
Cryptonite
Top encryption pitfalls that could turn your app into crap

1. Using crypto unvetted by the global cryptographic community
a. out of 15, 2 broke before and 1 during the first AES conference
b. Hashing competition

i. SHA3 competition
1. took from 2007 to 2012 with 64 entries
2. Keccak was the winner
3. many of them had flaws, like collisions in round 1
4. Bruce Schneier was a sad panda, his was runner-up
5. paper was written in 1998, so things might have changed since

then.
2. encrypting something already known

a. rainbow tables
b. crib (slang term for cheating) - known plaintext attack (happy birthday, hitler!)
c. helped break enigma

3. using encryption instead of hashing where encryption is not needed
a. passwords
b. pins

4. storing password values poorly
a. in the file itself (example: old MSOFFICE versions)

i. binary editor can reveal the password
b. ...in memory

i. core dumps can reveal passwords (wu-ftpd example)
ii. in lower-level langs, you can overwrite with zeros when finished

c. ...in config files
d. ...on same server as important data

i. auth should be separate (separation of duties)
e. … the passwords themselves, instead of the verifiers

i. store proper hashes, with salts, not passwords
f. in your code repos

i. stored passwords left in code or settings file
5. using outdated encryption

a. need resources to look at list (FIPS 140-3 or NIST?)
6. using weak random numbers

a. guess digit 10001 when given the first 10000
b. initialization vectors

http://collaboration.cmc.ec.gc.ca/science/rpn/biblio/ddj/Website/articles/DDJ/1998/9812/9812b/9812bs3.htm
http://csrc.nist.gov/groups/ST/hash/sha-3/winner_sha-3.html
http://keccak.noekeon.org/
http://ehash.iaik.tugraz.at/wiki/The_SHA-3_Zoo
https://en.wikipedia.org/wiki/Cheat_sheet


7. Hardcoding encryption
a. not future proof
b. shouldn’t be done at all, allow for upgrades
c. See this in SCADA systems

i. SCADA system built now are still using crap code ideals, no option for
upgrades

ii. not upgrading is no longer an option
8. Hardcoded passwords

a. again, see 6.c above as reasons to no longer do this.
9. Replaying TCP traffic

a. requires network access, but MITM can allow for reply of traffic to gain access.
b. proper use of session tokens, regenerating them
c. timestamping as well

i. Timestamping is another way of preventing a replay attack. Synchronization should be achieved using
a secure protocol. For example Bob periodically broadcasts the time on his clock together with a
MAC. When Alice wants to send Bob a message, she includes her best estimate of the time on his
clock in her message, which is also authenticated. Bob only accepts messages for which the
timestamp is within a reasonable tolerance. The advantage of this scheme is that Bob does not need
to generate (pseudo-) random numbers, with the trade-off being that replay attacks, if they are
performed quickly enough i.e. within that 'reasonable' limit, could succeed.

10. remote login over unencrypted channel
a. vulnerability scanners should be able to detect
b. tunnel connections over TLS 1.2

11. managing passwords poorly
a. use strong key derivation functions for hash storage - example: lastpass uses

PBKDF2 with sha256 and defaults to 5000 iterations and allows user to set
number of iterations.
i. PBKDF2
ii. bcrypt
iii. Scrypt
iv. argon2 (source on GitHub)

b. one password/key to rule them all
i. different keys and passwords for different data (CC#, auth, PII)

1. different keys will make data harder to dump all at once

http://stackoverflow.com/questions/16891729/best-practices-salting-peppering-passwords

https://password-hashing.net/
http://www.infoworld.com/article/2923777/encryption/5-ways-developers-get-encryption-wrong.h
tml

http://scpd.stanford.edu/search/publicCourseSearchDetails.do?method=load&courseId=128522
2

https://en.wikipedia.org/wiki/Timestamp
https://en.wikipedia.org/wiki/Synchronization
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/PBKDF2
https://en.wikipedia.org/wiki/Bcrypt
https://en.wikipedia.org/wiki/Scrypt
https://en.wikipedia.org/wiki/Argon2
http://stackoverflow.com/questions/16891729/best-practices-salting-peppering-passwords
https://password-hashing.net/
http://www.infoworld.com/article/2923777/encryption/5-ways-developers-get-encryption-wrong.html
http://www.infoworld.com/article/2923777/encryption/5-ways-developers-get-encryption-wrong.html
http://scpd.stanford.edu/search/publicCourseSearchDetails.do?method=load&courseId=1285222
http://scpd.stanford.edu/search/publicCourseSearchDetails.do?method=load&courseId=1285222


https://www.cs.ucsb.edu/~chris/research/doc/ccs13_cryptolint.pdf

http://csrc.nist.gov/publications/fips/fips140-2/fips1402annexa.pdf

email from Brian Hearn (bds listener) *if time allows*

https://www.cs.ucsb.edu/~chris/research/doc/ccs13_cryptolint.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402annexa.pdf

