array. We will also have to count the number of cities in each of the island. Let C be
the number of distinct islands in twinland. As we only need to consider those islands where the
number of cities are greater than 100, C will be at most 2500. Complexity of this part is O (N*M).

Then we can build a Graph using a nested loop. For each pair of island we can find both the
construction cost and the salary of the engineer’s using two pointer. Then we will add that edge
in the Graph. Complexity of this part is O (C^2).

Now let’s fix the maximum salary of the engineer to K. What will be the total construction cost?
Definitely we can’t use any edge whose cost is greater than K. So considering all the edges
whose cost is not greater than K we can find the minimum spanning tree of the Graph. The total
construction cost will be the summation of the cost of the edges of that mst.

But if we can’t connect all the islands using those edges then surely we need some more edges
whose cost are greater than K to connect the islands. And if we can connect all the islands
using those edges then it may also be possible to connect them by decreasing the value of K
and then considering the edges not greater than K. So we can use binary search here for the

http://pastebin.com/v7m59Umc

maximum salary we have to minimize. Then for that maximum salary we can find the total
construction cost. Complexity of this part is O (C^2 * log(C^2)).

Solution : http://pastebin.com/bVyVHJ6G

Problem J: Ghosh vs Datta

In order to solve this problem, first imagine that you have just one single barricade in the entire
graph. If this is the case, then you have to delete that edge with the barricade, and run the flow
on the remaining network from both the sources. After that, the remaining part is trivial. But
since we can have more than one barricade, we can solve this problem by sequentially
removing one edge at a time, and then run the flow from both the end to find the result for a
particular query. For example, if we have 3 barricades on edges a, b and c, first we can run a
flow after removing (a), then we can run another flow after removing (a , b) and finally we can
run a third flow after removing all of the (a , b , c) edges. This would give us correct result, but

would take time. A faster flow algorithm will give us a runtime of O(𝑉2 * 𝐸2).

Let’s talk about improving our naive approach. Imagine that the first edge to be removed was (u
, v) and in in some maximum flow f in the given graph G, f(u , v) amount of flow was
augmented from the edge (u , v). If this edge is now deleted, then the new flow f’ should follow
the inequality f >= f’.

http://pastebin.com/bVyVHJ6G

Now, first think that f = f’. In this case, the amount of flow f(u , v) can be passed from source to
sink without using (u , v). To do that, we first need to cancel out the flow from source to (u , v)
to sink. For that, we need to push f(u , v) amount of flow from u to source and another f (u , v)
amount of flow from sink to v. This will be possible because f(u , v) was generated from source
and ended up in sink. These two push operations will make sure that no flow has started from
source and passed from (u , v) to reach sink. Once the effect of (u , v) has been canceled out,
the edge (u , v) can be safely removed from the network, and flow algorithm can again be run
from source to sink on the remaining residual graph until f = f’. Similar techniques can be
followed when f > f’. If we follow this process for all the queries, the process can propagate at
most 4f amount of flow across the whole network and the time is thus reduced. By this way, this
problem can be solved online.

An interesting and a little easier solution came from bqi343, who processed the query in reverse
order. First he deleted all the barricades from the network and run a flow on the final graph.
After that, he added one barricade edge at a time in reverse order in the residual network. This

approach will run in O(𝑉2 * 𝐸).

Jackal_1586’s solution: http://pastebin.com/99sUPKA9
Bqi343’s solution: http://pastebin.com/ZAEDYxdTac

Problem K: Primary Key

For query 4.

Just use a global variable TOT which tracks each time a primary key has been added or
removed from the system. Print the global variable TOT for this query.

For query 1 :

Add a new primary key. You can add it just by incrementing n by 1. Also increment global value
TOT by 1.

For query number 3 :
Say the query comes with a value “VAL”.
Initially no member is removed from the system. So each time a member is removed from the
system and you need to keep track of that primary key. You can use a splay tree, redblack tree,

http://pastebin.com/ZAEDYxdTac

segment tree or equivalent data structure to ask,

Q(p) = “the number of primary key removed that are strictly smaller than p”.

So, now it’s clear if you need to find a number N for which, N-Q(N+1) = VAL. You can find the
number N with a binary search as there is a binary property here(?).

For query 2 :
Say the query comes with a value “VAL”.
First check if the primary key is valid or not. It is invalid if it is greater than n or less than 1 or it is
already removed.
If it is a valid and existing primary key, you need to add the primary key VAL to your tree based
data structure on which you can ask the question Q().

Problem L: Rio and Inversion

The problem can be solved using sqrt decomposition technique. If you don’t know about it then
you can learn it from here : http://e-maxx.ru/algo/sqrt_decomposition . We will separate the
elements in some block and for each of the block we will calculate the number of inversions
considering the elements in that block.

Besides we will also build a 2-d array where we will pre calculate for each of the element how
many larger elements we have found so far. For example let’s that 2-d array be precalc. Then
precalc[i][v] will be the number of elements greater than v from index 0 to i.

Now how to handle the first query? If we swap the elements at position u & v then we need to
know the number of change of inversion happens. To do that we need the information of number
of elements greater than A[u] and A[v] from index 0 to u and 0 to v. Similarly we also need the
number of elements smaller than A[u] and A[v] from index u+1 to N-1 and v+1 to N-1. Using the

http://e-maxx.ru/algo/sqrt_decomposition

precalc array we can find that values in O(1) and then we just need to use some inclusion
exclusions to get the result.

To handle the second query we have to iterate through all the blocks that lie inside the range
from u to v. As we know the number of inversions for all the blocks so for each of the blocks that
doesn’t lie inside u and v we can iterate through all the values from 1 to 100 and maintain an
array where we’ll update the number of greater elements we found so far. We just need to add
them in the result each time. We can handle this query in O(* 100).𝑁

Total Complexity : O(* 100)𝑄 * 𝑁

Solution : http://pastebin.com/Kszvfvt7

http://pastebin.com/Kszvfvt7

