
Elvis and Other Null-Safe Operators for Java
AUTHOR(S):

Neal Gafter

Note that the author does not specifically advocate adding these features to the Java
programming language. Rather, this document is offered as an example of a
language change proposal in a form suitable for consideration in the JDK7 small
language changes JSR. Specifically, it is more like a specification than a tutorial or
sales job.

OVERVIEW

FEATURE SUMMARY:

The ?. null-safe member selection operator provides the same meaning as .
(member selection), except when the left-hand-side evaluates to null, in which
case any subexpressions on the right-hand-side are not evaluated and the ?.
expression yields null.

The ?: binary "Elvis" operator results in the value of the left-hand-side if it is
not null, avoiding evaluation of the right-hand-side. If the left-hand-side is
null, the right-hand-side is evaluated and is the result.

The ?[] indexing operator operates on a left-hand-side that is an array of object
type. If the value of the left-hand operand is null, that is the result. If the
left-hand-operand is not null, the index subexpression is evaluated and used to
index the array, yielding the result.

These three operators always result in a value, not a variable.

MAJOR ADVANTAGE:

Simplifies and clarifies code in common patterns involving checks for null.

MAJOR BENEFIT:

Some common coding patterns are simplified. [Neal asks: How is this section
supposed to be different from the previous section?]

MAJOR DISADVANTAGE:

Slightly more complex language specification with little increased
expressiveness of the language. Encourages, rather than discourages, the use
of null values in APIs.

ALTERNATIVES:

The most important alternative is to leave the language as it is and let

programmers do things the hard way. For programmers, there are library-based
alternatives, but they are hardly more concise than doing things the hard way.
See, for example, Stephan Schmidt's discussion of Better Strategies for Null
Handling in Java[1].

EXAMPLES

SIMPLE EXAMPLE:

String s = mayBeNull?.toString() ?: "null";

ADVANCED EXAMPLE:

Given a Java class

class Group {
 Person[] members; // null if no members
}
class Person {
 String name; // may be null
}
Group g = ...; // may be null

we can compute the name of a member if the group is non-null and non-empty
and the first member has a known (non-null) name, otherwise the string
"nobody":

final String aMember = g?.members?[0]?.name ?: "nobody";

Without this feature, we would have to write the roughly equivalent code

Person[] t1= g != null ? g.members : null;
Person t2 = t1 != null ? t1[0] : null;
Name t3 = t2 != null ? t2.name : null;
final String aMember = t3 != null ? t3 : "nobody";

DETAILS

SPECIFICATION:

Lexical:

We do not add any tokens to the language. Rather, we introduce new operators
that are composed of a sequence of existing tokens.

Syntax:

The folllowing new grammar rules are added to the syntax

PrimaryNoNewArray:

NullSafeFieldAccess
NullSafeMethodInvocation
NullSafeClassInstanceCreationExpression
NullSafeArrayAccess

NullSafeFieldAccess:

PrimaryNoNewArray ? . Identifier

NullSafeMethodInvocation:

PrimaryNoNewArray ? . NonWildTypeArgumentsopt Identifier (
ArgumentListopt)

NullSafeClassInstanceCreationExpression:

PrimaryNoNewArray ? . new TypeArgumentsopt Identifier
TypeArgumentsopt (ArgumentListopt) ClassBodyopt

NullSafeArrayAccess:

PrimaryNoNewArray ? [Expression]

ConditionalExpression:

ElvisExpression

ElvisExpression:

ConditionalOrExpression ? : ConditionalExpression

Semantics:

A null-safe field access expression e1?.name first evaluates the expression
e1. If the result is null, then the null-safe field access expression's result
is null. Otherwise, the result is the same as the result of the expression
e1.name. In either case, the type of the result is the same as the type of
e1.name. It is an error if this is not a reference type.

A null-safe method invocation expression e1?.name(args) first evaluates
the expression e1. If the result is null, then the null-safe method
invocation expression's result is null. Otherwise the arguments are

evaluated and the result is the same as the result of the invocation
expression e1.name(args). In either case, the type of the result is the
same as the type of e1.name(args). It is an error if this is not a
reference type.

A null-safe class instance creation expression e1?.new name(args) first
evaluates the expression e1. If the result is null, then the null-safe class
instance creation expression's result is null. Otherwise, the arguments
are evaluated and the result is the same as the result of the class instance
creation expression e1.new name(args). In either case, the type of the
result is the same as the type of e1.new name(args).

A null-safe array access expression e1?[e2] first evaluates the expression
e1. If the result is null, then the null-safe array access expression's
result is null. Otherwise, e2 is evaluated and the result is the same as
the result of e1[e2]. In either case, the type of the result is the same as
the type of e1[e2]. It is an error if this is not a reference type.

An Elvis expression e1?:e2 first evaluates the expression e1. It is an
error if this is not a reference type. If the result is non-null, then that is
the Elvis expression's result. Otherwise, e2 is evaluated and is the result
of the Elvis expression. In either case, the type of the result is the same
as the type of (e1!=null)?e1:e2. [Note: this section must mention
bringing the operands to a common type, for example by unboxing when
e2 is a primitive, using the same rules as the ternary operator]

Exception Analysis:

JLS section 12.2.1 (exception analysis of expressions) is modified to read as
follows. Additions are shown in bold.

 A method invocation expression or null-safe method invocation
expression can throw an exception type E iff either:

●​ The method to be invoked is of the form Primary.Identifier or
Primary?.Identifier and the Primary expression can throw E; or

●​ Some expression of the argument list can throw E; or
●​ E is listed in the throws clause of the type of method that is invoked.

 A class instance creation expression or null-safe class instance
creation expression can throw an exception type E iff either:

●​ The expression is a qualified class instance creation expression or a
null-safe class instance creation expression and the qualifying
expression can throw E; or

●​ Some expression of the argument list can throw E; or
●​ E is listed in the throws clause of the type of the constructor that is

invoked; or
●​ The class instance creation expression or null-safe class instance

creation expression includes a ClassBody, and some instnance
initializer block or instance variable initializer expression in the
ClassBody can throw E.

 For every other kind of expression, the expression can throw type E iff
one of its immediate subexpressions can throw E.

Definite Assignment:

JLS section 16.1 (definite assignment and expressions) is augmented with the
following new subsections

16.1.x Null-safe Method Invocation

●​ v is definitely assigned after e1?.name(args) iff v is definitely

assigned after e1.
●​ v is definitely unassigned after e1?.name(args) iff v is definitely

unassigned after args.
●​ in an expression of the form e1?.name(args), v is [un]assigned

before args iff v is [un]assigned after e1.

16.1.x Null-safe Class Instance Creation Expression

●​ v is definitely assigned after e1?.new name(args) iff v is definitely

assigned after e1.
●​ v is definitely unassigned after e1?.new name(args) iff v is

definitely unassigned after args.
●​ in an expression of the form e1?.new name(args), v is [un]assigned

before args iff v is [un]assigned after e1.

16.1.x Null-safe Array Access

●​ v is definitely assigned after e1?[e2] iff v is definitely assigned after
e1.

●​ v is definitely unassigned after e1?[e2] iff v is definitely unassigned
after e2.

●​ in an expression of the form e1?[e2], v is [un]assigned before e2 iff
v is [un]assigned after e1.

16.1.x Elvis Operator

●​ v is definitely assigned after e1?:e2 iff v is definitely assigned after
e1.

●​ v is definitely unassigned after e1?:e2 iff v is definitely unassigned
after e2.

●​ in an expression of the form e1?:e2, v is [un]assigned before e2 iff
v is [un]assigned after e1.

COMPILATION:

These new expression forms can be desugared as follows:

●​ e1?.name is rewritten as (t != null ? t.name : null)
●​ e1?.name(args) is rewriten as (t != null ? t.name(args) : null)

●​ e1?.new name(args) is rewritten as (t != null ? t.new name(args) :
null)

●​ e1?[e2] is rewritten as (t != null ? t[e2] : null)
●​ e1?:e2 is rewritten as (t != null ? t : e2)

where t is a new temporary that holds the computed value of the expression e1.

TESTING:

This feature can be tested by exercising the various new expression forms, and
verifying their correct behavior in erroneous and non-erroneous situations, with
or without null as the value of the left-hand operand, and with respect to
definite assignment and exception analysis.

LIBRARY SUPPORT:

No library support is required.

REFLECTIVE APIS:

No reflective APIs require any changes. However, the not-yet-public javac Tree
APIs, which describe the syntactic structure of Java statements and expressions,
should be augmented with new tree forms for these new expression types.

OTHER CHANGES:

No other platform changes are required.

MIGRATION:

No migration of existing code is recommended. These new language features
are mainly to be used in new code. However, IDEs should provide refactoring
advice for taking advantage of these new operators when existing code uses the
corresponding idiom.

COMPATIBILITY

BREAKING CHANGES:

No breaking changes are caused by this proposal.

EXISTING PROGRAMS:

Because the changes are purely the introduction of new expression forms, there
is no impact on the meaning of existing code.

REFERENCES

EXISTING BUGS:

4151957: Proposal: null-safe field access operator

URL FOR PROTOTYPE (optional):

No Java prototype exists at this time. However, Groovy (among others) has the
Elvis operator.

OTHER REFERENCES

[1] Stephan Schmidt's discussion of Better Strategies for Null Handling in Java
[http://www.slideshare.net/Stephan.Schmidt/better-strategies-for-null-handling
-in-java]
[2] Groovy Operators
[3] Stephen Colebourne's glossy brief on null-safe operators
[4] Summary of three recent (but underspecified) language change polls

http://bugs.sun.com/view_bug.do?bug_id=4151957
http://www.slideshare.net/Stephan.Schmidt/better-strategies-for-null-handling-in-java
http://www.slideshare.net/Stephan.Schmidt/better-strategies-for-null-handling-in-java
http://www.slideshare.net/Stephan.Schmidt/better-strategies-for-null-handling-in-java
http://groovy.codehaus.org/Operators
http://docs.google.com/View?docid=dfn5297z_3c73gwb
http://www.jroller.com/scolebourne/entry/jdk_7_language_changes_everyone
http://www.jroller.com/scolebourne/entry/jdk_7_language_changes_everyone

	Elvis and Other Null-Safe Operators for Java
	AUTHOR(S):
	OVERVIEW
	FEATURE SUMMARY:
	MAJOR ADVANTAGE:
	MAJOR BENEFIT:
	MAJOR DISADVANTAGE:
	ALTERNATIVES:

	EXAMPLES
	SIMPLE EXAMPLE:
	ADVANCED EXAMPLE:

	DETAILS
	SPECIFICATION:
	COMPILATION:
	TESTING:
	LIBRARY SUPPORT:
	REFLECTIVE APIS:
	OTHER CHANGES:
	MIGRATION:

	COMPATIBILITY
	BREAKING CHANGES:
	EXISTING PROGRAMS:

	REFERENCES
	EXISTING BUGS:
	URL FOR PROTOTYPE (optional):
	OTHER REFERENCES

