
2 - Continuous Cylinder with Base in Grasshopper

Link to Grasshopper Code

This tutorial builds on the previous example () by 1 - Continuous Cylindrical GCode in Grasshopper
adding a base to the code. Refer to the previous document for cylinder and GCode creation.

Generating a base

Clay printers work really well with vertical walls but they are somewhat problematic for printing
horizontal structures like bases for objects. The printed lines need to adhere together well
enough that they would survive the drying and firing shrinkages. Even if there is a slight gap in
between one of the lines, these shrinkages can make it open more, or it could explode in the
kiln.

However, it is possible to print a base with Potterbot. We modify the previous example to add
base support. Object Config now had another slider that specify the base height. Each base
layer is actually composed of two layers, so you will see 4 vertical layers if Base Layers is 2.
This is due to two reasons:

1)​ The height of the base is dependent on the layer height, which is much smaller than the
nozzle diameter. So compared to the walls of our object, the base would have been too
thin if we use only one layer. On top of this, since clay shrinks after drying and firing, the
already thin base would become even thinner compared to the walls.

2)​ The order of the vertices we generate for the toolpath matters. If we have only one layer,
the nozzle head would have to travel from the middle of the object to the sides. Since the
Potterbot does not have retraction, this would result in extra material in the middle of our
print.

https://docs.google.com/document/d/1Aib7IFeEdo_yWkATDjWUCm-6wwKRZ6a_yGJxNWUrU8w/edit?usp=sharing
https://drive.google.com/file/d/1lkTvWN_x5zHYPMrXJWWIswws6sH7HBjd/view?usp=sharing

P_BasicCylinderWithBase

input

Height = Height * 10 # Convert to mm

Radius = Radius * 10 # Convert to mm

NozzleWidth

LayerHeight

BaseLayerCount

output

vertices = []

BASE

def makeBaseLayers(base_index):

 base_index *= 2 # Each base layer consists

 # of two layers

 spiralCount = Radius/(NozzleWidth - 0.1)

 _r_dec = Radius / spiralCount # Radius decrement

 _r = Radius

 for i in range(int(2*(spiralCount+1))):

 circumference = math.pi*2*_r

 pointCount = int(circumference * 0.5) # One vertex every 2 mm

 for j in range(pointCount):

 ang = math.pi*2 * j/pointCount # Angle of the polar coord.

 x = math.cos(ang)*_r

 y = math.sin(ang)*_r

 z = base_index*LayerHeight

 if i >= spiralCount: # Second base layer

 z = (base_index+1)*LayerHeight

 vertices.append(rs.CreatePoint(x,y,z))

 if i < spiralCount: # First or second base layer

 _r -= _r_dec

 else:

 _r += _r_dec

WALLS

def makeWalls(wallStartHeight):

 layerCount = int(Height / LayerHeight)

 for i in range(layerCount):

 circumference = math.pi*2*Radius # Circumference of the layer

 pointCount = int(circumference * 0.5) # One vertex every 2 mm

 for j in range(pointCount):

 ang = math.pi*2/pointCount * j

 inc = LayerHeight/pointCount # Amount to raise each point

 # for seamless toolpath

 x = math.cos(ang)*Radius

 y = math.sin(ang)*Radius

 z = wallStartHeight + i*LayerHeight + j*inc

 vertices.append(rs.CreatePoint(x,y,z))

''' Make the base '''

for i in range(BaseLayerCount):

 makeBaseLayers(i)

''' Make the walls '''

makeWalls(wallStartHeight = BaseLayerCount*2*LayerHeight)

The above code shows a basic approach to printing bases with concentric circles. Previous code that
makes the walls are wrapped inside the makeWalls function with a parameter to adjust its starting height.

makeBaseLayers function creates the vertices for the base. It takes the index of the current base layer as a
parameter to adjust the height of the current points.

We first find how many concentric circles we need per layer. Each circle needs to be touching one
another, so we divide the radius by nozzle width, minus a small offset value to make sure they will touch
each other. We run the function twice for the first and second base layers, with the same polar coordinates
that we used for generating the walls.

After generating the vertices, we pass them to the same GCode generating block to create the file.

	2 - Continuous Cylinder with Base in Grasshopper
	Generating a base

