
​ ​ ​ EDITORIAL
 Choosing Subtree is Fun

Problem Link

Prerequisite - DFS , LCA , Basic Idea of Two Pointer Algorithm

This was one very good problem on LCA. I will
recommend you to read the codeforces editorial of
the problem and try to think and implement first
before reading further .
Link to Editorial

 Detailed Explanation - OK. I hope you have read the
editorial. Now we shall understand the solution proposed
there. First and foremost, we should observe that if two
nodes indexed x and y are included in the subtree, then all
the nodes on the simple path between x and y must be
included. Consider the following tree -

http://codeforces.com/contest/372/problem/D
https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=8&cad=rja&uact=8&ved=0ahUKEwiBx_Kll-_UAhWHvY8KHZUWDIIQFghNMAc&url=http%3A%2F%2Fwww.geeksforgeeks.org%2Fdepth-first-traversal-for-a-graph%2F&usg=AFQjCNEnQsdfBaGd-l0ZJRYxCnqG48RzfQ
https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&cad=rja&uact=8&ved=0ahUKEwjI0Y3Ll-_UAhUQT48KHUWXBGMQFgg1MAM&url=http%3A%2F%2Fwww.geeksforgeeks.org%2Flowest-common-ancestor-binary-tree-set-1%2F&usg=AFQjCNGrLhkMmO1Fy8xMSwXU7ZG81LEPDg
https://tp-iiita.quora.com/The-Two-Pointer-Algorithm
http://codeforces.com/blog/entry/9944

Now suppose we include 3 and 4 in the subtree. Then
clearly nodes 1 and 7 must be included.
Now how to approach the solution??
We can use the idea of two pointer algorithm which will
help us to consider an interval [L , R] . Now we have to
think how to add a vertex R+1 and remove a vertex L in
less than O(n) time. An important thing to notice here is
that we cannot maintain the whole subtree in a set as this
will time out. What we need to do is to maintain the end
points in the set and use it . Basically, we want to keep
track of size of subtree only and not the whole subtree.

We can do this by storing the dfs order of the vertices. Like
we maintain the set of some vertices in a STL set sorted
on the basis of their arrival in DFS. To add some vertex x,
we find the vertex present in the set with arrial time just
less than that of current vertex x. Let this be prev.
Similarly, we find a vertex in the set with arrival time just
greater than x. Let this be next.
So the size of our set will be
size=size + (dist(x,next) + dist(x,prev) - dist(prev,next))/2
Similarly for the erase
size=size + (dist(prev,next) - dist(x,next) - dist(x,prev))/2

See code for better understanding.
Code

http://codeforces.com/contest/372/submission/28320984

