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Abstract: Most applications of multispectral imaging are explicitly or implicitly dependent on the 
dimensionality and topology of the spectral mixing space. Mixing space characterization refers to 
the identification of salient properties of the set of pixel reflectance spectra comprising an image 
(or compilation of images). The underlying premise is that this set of spectra may be described a 
low dimensional manifold embedded in a high dimensional vector space. Traditional mixing 
space characterization uses the linear dimensionality reduction offered by Principal Component 
Analysis to find projections of pixel spectra onto orthogonal linear subspaces, prioritized by 
variance. Here we consider the potential for recent advances in nonlinear dimensionality 
reduction (specifically, manifold learning) to contribute additional useful information for 
multispectral mixing space characterization. We integrate linear and nonlinear methods through a 
novel method called Joint Characterization (JC). JC is comprised of two components. First, spectral 
mixture analysis (SMA) linearly projects the high-dimensional reflectance vectors onto a 2D 
subspace. Second, manifold learning nonlinearly maps the high-dimensional reflectance vectors 
into a 2D embedding space. The SMA output is physically interpretable in terms of material 
abundances. The manifold learning output is not generally physically interpretable, but more 
faithfully captures high dimensional connectivity and clustering. Used together, the strengths of 
SMA may compensate for the limitations of manifold learning, and vice versa. We illustrate JC 
using globally standardized Substrate, Vegetation, and Dark (S, V, D) endmembers for SMA, and 
Uniform Manifold Approximation and Projection (UMAP) for manifold learning, applied to 
thematic compilations of 90 Sentinel-2 reflectance images selected from a diverse set of global land 
cover hotspots. The value of each (SVD and UMAP) model is illustrated, both separately and 
jointly. JC is shown to successfully characterize both continuous gradations (mixing trends) and 
discrete clusters (land cover class distinctions). These features are not clearly identifiable from 
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SVD fractions alone, and not physically interpretable from UMAP alone. Implications are 
discussed for the design of models which can reliably extract and explainably use 
high-dimensional spectral information in spatially mixed pixels – a principal challenge in optical 
remote sensing. 

Keywords: Joint Characterization; Sentinel-2; Spectral Mixture Analysis; Manifold Learning; 
UMAP 
 

1. Introduction 
The Since the first ERTS-1 images over 50 years ago, Earth scientists have relied on 

multispectral satellite imaging as a source of impartial, systematic, quantitative 
observations of land surface processes [1]. These data have advanced in quantity and 
quality over the decades, enabled by advances in sensor and platform engineering, as 
well as increasing recognition of the potential value of such data for public and private 
sectors alike [2,3]. Such advances can be broadly understood as falling along three main 
axes: increasing spatial resolution, shortening revisit time, and increasing spectral 
fidelity, e.g. [4,5]. 

For decades, the Landsat program was the only scientifically available source of 
decameter scale satellite imagery [6]. Recently, the European Space Agency 
complemented this public record with the 2015 and 2017 launches of the Sentinel-2A/B 
constellation [7]. These data fundamentally advance the data record available to Earth 
scientists along all three axes – increasing spatial resolution to 10 m (20 m for NIR & 
SWIR bands), shortening revisit to 3-5 days, and increasing the number of spectral bands 
to 13 (with 11 useful for surface processes). 

Multispectral image analysis capabilities have advanced alongside observations. 
Statistical methods for exploiting high dimensional data have become particularly 
popular in recent decades, largely referred to by the moniker “machine learning” [8–11]. 
But while these methods can generate accurate predictions for many problems, such 
methods are generally limited by their lack of explicit physical basis [12]. Interpretability 
– scientific understanding of why a given model works, and when it might not work – is 
thus paramount if these methods are to reach their full potential [13]. 

One subset of machine learning algorithms, referred to as manifold learning, is 
designed to preserve high-dimensional connectivity structure (topology) of high 
dimensional datasets [14,15]. These algorithms are particularly promising in the context 
of dimensionality reduction – finding an effective, parsimonious representation of the 
signals of interest present in high dimensional data. In this context, manifold learning 
can be considered a nonlinear complement [16] to the longstanding linear 
dimensionality reduction offered by Principal Component Analysis [17]. Dimensionality 
reduction can be considered an integral subset of the broader question of 
characterization in the context of a characterization + modeling framework [18]. 
Decameter scale multispectral imagery in particular may provide particularly 
well-connected high-dimensional topologies due to the prevalence of spatial 
autocorrelation [19] and efficacy of spectral mixture models [20–22].[23][24][25][26][27] 

Recently, the potential to exploit synergies between complementary dimensionality 
reduction methods has been used to perform joint characterization (JC). Briefly, joint 
characterization uses the strengths of one dimensionality reduction algorithm to 
mitigate limitations of another algorithm. This has been shown effective for synthetic 
images [28], airborne hyperspectral data [28,29], multispectral image time series [30], 
and gridded climate data [31]. But to our knowledge, no comparative analysis has yet 
been performed in which joint characterization is applied systematically to globally 
diverse compilations of image spectra across a broad range of land cover types.  
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Here we conduct such an analysis. Specifically, we illustrate the joint 
characterization approach for a globally diverse compilation of 90 Sentinel-2 image 
subsets representative of 9 globally prevalent land cover classes. We implement joint 
characterization of the composite spectral mixing space using a globally standardized 
Substrate, Vegetation, Dark (S,V,D) spectral mixture model [32] as our physical 
characterization, and the Uniform Manifold Approximation and Projection (UMAP) [33] 
as our topology-preserving manifold learning algorithm. In so doing, we ask the 
following questions:​
 

1.​ Geophysical 
a.​ What is the overall S,V,D fraction distribution of globally diverse 

representatives of significant land cover classes?  
b.​ How well does the global S,V,D model fit each land cover class, as 

measured by root mean square misfit?​
 

2.​ Topological 
a.​ How clustered or continuous are the manifolds for each land cover 

category found by UMAP?​
 

3.​ Joint  
a.​ To what extent can S,V,D fractions and UMAP clusters be used together 

to yield useful information? Specifically, 
i.​ To what extent are UMAP clusters geographically contiguous? 

ii.​ To what extent do disparate UMAP clusters at similar S,V,D 
fraction values represent physically plausible and/or 
spectroscopically interpretable spectral variability? 

iii.​ Are some S,V,D fractions, or land cover classes, better suited to 
JC than others? If so, why? If not, why not? 

 references. 

2. Materials and Methods 

2.1. Data 
110 Sentinel-2 image tiles were acquired as Level 1C exoatmospheric reflectance 

from the USGS EarthExplorer data portal (https://earthexplorer.usgs.gov/). Sites were 
selected to span a broad geographic diversity, sampling all major biomes and a wide 
range of geologic histories (Figure 1). 

​ ​  

 

https://earthexplorer.usgs.gov/
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Figure 1. Geographic and climatic distributions of 110 Sentinel-2 tiles from spectral diversity 
hotspots. Geographic distribution of sample sites is guided by climatic and geologic diversity as 
well as overall species biodiversity. Individual tile selection criteria favor spectral diversity arising 
from land cover diversity within and across biomes. Tile geographic coverage corresponds well to 
global land area distribution within the climatic parameter space (lower left) based on 1 degree 
monthly mean temperature and precipitation (1900-2002) from [34]Mitchell and Jones (2005). All 
biomes are well represented. Biome classification (lower right) adapted from [35]Houghton et al. 
(1996). 

90 subsets were selected as representatives of dominant land cover classes. Each 
subset covered a 10 x 10 km (1000 x 1000 pixel) area dominated by a particular land 
cover class. The classes used were: agriculture, sand, lava/ash, urban, forest, senescent 
vegetation, tundra, wetland/mangrove, rock, and alluvium. For the agriculture, sand, 
wetland, rock, and alluvium classes, 10 representative subsets of each were used. For the 
lava/ash, urban, senescent vegetation, and tundra classes, 5 subsets of each were used. 
For the forest class, 20 subsets were used and subsequent analysis was decomposed into 
two 10-tile portions. The full mosaic is shown in Figure 2 as a SWIR/NIR/Visible false 
color composite. Scene IDs for each subset are listed in a Supplementary Table. 

[32] 
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Figure 2. Sentinel-2 composites for land cover subcategories (10 x 10 km) selected from 
individual hotspot tiles. 1% linear stretch applied. 

2.2. Methods 
The joint characterization workflow proceeded with the following three steps:​

 
A.​ Use a linear spectral mixture model to characterize the overall S,V,D distribution 

of each land cover class (variance-based, physical, linear). 
B.​ Use Uniform Manifold Approximation and Projection (UMAP; [33]) to 

characterize interdimensional topology & clustering (topology-based, statistical, 
nonlinear) 

C.​ Synthesize Steps A and B into a set of 1 or more bivariate distributions which 
use the physical meaning of the Step A fraction distributions to differentiate 
among purely topological relations identified from Step B (joint characterization). 

 
Spectral signatures of clusters identified from Step C were identified, region of 

interest (ROI) means and spectral separability metrics were computed, and geographic 
coherence was visually evaluated. 

Each step is explained briefly below. 
 

3.1.1. Step A: Linear Characterization and Modeling: Spectral Mixture Analysis  
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For the linear component of this analysis, the spectral feature space of the 90-tile 
mosaic was characterized using Principal Component Analysis [17] (Figure 3, left) as 
described by [32]Small and Sousa (2022). Consistent with numerous studies with other 
multispectral and hyperspectral sensors [36–41], the preponderance of variance was 
were found to be well-characterized by a small number of dimensions (95% of variance 
in the first 2 dimensions; 97% in the first 3 dimensions). Also consistent with previous 
studies, the low-order spectral feature space of this diverse mosaic was found to be 
well-represented by linear mixing among Substrate, Vegetation, and Dark (S,V,D) 
spectrally distinct endmembers. All tiles were then unmixed to S,V,D fractions using the 
lower amplitude mean (SI,VI,D) endmembers [32](Small and Sousa, 2022). Bivariate 
fraction distributions (Figure 3, right) show fraction estimates to be within the physical 
range (0 to 100%) for all tiles except high albedo sands, which give SI fractions >100% 
and D fractions <0. Mixture model misfit, as quantified by the Root Mean Square Error 
(RMSE) of misfit between observed and modeled spectra, was < 6% for > 99% of spectra. 
Due to the unit sum constraint, and the fact that the 3D SVD space maps onto a linear 2D 
subspace, fraction distributions can also be visualized using a barycentric plot (i.e., 
ternary diagram) with no loss of information. The remainder of this analysis uses such a 
visualization to demonstrate variability in S,V,D fraction abundance among land cover 
classes. For greater detail on variance-based characterization of this mosaic, see [32]. 

 

 
Figure 3. Sentinel-2 SVD spectral mixing space, spectral endmembers, and 
corresponding SVD fraction space. An eight column (80,000,000 spectra) subset of the 
Land Cover Subcategory mosaic encompassing the SVD-bounded plane of the full 
mixing space is effectively 2D with PC dimensions 1 (81%) and 2 (14%) accounting for 
95% of total variance, compared to PC 3 (2%). Maximum amplitude (Outer) and lower 
amplitude mean (Inner) endmember spectra for Substrate and Vegetation define bases 
for maximal and minimal SVD models (left). Inversion of the minimal model provides 
liberal estimates of SVD fractions (right) but excludes pure sand landscapes. Because 
sands lie outside the minimal SVD model, their Substrate fractions exceed 1.0 with Dark 
fractions < 0. A planar SVD fraction distribution can be projected onto a 2D ternary 
diagram (lower right) with no loss of information. 

[20–22][42][36,43,44] 
3.1.2. Step B: Nonlinear Characterization and Modeling: Manifold Learning 

 
In this analysis, nonlinear characterization was based on Uniform Manifold 

Approximation and Projection (UMAP) [33] of the 11D spectral mixing space. Briefly, 
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UMAP is a recently developed, increasingly popular algorithm for nonlinear 
dimensionality reduction. Mathematically, UMAP assumes that the Sentinel-2 spectra 
are uniformly distributed on a locally connected Riemannian manifold with an 
(approximately) locally constant Riemannian metric. UMAP models this manifold using 
a fuzzy topological structure, then seeks a low-dimensional (2 or 3D) embedding with an 
optimally similar fuzzy topological structure. In general, the resulting embedding is 
nonlinear and not invertible. 

UMAP results depend on choice of several tunable hyperparameters. Among the 
most important are: 

-​ n_components : The number of dimensions in the low-D embedding. 
-​ n_neighbors : The size of the local neighborhood used when learning the 

manifold structure of the data. 
-​ min_dist : The limit on how closely spaced points may be spaced in the output 

space. 
-​ metric : The distance metric in the input space of the data. 
 
For all figures in the following analysis, we use the following values: 
 

-​ n_components = 2 
-​ n_neighbors = 30 
-​ min_dist = 0.1 
-​ metric = Euclidean 
 
For the sake of presentation, we defer an illustration of dependence on 

hyperparameter setting to the Supplement. 
All UMAP computations were performed using the open source umap-learn 

Python package on a commercially available laptop computer with 32 GB RAM, 2GHz 
Quad-Core Intel Core i5 CPU, and a 1536 MB Intel Iris Plus Graphics GPU. Runtime for 
the 10 tile (10,000,000 11-band spectra) subsets was 2 hours. For more information about 
UMAP, see:[45] https://umap-learn.readthedocs.io/en/latest/index.html  

 
3.1.3. Step C: Joint Characterization: Bivariate distributions and Cluster Identification 

Linear and nonlinear methods were then combined to perform a joint 
characterization of the spectral mixing space. In this analysis, we implement JC using 
bivariate distributions of the linear and nonlinear mixing space characterizations. This 
step leverages interrelationships between variance-based (spectral mixture fraction) and 
topology-based (UMAP embedding) metrics.  

In the context of this analysis, the mutually reinforcing goals of JC are to: 1) use the 
mixture fractions to imbue the UMAP embedding with physical meaning, and likewise 
2) to use the UMAP embedding to differentiate between subsets of otherwise apparently 
continuous, indistinct mixture fractions.  

Conceptually, JC follows approaches like [46,47] in seeking a robust analytic 
framework capable of both a) exploiting (potentially) high dimensional and/or nonlinear 
signals, and b) adhering to the well-known physical constraints of linear mixing 
processes. The chief novelty is in the fusion of recent developments in manifold learning 
with a now well-established low-order global S,V,D spectral mixing space. 

In the subsequent analysis, spectral endmember fractions are shown on the x-axis 
and UMAP embedding is shown on the y-axis. Different endmember fractions are more 
or less useful for understanding different land cover types, so the choice of S, V, or D 
endmember used in the JC plot(s) is dependent on the land cover subcategory. 
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3. Results 

3.1. Agriculture 
Figure 4 illustrates the JC workflow as applied to a compilation of 10 tiles from 

diverse agricultural basins worldwide. From the SVD ternary diagram (top left), we see 
that this collection spans nearly the entire global SVD mixing space. These spectra are 
well-fit by the global mixture model (99% spectra with <5% RMSE). Pixels with fractions 
near 1.0 are observed for each endmember. Both S:D and D:V binary mixtures are 
observed. Consistent with previous studies, the edge of the space corresponding to S:V 
binary mixing is much sparser, as expected due to the ubiquity of subpixel shadow in 
even the flattest and smoothest natural landscapes. 

The 2D UMAP embedding (top center) suggests that most of the geographic area is 
well-represented by a single broad, well-connected manifold, but several exceptions are 
also present in the form of both apexes to the main manifold and smaller pixel clusters 
disconnected from the main manifold. Joint Characterization (bottom row) shows this 
useful manifold structure can be present at high fractions for all three S,V,D 
endmembers. ROI mean spectra with high S endmember fractions show plausible 
differences in soil moisture, albedo, and/or composition. Dominant variability in 
JC-identified V endmembers corresponds predominantly to SWIR1 (suggestive of leaf 
water) and visible bands (suggestive of differences in pigments). Variability in 
JC-identified D endmembers largely corresponds to overall brightness in the NIR and 
SWIR (turbidity/flotsam?) and curvature in the visible (chlorophyll, CDOM?). 

All endmembers were identified as ROIs from the JC plots. These ROIs were then 
back-projected onto both the ternary diagram and UMAP plot, and visualized in 
geographic space for 1 example tile from the 10 comprising this land cover compilation 
(top right). Geographic coherence (e.g., spatial clusters conforming to visually distinct 
intra- and inter-field boundaries) strongly implies that the ROIs are likely to have 
physically meaningful distinctions. Examination of the back-projected ROIs on the 
ternary diagram shows that they would clearly not be distinct from examination of 
S,V,D fractions alone; examination of the ROIs on the UMAP plot shows that they would 
have no physically interpretable context from UMAP alone. 
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Figure 4. Joint characterization of agriculture. 10 x 1 megapixel Sentinel-2 tile subsets are 
selected from global agricultural hotpots and analyzed at full 10 m pixel resolution. 
These spectra fill out nearly the entire global SVD mixing space (top left) and are well 
represented by a single global 3-endmember linear mixture model (99% of spectra with 
<5% RMSE). Manifold learning (top center, using UMAP) captures both subtle mixing 
continua and discrete clusters, but does not offer physical interpretability. Joint 
characterization (bottom row) uses the physical meaning of the mixture fractions to 
contextualize the subtle statistical relationships captured by UMAP. Example regions of 
interest are identified from the joint space. Mean spectra for each region (center row) 
illustrate similarities and differences among statistically distinct clusters. Statistically 
distinct clusters identified through joint characterization frequently show geographic 
coherence (top right). 
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3.2. Sands 
Figure 5 shows JC applied to a compilation of 10 tiles collected from geologically 

diverse sand dunes. As expected, the SVD ternary diagram (top left) shows a strong 
preferential distribution towards the global S endmember, with most mixing occurring 
along the S:D binary mixing line. Pixels with substantive V endmember contributions 
are effectively absent as few plants can grow in pure sand substrate. The sand spectra 
are well-fit by the global mixture model (99.9% spectra with <5% RMSE) – but fractions 
regularly exceed 100% due to frequently being brighter than the global soil endmember 
because of high solar incidence angle on sun-facing dune slopes. This suggests that 
differences between these spectra and the global S spectrum are largely driven by 
scaling of overall brightness, and not major changes in spectral curvature. 

Examination of 2D UMAP embedding (top center) shows a discontinuous, sinuous 
manifold with numerous apexes and exterior pixel clusters. For JC of this land cover 
compilation, the S endmember fraction is the obvious choice for JC of this land cover 
compilation (bottom left).  

Many high S distinct clusters are clearly identifiable from JC. 8 illustrative examples 
are shown in red and magenta. ROI mean spectra (bottom center) show variability 
consistent with potential physical drivers like grain size and mineralogy. Here, the S 
fraction effectively stratifies UMAP clusters by albedo, and UMAP effectively 
differentiates among subtle differences in spectral curvature among sands with similar 
albedos. 

ROIs are geographically visualized on 2 example tiles (right column). ROI pixels 
consistently cluster on the basis of topographic position and geographic location in ways 
that strongly suggest physical meaning (e.g., fine vs coarse grain size at troughs vs dune 
crests). ROIs are again also back-projected onto both the SVD and UMAP spaces. From 
this back-projection, the complementarity captured by JC is again evident: UMAP 
clusters without EM fraction context lack physical context, and EM fractions without 
UMAP are visually indistinct. 
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Figure 5. Joint characterization of sands. 10 x 1 megapixel Sentinel-2 tile subsets are 
selected from global sand hotspots and analyzed at full 10 m pixel resolution. These 
spectra preferentially occupy the S apex of the SVD mixing space, with mixing toward D 
(top left), leaving the V portion of the space very sparse. The global 3-endmember linear 
mixture model fits these spectra better than the agricultural spectra (here, only >99.9% of 
spectra with <5% RMSE) – but fractions regularly exceed 100%. UMAP (top center) 
captures both subtle mixing continua and discrete clusters, but does not offer physical 
interpretability. Joint characterization (bottom left) uses the physical meaning of the 
substrate mixture fraction to contextualize the subtle statistical relationships captured by 
UMAP. Example regions of interest are identified from the joint space and projected 
onto the ternary mixing and UMAP spaces. Mean spectra for each region (bottom 
center) illustrate similarities and differences among statistically distinct clusters. 
Clusters identified by joint characterization also frequently show geographic coherence 
(right column). 
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3.3. Lava/Ash 
Figure 6 shows JC applied to a compilation of 5 tiles from globally diverse volcanic 

(lava and ash) landscapes. Within the global SVD mixing space, these landscapes are 
preferentially distributed between the D and S endmembers (top left). Some substantive 
mixing towards the V EM is also observed. Relative to the other land cover classes, these 
spectra are not particularly well fit by global mixture model (96.5% spectra with <5% 
RMSE). Presumably, this is because the global D endmember corresponds to clear, deep 
water – not ferromagnesian rock (e.g. basalt). 

Examination of 2D UMAP embedding (top center) shows a set of interconnected 
submanifolds, each with numerous apexes and exterior pixel clusters. The S endmember 
fraction is again used to illustrate JC of this land cover compilation (bottom left).  

Again, many distinct clusters with moderate to high S fraction are clearly 
identifiable from the JC. 8 of the clearest are shown in red and yellow. These ROIs are 
differentiated in terms of both overall albedo and spectral curvature across the full 
VSWIR range. The observed spectral variability is suggestive of differences in 
underlying (mafic : felsic) mineralogy, mineral vs glass composition (holocrystalline <-> 
holohyaline), texture (aphaneritic : phaneritic), and lava flow age/weathering. 

ROIs are geographically visualized on 2 example tiles (right column). ROI pixels 
consistently cluster on the basis of topographic position and geographic location in ways 
that strongly suggest geophysical meaning (e.g. topographic position, across vs within 
individual flow extents). Back-projection of ROIs onto both SVD and UMAP spaces 
again highlights the complementarity of each characterization approach. 
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Figure 6. Joint characterization of Lava & Ash. 5 x 1 megapixel Sentinel-2 tile subsets are 
selected from global volcanic hotspots and analyzed at full 10 m pixel resolution. These 
spectra preferentially occupy the S to D apexes of the SVD mixing space (top left), 
leaving the V portion of the space relatively sparse. The global 3-endmember linear 
mixture model fits these spectra less well than the agricultural spectra (here, 96.5% of 
spectra with <5% RMSE). UMAP (top center) captures both subtle mixing continua and 
discrete clusters, but does not offer physical interpretability. Joint characterization 
(bottom left) uses the physical meaning of the Substrate mixture fraction to contextualize 
the subtle statistical relationships captured by UMAP. Example regions of interest are 
identified from the joint space and projected onto the ternary mixing and UMAP spaces. 
Mean spectra for each region (bottom center) illustrate similarities and differences 
among statistically distinct clusters. Clusters identified by joint characterization also 
frequently show geographic coherence (right column). 
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3.4. Urban 
Figure 7 shows JC applied to a compilation of 5 tiles from globally diverse urban 

landscapes. Within the global SVD mixing space, these landscapes are preferentially 
distributed between the D and S endmembers (top left). More mixing towards the V EM 
is observed than with the volcanic or sand land cover classes. These spectra are better fit 
by the global mixture model than the volcanic compilation, but worse fit than the 
agriculture or sands (97.5% spectra with <5% RMSE). 

Examination of 2D UMAP embedding (top center) shows a single, highly 
connected main manifold, with numerous apexes. This manifold is much more 
continuous than for the preceding land cover classes, with more dominant global 
structure and less prominent statistically local clustering. The S endmember fraction is 
again used to illustrate JC of this land cover compilation (bottom left).  

Again, many distinct clusters are clearly identifiable from the JC. 8 of the clearest 
are shown in red and yellow. These ROIs are differentiated in terms of both overall 
albedo and spectral curvature across the full VSWIR range, particularly in the infrared 
spectral region. The observed spectral variability is suggestive of differences in synthetic 
materials (plastics, asphalt, roofing materials, paint), as well as exposed substrates. 

ROIs are geographically visualized on 2 example tiles (right column). ROI pixels 
consistently cluster in ways suggestive of physical meaning (parking lots, roofs of large 
buildings, city blocks). Back-projection of ROIs onto both SVD and UMAP spaces again 
highlights the complementarity of each characterization approach. 
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Figure 7. Joint characterization of urban landscapes. 5 x 1 megapixel Sentinel-2 tile 
subsets are selected from global urban hotspots and analyzed at full 10 m pixel 
resolution. These spectra fill out most of the SVD mixing space (top left). The global 
3-endmember linear mixture model fits these spectra less well than the agricultural 
spectra (here, 97.5% of spectra with <5% RMSE). UMAP (top center) captures both subtle 
mixing continua and discrete clusters, but does not offer physical interpretability. Joint 
characterization (bottom left) uses the physical meaning of the Substrate mixture fraction 
to contextualize the subtle statistical relationships captured by UMAP. Example regions 
of interest are identified from the joint space and projected onto the ternary mixing and 
UMAP spaces. Mean spectra for each region (bottom center) illustrate similarities and 
differences among statistically distinct clusters. Clusters identified by joint 
characterization also frequently show geographic coherence (right column). 
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3.5. Forests 
Figures 8 and 9 show JC applied to a compilation of 20 tiles (2 sets of 10) from 

globally diverse forests. Forest spectra are preferentially distributed towards the D:V 
mixing line (consistent with closed canopy spectra), with a significant amount of 
additional mixing towards S (consistent with incomplete canopy closure, stems and 
other woody material, and/or senescent leaves). The forest spectra are better fit by the 
global SVD mixture model than any preceding land cover class (99.9% spectra with <5% 
RMSE).  

The 2D UMAP embedding (top center) shows a broad, well-connected manifold 
comprised of several major lobes. This manifold is visually less continuous than Urban, 
but more continuous than Sands or Lava/Ash. Multiple apexes to the main manifold and 
smaller disconnected pixel clusters are also present.  

The V fraction is the natural endmember to use for Joint Characterization (bottom 
left). Useful manifold structure is observed at a wide range of V fractions. In each figure, 
8 of the clearest are shown in cyan and green. These clusters are differentiated in terms 
of NIR amplitude (e.g., leaf structure), visible wavelength slope and curvature (e.g., 
pigments), and overall SWIR brightness (e.g., leaf water & dry matter). 

In each figure, ROIs are geographically visualized on 2 example tiles (right 
column). As with other land cover classes, geographic clustering of ROIs 
(microtopography, distance from channel, ecological differences among tiles) implies 
plausible geophysical meaning. Back-projection of ROIs onto both SVD and UMAP 
spaces again highlights the complementarity of each characterization approach. 
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Figure 8. Joint characterization of forests (1). 10 x 1 megapixel Sentinel-2 tile subsets are 
selected from global forest diversity hotpots and analyzed at full 10 m pixel resolution. 
These spectra preferentially occupy the V to D apexes of the SVD  mixing space (top 
left), leaving the S portion of the space relatively sparse. The global 3-endmember linear 
mixture model fits these spectra better than the agricultural spectra (here, > 99.9% of 
spectra with <5% RMSE). UMAP (top center) captures both subtle mixing continua and 
discrete clusters, but does not offer physical interpretability. Joint characterization 
(bottom left) uses the physical meaning of the Vegetation mixture fraction to 
contextualize the subtle statistical relationships captured by UMAP. Example regions of 
interest are identified from the joint space and projected onto the ternary mixing and 
UMAP spaces. Mean spectra for each region (bottom center) illustrate similarities and 
differences among statistically distinct clusters. Clusters identified by joint 
characterization also frequently show geographic coherence (right column). 
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Figure 9. Joint characterization of forests (2). 10 x 1 megapixel Sentinel-2 tile subsets are 
selected from global forest diversity hotpots and analyzed at full 10 m pixel resolution. 
These spectra preferentially occupy the V to D apexes of the SVD  mixing space (top 
left), leaving the S portion of the space relatively sparse. The global 3-endmember linear 
mixture model fits these spectra better than the agricultural spectra (here, > 99.9% of 
spectra with <5% RMSE). UMAP (top center) captures both subtle mixing continua and 
discrete clusters, but does not offer physical interpretability. Joint characterization 
(bottom left) uses the physical meaning of the Vegetation mixture fraction to 
contextualize the subtle statistical relationships captured by UMAP. Example regions of 
interest are identified from the joint space and projected onto the ternary mixing and 
UMAP spaces. Mean spectra for each region (bottom center) illustrate similarities and 
differences among statistically distinct clusters. Clusters identified by joint 
characterization also frequently show geographic coherence (right column). 
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3.6. Senescent Vegetation 
Figure 10 shows JC applied to a compilation of 5 tiles from diverse biomes 

dominated by senescent vegetation. Within the global SVD mixing space, these 
landscapes are preferentially distributed towards high- to mid- Dark fraction values, 
with mixing towards both V and S endmembers well-represented, but less 
comprehensive than for the agriculture compilation (top left). Like the forest 
compilations, these spectra are also well fit by the global mixture model (99.9% spectra 
with <5% RMSE). 

Examination of 2D UMAP embedding (top center) shows a single, highly 
connected main manifold. This continuity of this manifold is comparable to that of the 
urban land cover compilation. The V endmember fraction is again used to illustrate JC of 
this land cover compilation (bottom left).  

Again, many clusters are clearly identifiable from the JC. 4 of the clearest 
V-dominated clusters are shown in green. 4 additional S-dominated clusters were 
selected from the S-based JC (not shown) and projected onto the V-based JC space. 
S-dominated ROIs are differentiated in terms of differences in NIR brightness and 
associated curvature. V-dominated ROIs are differentiated in terms of red edge bands 
and SWIR, along with NIR brightness. The observed spectral variability is suggestive of 
differences in overall vegetation composition and 3D structure (e.g., differences in 
volume scattering associated with grass vs shrub vs tree morphologies), as well as stage 
of senescence. V-dominated ROI differences are suggestive of leaf water (SWIR) and leaf 
structure (red edge, NIR), with one cluster showing significant differences in visible 
wavelength curvature in addition to a 50% reduction in NIR brightness. ROIs are 
geographically visualized on 2 example tiles (right column), and again cluster in ways 
suggestive of biophysical meaning (along river channels, stands of trees, discernable 
savanna transitions). 
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Figure 10. Joint characterization of senescent vegetation. 5 x 1 megapixel Sentinel-2 tile 
subsets are selected from global forest diversity hotpots and analyzed at full 10 m pixel 
resolution. These spectra preferentially occupy the V to D apexes of the SVD  mixing 
space (top left), leaving the S portion of the space relatively sparse. The global 
3-endmember linear mixture model fits these spectra better than the agricultural spectra 
(here, 99.9% of spectra with <5% RMSE). UMAP (top center) captures both subtle mixing 
continua and discrete clusters, but does not offer physical interpretability. Joint 
characterization (bottom left) uses the physical meaning of the Vegetation mixture 
fraction to contextualize the subtle statistical relationships captured by UMAP. Example 
regions of interest are identified from the joint space and projected onto the ternary 
mixing and UMAP spaces. Mean spectra for each region (bottom center) illustrate 
similarities and differences among statistically distinct clusters. Clusters identified by 
joint characterization also frequently show geographic coherence (right column). 
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3.7. Tundra 
Figure 11 shows JC applied to a compilation of 5 tiles from diverse tundra 

landscapes. Within the global SVD mixing space, these landscapes are preferentially the 
D <-> V mixing line (consistent with dense vegetation and vegetation/water mixtures), 
with minor additional mixing towards S (consistent with dark, water-saturated soils) 
(top left). Like the forest and senescent vegetation compilations, these spectra are well fit 
by the global mixture model (99.8% spectra with <5% RMSE). 

Examination of 2D UMAP embedding (top center) shows a single main manifold 
with several lobes. This manifold is less continuous than the urban or senescent 
vegetation compilations, but more continuous than the sand or volcanic compilations. 
Here, the D endmember fraction is used to illustrate JC of this land cover compilation 
(bottom left).  

Again, many clusters are clearly identifiable from the JC. 4 of the clearest 
D-dominated clusters are shown in cyan. 4 additional low-D (and high V) clusters were 
also selected (shown in green). D-dominated ROIs are differentiated in terms of overall 
brightness in the NIR and SWIR (turbidity/flotsam?) and curvature in the visible 
(chlorophyll, CDOM?). V-dominated ROIs are differentiated in terms of NIR amplitude 
(plant community structure?), visible wavelength slope and curvature (pigments?), and 
overall SWIR brightness (canopy & understory water? Spatial mixing with underlying 
waterlogged substrate?). ROIs are geographically visualized on 2 example tiles (right 
column), and again cluster in ways highly suggestive of biophysical meaning (V: 
distance from river channel, microtopography, differences among tiles; D: sets of 
thermokarst lakes clustering together, possibly on the basis of lake age, largely distinct 
from river channels). 
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Figure 11. Joint characterization of tundra. 5 x 1 megapixel Sentinel-2 tile subsets are 
selected from global tundra diversity hotpots and analyzed at full 10 m pixel resolution. 
These spectra preferentially occupy the V to D apexes of the SVD  mixing space (top 
left), leaving the S portion of the space relatively sparse. The global 3-endmember linear 
mixture model fits these spectra better than the agricultural spectra (here, 99.8% of 
spectra with <5% RMSE). UMAP (top center) captures both subtle mixing continua and 
discrete clusters, but does not offer physical interpretability. Joint characterization 
(bottom left) uses the physical meaning of the Dark mixture fraction to contextualize the 
subtle statistical relationships captured by UMAP. Example regions of interest are 
identified from the joint space and projected onto the ternary mixing and UMAP spaces. 
Mean spectra for each region (bottom center) illustrate similarities and differences 
among statistically distinct clusters. Clusters identified by joint characterization also 
frequently show geographic coherence (right column). 
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3.8. Mangroves and Wetlands 
Figure 12 shows JC applied to a compilation of 10 tiles from diverse mangrove and 

wetland landscapes. Mixture fractions from these landscapes are distributed similarly to 
tundra, preferentially occurring near the D:V mixing line, with minor additional mixing 
towards S (consistent with more open canopies resulting in subpixel mixing with water 
or dark, water-saturated soils) (top left). Like the forest, senescent vegetation, and tundra 
compilations, these spectra are well fit by the global mixture model (99.9% spectra with 
<5% RMSE). 

Examination of 2D UMAP embedding (top center) shows a single main manifold 
with several lobes. This manifold also comparable to the tundra compilation: less 
continuous than the urban or senescent vegetation compilations, but more continuous 
than the sand or volcanic compilations. Here, the V endmember fraction is used to 
illustrate the JC approach (bottom left).  

Again, many submanifolds are clearly identifiable as apexes and clusters from the 
JC. 8 of the clearest V-dominated clusters are shown in cyan and green. 4 additional 
low-D (and high V) clusters were also selected (shown in green). D-dominated ROIs are 
differentiated in terms of overall brightness in the NIR and SWIR (turbidity/flotsam?) 
and curvature in the visible (chlorophyll, CDOM?). V-dominated ROIs are differentiated 
in terms of NIR amplitude (possibly associated with leaf and canopy structure), visible 
wavelength slope and curvature (potentially associatd with pigments), and overall SWIR 
brightness (potentially associated with canopy and/or understory water, and spatial 
mixing with an underlying waterlogged substrate). ROIs are geographically visualized 
on 2 example tiles (right column), and again cluster in ways highly suggestive of 
biogeophysical meaning (distance from river channel, microtopography, differences 
among tiles). 
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Figure 12. Joint characterization of mangroves and wetlands. 10 x 1 megapixel Sentinel-2 
tile subsets are selected from global forest diversity hotpots and analyzed at full 10 m 
pixel resolution. These spectra preferentially occupy the V to D apexes of the SVD  
mixing space (top left), leaving the S portion of the space relatively sparse. The global 
3-endmember linear mixture model fits these spectra better than the agricultural spectra 
(here, > 99.9% of spectra with <5% RMSE). UMAP (top center) captures both subtle 
mixing continua and discrete clusters, but does not offer physical interpretability. Joint 
characterization (bottom left) uses the physical meaning of the Vegetation mixture 
fraction to contextualize the subtle statistical relationships captured by UMAP. Example 
regions of interest are identified from the joint space and projected onto the ternary 
mixing and UMAP spaces. Mean spectra for each region (bottom center) illustrate 
similarities and differences among statistically distinct clusters. Clusters identified by 
joint characterization also frequently show geographic coherence (right column). 

 

 



Remote Sens. 2022, 14, x FOR PEER REVIEW​ 25 of 39 
 

3.9. Rocks and Alluvium 
Figures 13 and 14 show JC applied to a compilation of 20 tiles (2 sets of 10) from 

geologically diverse landscapes exemplifying rock and alluvium, respectively. Both rock 
and alluvium spectra are preferentially distributed towards the D:S mixing line, with 
minor mixing towards V within the global SVD mixing space (upper left). Like the 
lava/ash spectra, these spectra are less well fit by the global mixture model (96% spectra 
with <5% RMSE), presumably because the single Substrate EM does not capture the full 
geologic diversity of the basement rocks and alluvium. 

The 2D UMAP embedding (top center) shows a broad, well-connected manifold 
comprised of several major lobes. These manifolds are visually less continuous than 
Urban, but more continuous than Sands or Lava/Ash. Multiple apexes to the main 
manifold and smaller disconnected pixel clusters are also present.  

Here, the S fraction is the natural endmember to use for JC (bottom left). Useful 
manifold structure is observed at a wide range of S:D mixture fraction continuum. In 
each figure, 8 of the clearest apexes and clusters are shown. These ROIs are 
differentiated in terms of both overall albedo and spectral curvature across the full 
VSWIR range. Mean cluster spectra are suggestive of differences in underlying (mafic : 
felsic) mineralogy, rock type (igneous, sed, met), exposure age/weathering, 
hydrothermal alteration, presence/absence of evaporite minerals. 

In each figure, ROIs are geographically visualized on 2 example tiles (right 
column). As with other land cover classes, geographic clustering of ROIs (topographic 
position, relation to extraction operations) identified from JC implies plausible 
geophysical meaning. Back-projection of ROIs onto both SVD and UMAP spaces again 
highlights the complementarity of each characterization approach. 
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Figure 13. Joint characterization of rocks and alluvium (1). 10 x 1 megapixel Sentinel-2 
tile subsets are selected from global geology hotspots and analyzed at full 10 m pixel 
resolution. These spectra preferentially occupy the S to D apexes of the SVD mixing 
space (top left), leaving the V portion of the space relatively sparse. The global 
3-endmember linear mixture model fits these spectra less well than the agricultural 
spectra (here, only 96% of spectra with <5% RMSE). UMAP (top center) captures both 
subtle mixing continua and discrete clusters, but does not offer physical interpretability. 
Joint characterization (bottom left) uses the physical meaning of the Substrate mixture 
fraction to contextualize the subtle statistical relationships captured by UMAP. Example 
regions of interest are identified from the joint space and projected onto the ternary 
mixing and UMAP spaces. Mean spectra for each region (bottom center) illustrate 
similarities and differences among statistically distinct clusters. Clusters identified by 
joint characterization also frequently show geographic coherence (right column). 
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Figure 14. Joint characterization of rocks and alluvium (2). 10 x 1 megapixel Sentinel-2 
tile subsets are selected from global geology hotspots and analyzed at full 10 m pixel 
resolution. These spectra preferentially occupy the S to D apexes of the SVD mixing 
space (top left), leaving the V portion of the space relatively sparse. The global 
3-endmember linear mixture model fits these spectra less well than the agricultural 
spectra (here, 98.5% of spectra with <5% RMSE). UMAP (top center) captures both subtle 
mixing continua and discrete clusters, but does not offer physical interpretability. Joint 
characterization (bottom left) uses the physical meaning of the Substrate mixture fraction 
to contextualize the subtle statistical relationships captured by UMAP. Example regions 
of interest are identified from the joint space and projected onto the ternary mixing and 
UMAP spaces. Mean spectra for each region (bottom center) illustrate similarities and 
differences among statistically distinct clusters. Clusters identified by joint 
characterization also frequently show geographic coherence (right column). 

4. Discussion 
With these results in mind, we structure our discussion in three parts. First, we 

revisit each of the fundamental science questions that motivated this analysis. Next, we 
present an explanation for the underlying reasoning behind the effectiveness of the 
method. We then close with a brief discussion of limitations, avenues for future work, 
and concluding remarks.  

4.1. Revisiting the Motivating Questions 
4.1.1. Question 1: Variance-Based Characterization & Modeling  
The first set of questions addressed by this study concerned the overall SVD fraction 
(and misfit) distributions of globally significant land cover classes. The SVD fraction 
question is addressed by the ternary diagrams shown in the upper left of each of Figures 
4 through 14. We summarize this information in Figure 15, showing the SVD 
distribution for each land cover class (outer plots), as well as the merged global 
distribution of the entire mosaic (center left). Clearly, the land cover classes used in this 
study occupy overlapping subsets of the global SVD space. This is in part because 
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spectral mimicking may render distinct reflectances indistinguishable with a broadband 
sensor, and in part because not all land cover categories are fully mutually exclusive of 
each other. For example, some rock and alluvium subsets certainly contain some amount 
of green and senescent vegetation, as well as some sand, and some mangroves extend 
into the forest continuum. 
 

 
Figure 15. SVD fractions summarized by land cover type. Sands are dominated by S. 
Other geologic scenes show more mixing towards D. Urban, senescent, and agriculture 
show increasing mixing towards V, respectively. Forests, mangroves, and tundra then 
show decreasing S and increased skew towards binary V:D mixing, respectively.​
 

Despite this fundamental nonuniqueness observed in SVD fraction space, 
differences among land cover class distributions are also evident. Specifically, 
agricultural landscapes (light green) are the most spectrally variable of all the classes, 
spanning nearly the entire space SVD space. Forests, mangroves, tundra (dark green, 
dark cyan, and cyan, respectively) are reasonably well mixed, but preferentially occur 
towards the D:V binary. Urban landscapes (dark red) are also reasonably mixed, but 
instead skew towards the D:S binary. Rocks, alluvium, and lava/ash (dark gray, dark 
brown, and black) are further skewed towards the D:S binary, and the sands used in this 
compilation (red) demonstrate this preferential distribution even more strongly. 

Mixture model misfit also varies by land cover category (Figure 15, center right). 
Classes dominated by closed canopies, exposed soil, and water tend to yield relatively 
low misfits (5% error or less for >99% of pixel spectra). Classes with the highest misfit 
are likely to host greater substrate diversity than can be captured by a simple 3 EM 
model. This can take the form of either geologic (rock, soil, alluvium, lava/ash) or 
synthetic (urban) materials. Notably, even for these poorer-fit landscapes, the vast 
majority (>95%) of pixels still show root mean square misfits < 5%. 

 
4.1.2. Question 2: Topology-Based Characterization & Modeling 

The second set of questions concerns category dependence of the underlying 
topology of the spectral data manifold. These questions are addressed by the UMAP 
manifolds in the top center of each of Figures 4 through 14, summarized for convenience 
along the periphery of Figure 16.  
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Figure 16. UMAP summary. Urban and senescent show highly continuous manifolds. 
Forests, agriculture, tundra, and mangrove show increasing clustering/decreasing 
continuity, respectively. Of the geologic scenes, rocks and alluvium show more 
continuous manifolds, with lava/ash and sands showing highly sinuous, clustered 
manifolds with a large number of distinct apexes. 
 

Spectral manifold topology can clearly vary considerably across land cover types. 
In some cases, UMAP learns a single, well-connected manifold with a relatively small 
number of apexes and exterior clusters (e.g., Urban, Senescent Vegetation). In other 
cases, substantially more sinuous manifolds are found with more complex apexes and 
disconnected exterior clusters (e.g., Sands, Lava/Ash). Other land cover classes yield 
intermediate results. 
 
4.1.3. Question 3: Leveraging Variance & Topology with Joint Characterization  

The third set of questions we address concerns the practical utility of the joint (SVD 
+ UMAP) characterization approach. These questions are addressed by the joint 
characterization plots and associated spectra shown in the lower portion of Figures 4-14, 
and geographic patterns shown in the right columns. For brevity, these are not 
summarized in an additional figure here.  

Clearly, JC consistently succeeds in using SVD fractions to differentiate UMAP 
clusters on the basis of physical interpretability. JC-identified ROIs frequently 
demonstrate geographical coherence and spectrally interpretability from 
physically-based absorption features and scattering processes. In addition, JC produces 
potentially useful results even when overall spectral variance, spectral curvature, 
geographic size/contiguity of landscape features, and generative physical processes vary 
considerably across land cover types. Further, JC seems to be equally effective at 
capturing potentially useful clustering relations when landscapes are dominated by 
either S, V, or D endmember fractions.  
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4.2. Why JC Works: A Convergence of Visions 
The preceding analysis clearly demonstrates that JC is effective at identifying 

subtle, spatially coherent, spectrally distinct patterns in multispectral imagery. But why 
does this approach work? Here we present the philosophy underlying the approach 
context of two complementary visions for analysis of high dimensional imagery.​
 
4.2.1. The Geophysical Vision: Projecting each Pixel Spectrum Independently onto the 
Global Mixing Space 

One vision for the analysis of spectral imagery conceptualizes the problem 
geophysically. This approach is rooted in a long line of physically-based characterization 
and modeling which has been formalized by the field of geophysical inverse theory 
[48–50]. In the context of the present study, this framework considers the image analysis 
problem to be physical, linear, and deterministic. A specific, interpretable quantity is 
estimated (e.g., area contribution of constituent EMs). Some prior knowledge of the 
system is required – which fortunately has been obtained by previous studies 
characterizing the global spectral mixing space ([43,44,36] and subsequent papers). This 
knowledge is used to design a system of equations which can be formulated into a 
matrix which describes a specific set of linear mixing processes governing the interaction 
of incident solar radiation with the Earth surface. Only 1 tunable parameter (weight of 
unit sum constraint), rationale for parameter choice (1.0) has quasi-physical basis. A key 
assumption of this approach is that global variance is representative of information 
content. This assumption is intrinsically linked to the choice of error metric (or cost 
function), which is commonly selected as the l2 norm. Inverting the linear mixture model 
to obtain estimates of EM fractions provides a continuous result that is easily validated 
by comparison with higher spatial resolution imagery (vicarious validation) or in situ 
field measurements.​
 
4.2.2. The Statistical Vision: Learning High-Dimensional Structure Within and Among 
Clusters of Similar Pixel Spectra 

Another vision for the analysis of spectral imagery conceptualizes the problem 
purely statistically. This approach is rooted in the more recently developed field of 
manifold learning, e.g. as reviewed by [16] and implemented for hyperspectral image 
analysis by [51,52]. Here, no physical model is assumed. Instead, the pixel spectra and 
aggregate mixing space are treated purely statistically. Linearity is not assumed, and 
models generally have a stochastic element. The problem of characterization is 
formulated in terms of estimation of an abstract quantity (i.e., optimal embedding of a 
natively high-D manifold into a low-D space). Prior physical knowledge is not required, 
nor is it used. But several tunable parameters exist, which have the potential to 
significantly alter the end result. Often a parameter is used to quantify connective 
complexity by setting a number of statistical neighbors to be examined. In this context, 
hyperparameter choice is less defensibly physical (although arguments can be made for 
a link to spatial autocorrelation). The key assumption of this approach is that local 
topology is representative of information content. For this analysis, hyperparameter 
sensitivity is treated in the supplementary materials. 
 
4.2.2. Fusing These Two Visions: Joint Characterization  

JC was designed under the guiding principle that both the geophysical and 
statistical visions have intrinsic merit for the generalized problems of characterization 
and modeling of spectral imagery. Specifically, a framework was desired which could 
use the strengths the geophysical vision to mitigate the limitations of the statistical 
vision, and vice versa. 
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The fundamental idea of JC is to use two (or more) different formalizations of 
information to characterize, and ultimately model, high dimensional information. 
Conceptually, this can be understood using an analogy to parallax – systems capable of 
observing the world from two lines of sight can use both the redundancy and variability 
in the signals captured by each to estimate information not generally evident from either 
vantage point alone.  

Here, we use SVD mixture fractions as our geophysical metric, and one UMAP 
dimension as our statistical metric. The approach could easily be extended to 3D (e.g.  1 
SVD + 2 UMAP dimensions) or higher dimensions by using 3D UMAP projections and 
three (or more) fraction dimensions. When implementing JC in this context: mixture 
fractions give physically interpretable information capable of discriminating among 
UMAP-identified clusters; and UMAP embeddings give statistical information capable 
of separating subtle spectral features which are not evident from mixture fractions alone. 

4.3. Limitations and Future Work 
4.3.1. Limitations  

Like any analysis approach, JC is not without limitations. One important 
consideration is the nonuniqueness of the manifold learning output. A wide range of 
possible algorithms exist, and more are certain to be developed in the coming decades. 
While we use UMAP here, we note that t-SNE [53] and Laplacian Eignemaps [54] can 
also prove useful, for instance as shown in [28–30]. Other algorithms also possess 
important strengths and weaknesses. Similarly, these algorithms tend to have stochastic 
elements and require prescription of several tunable parameters; implementation always 
has the potential to be sensitive to hyperparameter choice and users are advised to 
examine the severity of this limitation on a case-by-case basis (e.g., [55]). Anecdotally, 
we do note that our experience suggests UMAP outputs are less likely to be plagued by 
severe issues in this regard than some other algorithms[56–58]. 

In addition, the manifold learning step is fundamentally dependent on the spatial 
resolution of the imagery in a way that SVD fractions are not. V fractions in particular, 
and SVD fractions more generally, have been shown to scale linearly from meter to 
kilometer ground sampling distance [37,39,59]. While global EMs are identified from 
spectrally diverse, PC-derived, aggregate spectral mixing spaces, each pixel’s SVD 
fractions are estimated independently from all other pixels, and are not sensitive to the 
overall number of samples. This is inherently not the case for manifold learning 
algorithms. Anecdotal results from spectral libraries and collections of leaf-level 
reflectance spectra are substantially less fruitful than results for full images. It is thus 
possible that the manifold learning aspect of JC may require the redundancy that is 
provided by image spatial autocorrelation to reach its potential. 

We further note that this workflow is not, at present, fully automatable. We do not 
find present methods of automatic cluster detection to yield satisfactory results in the 
context of JC. This approach can thus be considered semi-supervised, with final 
interactive input from the scientist to select the clusters and apexes for regions of 
interest. 

Finally, the globally standardized 3-endmember SVD model intentionally excludes 
some optically complex landscapes – notably, evaporites, cryosphere, and shallow 
marine envrironments. Reflectance images containing these features will not be 
accurately modeled by the global SVD endmembers, and so JC will be of minimal use. 
However, the wavelength-dependent mixture residual of the generalized global model 
may contain a significant amount of useful information, as suggested by [41], and 
applying JC to mixture residual images of this landscape may be significantly more 
useful in these cases. 
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4.3.2. Future Work 
A wide range of promising avenues exist for integrating JC into image analysis 

workflows. One category of future work involves integration with advances in data 
quality and quantity. For instance, JC has the potential to improve characterization and 
modeling of hyperspectral imagery (e.g., through recent & planned missions like EMIT 
[60], DESIS [61], PRISMA [62], CHIME [63], HISUI [64], and SBG [65]), as well as 
spatially and temporally dense image time series (e.g., Sentinel-2 and Planet imagery). 
Hyperspectral applications are particularly promising given its greater reported intrinsic 
dimensionality [66–70]. Application to field- and tower-based imagery is also promising. 

As noted above, another avenue for investigation is the incorporation of other 
algorithms and other information metrics. Several other nonlinear dimensionality 
reduction algorithms exist for this purpose beyond UMAP and t-SNE, like Laplacian 
Eigenmaps [54], ISOMAP [71], and both metric and nonmetric multidimensional scaling 
(MDS and NMDS, [72,73]). Similarly, other geophysical observed (emissivity, land 
surface temperature, night light luminance) and/or modeled (evapotranspiration, 
population density) parameters could be used as well.[29] 

5. Conclusions 
We demonstrate Joint Characterization (JC), a novel approach for spectral image 
analysis, using a globally diverse mosaic of 90,000,000 Sentinel-2 image spectra. JC 
exploits synergy between geophysical (spectral mixture analysis) and topological 
(manifold learning) approaches to characterization and modeling. Dependence of both 
approaches on land cover is examined through detailed investigation of 10 categories. 
For each class, mixture fraction distribution and spectral manifold topology are 
characterized, and JC is shown to effectively capture clusters and apexes which are 
clearly geographic coherent and spectrally distinct. The underlying philosophy of the 
method, its major limitations, and avenues for future work are discussed. Taken 
together, these results highlight the potential of JC as an effective, efficient approach for 
characterization and modeling of high dimensional image information.  
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Appendix A 
Here we include a supplementary figure showing hyperparameter dependence, and 

a supplementary table showing the Sentinel-2 Scene IDs used in this analysis. 
 

 
Figure S1. Hyperparameter dependence. dependence. Panel A: Impact of the 
n_neighbors parameter, illustrated for the full labeled mosaic across 2 orders of 
magnitude. Fewer neighbors generally results in a more clustered and less continuous 
manifold. Panel B: Effect of using a 3D embedding space, compared to the 2D spaces 
shown throughout this analysis. 

 

Table S1. Scene list. 
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