
Introduction 
In today’s world, data is one of the most essential and powerful elements an organisation 
can have. Daily operations in an organisation can churn out loads of data stored in traditional 
data stacks. But nowadays, storing raw data will not be enough because raw data will not be 
able to give you actionable insights, reporting, data models, formulas, etc. You will only get 
these things when you analyse the raw data, and data modelling is an integral part of that. 
 
Statype helps with automated actionable insights of raw data powered by data decision 
models and expert formulas. This document will cover some of the subsets of Statype’s data 
modelling, which includes the modelling pipelines, dbt general patterns, staging and media 
models, metrics, and much more. Let’s start! 

What is dbt? 
Before jumping right into data modelling and pipelines, you first have to get an idea about 
dbt. dbt is a transformational workflow that helps get a substantial amount of work done with 
the simultaneous production of high-quality results. dbt helps in centralising and 
modularising your analytical code, which results in the collaboration on data models, and 
also helps with the versioning, testing, and documenting of the queries before deploying 
them to production. Throughout the process, you will get monitoring and visibility, which will 
be highly advantageous as it will raise alerts if any issue arises. In addition, the centralisation 
of your analytical code reduces errors whenever there is a change in logic.  

A look into the data modelling structure of Statype 
The data modelling structure shows how the data modelling implements the flow of data 
from the providers to the layer of source and staging models. You can see a schematic 
diagram of the modelling structure below: 
 

 
 

 



The above picture shows that a load of data comes from the SaaS providers in the Fivetran 
in the PostgreSQL database. Fivetran acts as a connector between the data source and the 
PostgreSQL database. From the database, the data goes to the source models.  

What are the source and staging models? 
Here, source models are usual dbt-style staging models, which are used for changing the 
column name, and type or doing a very low-level cleanup of layers. These models are 
rebranded as source models because there is not always availability of one-to-one mapping 
between tables that exist from data sources in Fivetran. Therefore, you must do deep 
manipulations in the staging before entering the centralised data model. 
 
After getting low-level structural changes, the data goes to the pre-Data model layer. They 
are usually called source models because they can help join other models within a single 
source, like Salesforce or Stripe, to build a more robust model. The whole thing happens 
before the data enters Statype’s centralised data model. The data models formed at the 
staging model can be merged later into the centralised data model. The centralised data 
model is a non-dbt and non-datawarehouse thing and is a big normalised relational data 
model. 

Who are the customers in the data model? 
In the data model, you will get lots of customer data in various tables and columns. 
Therefore, before we explain the data model, we must know who the customers referred to 
in the data model are. The customers are the customers of the business that is paying 
Statype. Businesses are customers of Statype who are paying Statype to get different 
insights on their data. So, in simple terms, the customers in the data model are the 
customers of Statype’s customers. 

Data model layer 
The data model layer is highly normalised, like a transactional and analytical database. It 
encapsulates entities and complicated analytics insights that underlie when the data arrive. 
You can have a look at what a data model layer looks like in the below image: 
 

 



 
The image shows how transactional data are encapsulated into non-datawarehousy 
denormalised narrow and wide columns according to their weights. From the data model, the 
data goes to the analytics and aggregates models.  

What are aggregates and analytics models? 
Aggregates are models where we can get all of the relevant information from the view of a 
single customer within the application. For example, it aggregates a bunch of tables 
containing information such as contact information and others into one place so that the web 
application called “Portal” only takes one query. By reducing the number of tables, 
aggregates reduce the complexities of queries.  
 
Based on the principle of the normalising database, a notable thing about a super highly 
normalised database is that every piece of data in one place is stored exactly once. It is the 
exact opposite of using data warehouse modelling. The downside of using such modelling is 
the difficulty for the product engineering team to render customers as they have to ask for 
different data separately. 
 
Furthermore, they often use joins, which hinders the performance, and also it becomes 
challenging to write as well. The intention is that the product engineering team is able to 
query either analytics or the data model, meaning that querying one query at a time to get 
anything needed essentially. A normalised database also helps to keep the business logic in 
one place, and in the case of Statype, it helps the “Portal” web app to function seamlessly by 
doing all the required SQL work on the backend. 
 
Analytics models are derived from the data model and are useful for providing insights to 
Statype’s customers. They tend to consist of the time-series which backs all of the graphs in 

 



the application. In addition, the time-series contains a column called the period, which is of 
the type called hit. The highest resolution grain for Statype so far is the day, and as a result, 
it is in the date type. Statype uses dates with the time zones because time zones are one of 
the most complex problems that will keep your sign along with concurrency. Hence, the 
dates are ingested, and the time zones are ignored completely. 

Special models 
Now that we have discussed aggregates and analytics models, we will discuss a special 
model in the modelling structure. There is a join model called source_customers that allows 
the connection of customers from display sources that don’t share an attribute. In addition, it 
contains separate records for all Statype’s customers, which helps facilitate their customer 
records containing uncertainty at a later stage.  
 
With this, you now have a basic understanding of the pipeline of the data modelling structure 
of Statype. Next, we will have a look at the source integrations. 

Data sources and their implementations 
As of today, Statype has integrated sources from Stripe and Salesforce. Sources are 
databases that contain a lot of information (commonly known as data). For instance, the 
Stripe source (written as source_stripe) is a PostgreSQL warehouse database having two 
tables and a schema. The two tables are the customer and invoice tables containing the 
customer and invoice data, respectively.  
 
Now, if you look at one of the tables by clicking on them, you will find columns containing the 
type of data, their characters, their description, and the mode of tests associated with them. 
The below image shows what a table containing data columns looks like: 
 

 

 



Now, you can expand a row by clicking on it, which will give better descriptive information 
about the data column. For example, in the above image, you can see that the row 
containing “id” is expanded. Upon expansion, the description of the data column is visible, 
along with a better overview of the performed test. Here, as you can see from the above 
image, “id” is the primary key of the stripe customer records, and upon performing generic 
tests, it gives unique and not null values. The table also contains the associated SQL query 
in the model. 
 
The above description of “id” comes from using dbt constraints. The dbt constraints package 
has added the primary key attribute to the data column. Hence, a question might arise in 
your head regarding what a dbt constraint is, and we will have a look at it. 

What are dbt constraints? 
dbt constraints can be defined as a package that allows us to add primary keys, foreign 
keys, and other constraints based on the test result of a dbt project. The constraints are 
implemented by running a post-run hook within the dbt. The implementation of the package 
can only be done with the test data. If you run a test on your dbt project, it will check for 
constraints, and then only you will be able to enforce them. 
 
So, let’s take an example with a yaml file. Below is a yaml file from Statype’s data model: 
 

 
The above image shows a data model of an inner layer of contacts that will store contact 
information for businesses. It will contain the contact name, key contacts, contact ID, and 
other relevant information concerning a business’ contacts. In the model, a primary key 
constraint has been added to the contact ID, which helps in quick querying and guarantee 
uniqueness. The primary key for contact records will be run as a dbt test, and if there are 
any duplicate data, the test will fail as it will fail to maintain uniqueness.  
 
Hence, it is evident that tests are an essential part when it comes to applying constraints, 
and in the next section, we will take a look at how testing works with dbt; and understand it 
from Statype’s perspective. 
 

 



Testing with data models 
Tests are assertions that you make about your models and other resources which help you 
get an assessment of the passing or failing of a project. Tests are needed to identify errors, 
monitor response times, etc., of your model that helps improve the project's quality. Since we 
are using dbt as our workflow, we need to know the basics of dbt testing. 

Tests in dbt  
In dbt, tests are SQL queries. You can use dbt tests to improve the integrity of your SQL 
queries based on the assertions you will make on the results generated from the tests. dbt 
tests help you identify whether a specified column in your model has non-null values, unique 
values, values from specific lists, or values that have a corresponding value in another 
model. Hence, you can turn any assertions made in the form of a select query into a test.  
 
If you assert that every column in your model is unique and has non-null values, the test 
query selects for duplicates and will seek null values respectively. After this, if the test 
returns zero failing rows, it indicates that the test has been passed, validating your assertion. 
By running the command `dbt test`, you will get to know whether each test in your project 
has passed or failed. There are several modes of testing in dbt. Here, we will focus on the 
dbt unit tests. 

What is unit testing in dbt? 
A unit test in dbt can be considered a test in which mock inputs are provided to check the 
results against the asserted model. It is based on the software development practice of TDD 
or Test-Driven Development. In this practice, before you write a single line of code, you write 
the test that will exercise that code. As a result, the test will be read immediately and fail. 
After that, you will implement the code and the resources and wait for the test to pass. 
 
dbt unit testing is highly advantageous and useful for SQL code using complicated business 
logic because this type of testing will help you provide mock inputs for all kinds of test cases, 
including edge cases. We will understand unit testing with the help of a test query. 

dbt unit testing with Statype’s data model 
To have a deeper understanding of the dbt unit testing, we will take a sample query from the 
bunch of unit test queries in the analytics package that were written based on our data 
model. The query with less granularity will be easy to observe and understand. Below is the 
image of a unit test query that is used for testing Statype’s 
cohorts_by_year_mrr_arr_monthly model: 
 

 



  
To understand the test query, firstly, you need to know the model for which the query is being 
written. Here, the model we need to understand is the cohorts_by_year_mrr_arr_monthly 
model. Cohorts can be defined as a group of customers who join in a month or a year. 
Cohorts_by_year means that you are opting for yearly buckets of cohorts instead of monthly. 
Fairly new companies opt for monthly cohorts as generating revenue within a short period 
becomes essential for them. The mrr_arr_monthly refers to the monthly and annual recurring 
revenue with a monthly grain associated. Hence, this model calculates the revenue earned 
per yearly cohort with the help of monthly and annual recurring revenue with a monthly grain. 
 
In the above image, you can see that the source data and the customer data of stripe are 
being set up. The customer data shows the names of four employees of Statype, their email 
IDs, and their date of joining. Furthermore, you can also see the source data of stripe for 
invoices. It contains the invoice ID, amount, the date on which those invoices were created, 
and the customer ID. Also, the source data of stripe for customers and invoices are in CSV 
format. The amounts for invoice data are written in the form of pennies. Hence, the amount 
written in the form of 5000 denotes a 50 dollars bill.  
 
In the test, the source data gets compared with the expected data. This is what a query of 
expected data looks like: 
 

 



 
When you do the dbt test, the stripe's customer and invoice source data get loaded into the 
source tables in dbt. Then, the system runs the cohorts_by_year_mrr_arr_monthly model, 
and the generated results get compared with the expected results. If you look closely at the 
source data of stripe for customers, you will see that Moisey and David joined in the same 
cohort, and Tammy and Stafford joined in another cohort. So, it is expected that none of 
them can print money until the next month, and as a result, in the expected data, the MRR 
and ARR for the month of their joining remain zero. The months after that shows the 
expected revenue generated in the form of monthly and annual recurring revenues. 
 
You will find the `now` tag in the config section at the start of the query. 28th of March is the 
date associated with that tag. This tag will make the system pretend that during the time of 
the test, the date is the 28th of March. The `now` function is associated with the `now` 
macro. Below is a query of the `now` macro: 
 

 
The macro shows that if Postgres's `now` function is in a unit test, it will return the value of 
`now` as a timestamp.  
 
If you run the test in your terminal using the command `dbt test`, you will see that the test 
has been completed. The output in the terminal will look like this: 
 

 



  
Completing a test doesn’t necessarily mean passing the test. The following section will help 
you understand how to identify that a test has passed. 

Identifying the passing of a test 
A simple test with your test query can help you observe whether the test has passed. You 
can choose a query with a low resolution where the test values are more diminutive. It will 
help you understand easily. For this example, we will take the previous unit test query of 
cohorts_by_year_mrr_arr_monthly and change the stripe source invoice data. Hence, in the 
first row, we will change the due amount of 5000 to 5001. The expected output will look like 
this: 
 

 
Now, if you run the command `dbt test` in the terminal, you will see warnings while the test is 
being performed. The below image shows the warning as an output in the terminal indicating 
that the test has failed: 
 

 
Now, as we have changed the due amount to 5001, it has compared with an MRR of 7001. 
The changed MRR gave a change in the value of the ARR as well. But in the expected 
value, we wanted a comparison with an MRR value of 7000; as a result, the test failed. 
Hence, with the changed value in the source data, the system ran the model and failed to 

 



match the expected MRR and ARR related to that data. Changing the source data again to 
5000 will pass the test without any warnings.  
 
We have discussed everything related to testing with dbt and how we can do a unit test with 
one of our data models. Next, we will understand the structure of the analytics column of a 
model in the following sections. 

Structuring a data model in an analytics package 
We have seen the expected data of a unit test query in action, which comes with a structure 
comprising the period column, cohorts column, and values column. If we pick any other 
query, we will see the same format. For example, if we take a query representing the 
Lifetime Collective Revenue (LCR) with a monthly grain, we will see a structure like this: 
 

 
The above image clearly shows that the format stays the same. Here again, you can notice 
that the structure of the expected data comprises a table containing periods as dates, a jinja 
macro that defines the customer ID linked with a customer surrogate key, and a value 
column. 

Customer surrogate key 
In this query, the customer_id1 is set to a customer surrogate key of the customer. The 
customer surrogate key is a dbt utils function, which in the case of Postgres is known as 
md5. md5 gives an output of a 128-bit value which can be easily represented as an integer 
but is often represented as the hexadecimal string value of the 128-bit output. It is 
challenging to create a sizeable normalised database with an integer Primary Key with the 
help of dbt. The surrogate key method takes a list of values, and md5 unifies them and 

 



places them elsewhere. It is highly performant as it helps index a column and concatenates 
them.  
 
We can view the customer surrogate key as a hexadecimal string by running an `echo` 
command in the terminal. The following command gives you an md5 value as a string: 
 
``echo -n “” | md5`` 
 
Within the quotation, entering the customer email will give you the customer surrogate key 
as an output. Here is how it looks in a terminal: 
 

 
The customer surrogate key of Moisey is extracted as an md5 value consisting of a 
hexadecimal string that can be considered an integer. So, this is how you can view a 
customer surrogate key which plays a significant role in indexing customer IDs. Next, we will 
have a look at the indexing.  

Indexing a model 
Indexing is an essential part of structuring and comes from the Postgres utilities. Indexing 
data models in the data_model package is simple because it requires indexing done in a 
transactional database. This involves indexing all primary keys. On the other hand, In the 
case of data models in the analytics package segmented by `period` and `customer_id`, like 
the ones we used previously, we will need three indexes which will be used on `period`, 
`consumer_id`, and a compound index that will be used on both `period and consumer_id` 
respectively.  
 
Let’s take an example of a query of a model in the analytics package where the 
‘business_mrr_arr_daily` model is run to calculate the monthly and annual recurring revenue 
of a business with a daily grain. It is given below: 
 

 



  
The business_mrr_arr_daily model denotes the revenue collected by Statype’s customers 
over a period. In the query, only one index has been used for the period because the period 
and the value column containing the MRR and the ARR values will be the only column 
present. When this model is deployed to the customers, there will be only one business 
consisting of all the customers’ revenues. 
 
In the above query, we have assumed the monthly and annual recurring revenue of all 
customers with a daily grain for the `business_mrr_arr_daily` model. The model used for 
calculating the customers’ revenue is the `customers_mrr_arr_daily` model. Let’s have a 
look at its query: 
 

  

 



In the query, you will observe that we have taken an index on `period`, `customer_id`, and on 
both ‘period` and `customer_id`, which can be defined as range queries. So, there will be 
four columns containing `period` as dates, `customer_id`, MRR and ARR values, and the 
revenue ranging from the first to the last date of the month. 
 
This is how indexing is done in a data model in an analytics package. It helps in generating 
graphs and locating data in databases quite easily and quickly. In the following segment, we 
will look at the lineage graphs generated through complex computations of data models. 

Lineage graphs 
Directed Acrylic Graphs (DAG) or lineage graphs show the transformation and consumption 
of data during the movement of data that exists for the data transformations in an 
organisation. A lineage graph helps you visualise the nodes that must come before a current 
model, also known as upstream dependencies. It also gives you the downstream 
relationships with the work that the current model has impacted.  
 
As lineage graphs are directional, they display a defined flow of movement and form loops 
that are non-cyclical in nature. In addition, the graphs show the functional relationships 
between the data sources, models, and dashboards. Finally, the bottlenecks and 
inefficiencies in data work can be seen effectively with the help of a lineage graph. 

Why is data lineage important? 
Data lineage is an essential aspect of analytics engineering. Through data lineage, you will 
get a holistic view of the data pipeline and the movement of data within an organisation, 
including the transformations and consumptions. It is usually represented through directional 
graphs and data catalogues.  
 
The overall detailed view of the data pipeline is advantageous to the data team as it helps 
them build, analyse, and troubleshoot workflows more effectively. In addition, data lineage 
helps reduce headaches during root cause analysis, minimises unexpected downstream 
problems that usually occur while making upstream changes, and empowers business 
owners by helping them understand the origins of reporting data and providing means for 
data discovery. 

Plotting a lineage graph with a Statype dataset 
Below is a picture of a giant lineage graph plotted with the help of the data obtained from 
Statype’s Stripe integration: 

 



 
On the left, you will observe ``_versions`` from where the directional flow of the graph starts. 
It is where all the build versions are stored. Build versions are useful only in the sample and 
production warehouses to denote the freshness of Statype’s customers. The graph also 
shows the various sources along with the data flows.  
 
In the next part, we will take a closer look at one of the data models that helps calculate 
monthly and annual recurring revenue with a daily grain for a business. 

Calculating the ARR/MRR with a daily grain of a customer 
The ``customers_mrr_arr_daily`` model helps calculate annual and monthly recurring 
revenue with a daily grain for Statype’s customers from their data. It is a complex data model 
that deals with many complications. To understand the concept of MRR and ARR deeply, we 
have to understand the backstory behind customer data. The data used in the model are the 
Stripe data from one of Statype’s customers. Most of the customers of the business that 
gave Statype data pay them monthly on a usage basis. In addition, the customer sells 
products related to APIs, and as a result, they have a bunch of different plans. However, the 
plans help them have the same number of monthly API calls. Also, a few of the plans got 
interesting details to deal with the company’s Stripe invoice data for revenue. The invoice 
data helps in generating MRR/ARR on the page as graphs backed by data. 

What are overages?  
For the above business, the majority of their customers get billed monthly on their 
anniversary or sign-up date for a given product. For example, if the sign-up date is on the 
3rd of the month, the customer will get invoiced every third of a month for an amount. The 
invoice generally includes the plan's cost for that product and the overages. The overages 
are a one-off thing, but the real question arises whether we should add them to the monthly 
or annual recurring revenues. But as we have previously discussed, this business has 
custom plans for its customers, and as a result, they have predictable revenue. Hence, there 
will be no overages for most cases. 
 

 



Moreover, the invoice total will be considered for the model rather than the invoice line items. 
For example, suppose we try to distinguish between invoice total and line items with respect 
to Statype’s recurring revenue data model for the customer. In that case, it will be seen that 
the model only looks at the amount of money taken in the last month per customer. Hence, if 
there are any overages, they will be added to the Monthly Recurring Revenue. 

Why are overages included in the MRR calculation? 
Monthly Recurring Revenue answers the reasonable question of the amount of money a 
business gets per month from a particular customer. However, as overages are extra 
expenses on rare occasions, it usually gets omitted from the MRR calculation. Figuring out 
an overage from a regular bill is very difficult because it requires high granularity in the data. 
But as of the moment, Statype doesn’t have that granularity level on the data; hence, we 
include overages in our calculation from the total invoice values. Also, it is certain that we will 
try to eliminate overages in the future. 

What is the importance of periods in total invoice values? 
The total invoice values for any given period are generated on the customer's anniversary 
date. So, for example, if one customer has joined the business on the 3rd of a month, the 
invoice values will be billed on the 3rd of every subsequent month. As a result, the monthly 
recurring revenue of every month is different because not all months have the same number 
of days, and it also does impact the annual recurring revenue in case of a leap year. 
 
Let us assume a company with a product that charges every minute. As a customer, you 
joined that business on the 28th of February. In that case, you will be billed on the 28th of 
every month, meaning you will be charged for 28 days worth of minutes; hence, there will be 
months when you will get free access to that product for 2 to 3 days. 
 
Similarly, if you join that same business on the 31st of any month, you will be charged for 31 
days worth of minutes for the subsequent months, irrespective of the total number of days 
per month. So now, for the same company, if they have two different products and you are a 
customer of both products, you will be billed separately and have separate invoices. But in 
the MRR, both the values from the invoices will be added and calculated. 

Calculating MRR/ARR daily with a 28-day rolling average 
Suppose a customer gets billed every 31st for the anniversary of his joining and then gets 
billed every 3rd and 9th for the two other products. Here, the problem arises because the 
joining anniversary is at the last of the month. Hence, after paying every last of a month, the 
customer has to pay on two subsequent dates at the start of the following month. 
Sometimes, this can go against the will, and to address this problem, the MRR with a daily 
grain can be calculated with a 28-day rolling average. Also, if we use a rolling average of 30 
days instead of 28, there is a chance of double-counting billings at both ends of the month 
because you will often get two billing cycles. 
 
Due to the double-counting of billings for two different months, the revenues will be 
combined, and the business will see a sharp spike in their revenue for a particular segment. 
But it will drop once the old bills are rolled up, harming the business.  

 



 
The following image will show how the 28-day rolling average has been used in the 
`customers_mrr_arr_daily.sql` query: 
 

 
In the query, we see that customer revenue item days have been pulled from the 
intermediate customer revenue item days. The intermediate customer revenue item days is 
an intermediate model denoted by the `int_customer_revenue_item_days.sql` query. This 
model includes the cross-joining of unique customer IDs. Furthermore, the particular table 
generated from this model contains the period, customer IDs, and the daily sum of all 
customer revenues in three columns. The code depicting the above can be seen below: 
 

 



 
 
Hence, this model sums up all of the everyday revenue models per customer. So, for 
example, if you are a customer getting two invoices in a day, the value of both invoices will 
be summed up and put in the table. Next, in the previous image, you can see the use of the 
windowing function with customer IDs as identifiers to get the rolling average of 28 days. 
Although we are calculating the daily grain MRR with a rolling average of 28 days, we have 
to order between the 27 preceding and the current row according to the period or date 
because that’s how PostgreSQL works. 
 
After this, we will understand how the MRR and ARR can be calculated from the months 
having 30 or 31 days. The following code from the `customers_mrr_arr_daily` model will help 
us get a clear picture: 
 

 

 



To get to the fact that there are 30 or 31 days months, we can see that without this 
`customer_mrr_daily_with_gap_closure` on non-February months, there are 2 or 3 days 
which represents zero revenues in the middle that differentiates between the 28-day average 
and 30 or 31-day average. Hence, as done in the code, we have to do the coalescence of 
the initial values that are non-zero before the gap and fill up the three days with them. The 
coalescence will take place between the greatest of the three non-zero values or nulls and 
zero. Also, note that if there are no prior non-zero values that can fill the gap of those three 
days, you have to consider them nulls. 
 
Next, if you multiply the generated MRR by 12 from 
`customers_mrr_daily_with_gap_closure`, you will get the annual recurring revenue of a 
customer.  

What are the compromises made when calculating MRR with gap 
closure? 
The above process of calculation does have some downsides. For example, suppose a 
customer stops giving money to the business; then, there will be three days of non-zero 
revenue at the end of the churn. Hence, it will look like the customer is in the plan for an 
extra three days, which might turn into a month as those three days are crossing the month 
boundary. But it is a minor concern because it gives us a value much closer to the one we 
deserve. 

Difficulties in calculating MRR/ARR with contractual-based 
payments of a business 
The Statype customer that sells products related to API has customers that get billed 
monthly on their anniversary date. But they also have customers who pay a lump sum of 
money upfront, equivalent to getting a service for 6 to 12 months as part of a contract. 
Unfortunately, due to the lack of contract information, we do not divide that amount by 6 or 
12. As a result, there are occurrences of funny spikes in their revenue, which is a problem 
that needs to be solved in due time. 
 
Moreover, we don’t have a deep understanding of the product. We don’t know whether there 
will be any secondary effect as part of the spikes in the graph, or we can have completely 
different sets of data based on the contract that can feed into the revenue metrics. Now, if 
we divide the lump sum amount by 6 or 12, depending on the month, we will get a flat and 
uninteresting MRR/ARR until any sign of renewals. Although, the generated value will not 
affect any revenues of any other segments. Again, this problem can’t be fixed within the 
`customers_mrr_arr_daily` model but can be fixed within the intermediate 
`int_customer_revenue_item_days` model. 

Understanding the `int_customer_revenue_item_days` model 
The intent of the intermediate `int_customer_revenue_item_days` model is to groove a given 
customer’s revenue model on a daily basis. Therefore, it creates a time-series metric for 
every customer for the invoiced amount mounting daily from the first day of the invoice. As 
mentioned in a segment earlier, this model gives out a data table with three columns. It 

 



consists of the periods, which refers to the day in which the customer gets invoiced, the 
customer_ids, which serve as a unique identifier for the invoice created per customer, and 
the daily_sum_for_customer which tells us the total of all the invoices that have been issued 
to a customer in a single day. Below is the query of this intermediate model that will give us a 
picture of how this model will work: 
 

 
The `customer_revenue_items` are essentially invoice items that can be separated with 
specific naming from Stripe in accordance with the actual data model. Next, the 
`first_revenue_item_date` can be considered the very first date we have a revenue model. 
This data is essential as it is a stepping stone for building the data model. After that comes 
the `day_spine`, a daily period spine often denoted as a series of every single day from the 
date of the very first revenue model as a date.  
 

 



 
`unique_customer_ids` are required to build the correct cross-join with all dates. Multiple 
customers can have the same email address, but they can be differentiated with unique 
customer IDs associated with the creation date. The unique customer IDs are linked up 
every single day with the day the customer is created. Hence, it will list the company's 
revenue every day from the date of the first revenue model and then combine the unique 
customer IDs after the customers have been created. So, it will not make sense for a 
customer joining in 2022 to have a customer ID with a date of 2017 for revenue items.  
 
After customer IDs, you will find `customer_days`, which shows the revenue data that the 
customers can have every single day. And then, the joining happens with the recognition 
date of the customer revenue items to the day the customer actually exists. Finally, the 
model gives the output of a table containing the customer's dates of their first invoice, their 
IDs, and the daily sum of all the invoices. 
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