
Space Shooter
Project Repo: https://gitlab.com/gamedev-cuni-cz/gpp/space-shooter

Starting point
All the necessary GUI is already prepared (main menu, end screen, HUD). Also the game’s
state is ready and globally accessible with all the necessary functions. The game scene is
prepared with a scrolling background.

Steps

Reverse engineering to reverse movement
Look throughout the solution and make sure you understand how everything works. Inspect the
nodes themselves and the associated GDScript.

Let’s see if you understood how it works by reversing the way the parallax background scrolls!

Player’s movement
The player is able to move to the sides using A/D or Left/Right.

Task 1: Create a Player scene, which can move to the sides using A/D or Left/Right. Create it
as an Area2D (so it can detect overlaps), containing a Sprite and CollisionPolygon2D.

CollisionPolygon2D — Godot Engine (stable) documentation in English
Input examples — Godot Engine (stable) documentation in English
CanvasItem — Godot Engine (stable) documentation in English (get_viewport_rect())

WIth the Select Mode (Q) selected, we can create the collision polygon using the tools on the right.

https://gitlab.com/gamedev-cuni-cz/gpp/space-shooter
https://docs.godotengine.org/en/stable/classes/class_collisionpolygon2d.html
https://docs.godotengine.org/en/stable/tutorials/inputs/input_examples.html
https://docs.godotengine.org/en/stable/classes/class_canvasitem.html#class-canvasitem-method-get-viewport-rect

The input map was set up.

Shooting
Task 2: Allow the player to shoot (create bullets which travel upwards) using the spacebar.

To instantiate objects, you need to have a reference to a PackedScene (obtained generally by
the preload function), call it’s instance() method and add it as a child of some Node
(node.add_child(obj)).
The main game scene — Godot Engine (stable) documentation in English (instancing example)

Optional: Create an array bullets in the GameState. Use it to keep track of all bullets on the
screen.

Destroy the bullets when they go out of the screen. Instead of Area2D Nodes on all sides of the
screen, use the VisibleOnScreenNotifier2D node (which has a signal it emits when the bullet
exits the screen).

Nodes and scene instances — Godot Engine (stable) documentation in English
VisibleOnScreenNotifier2D — Godot Engine (stable) documentation in English
Node — Godot Engine (stable) documentation in English (queue_free() method)

The input map was set up.

https://docs.godotengine.org/en/stable/getting_started/first_2d_game/05.the_main_game_scene.html#main-script
https://docs.godotengine.org/en/stable/tutorials/scripting/nodes_and_scene_instances.html#creating-nodes
https://docs.godotengine.org/en/stable/classes/class_visibleonscreennotifier2d.html
https://docs.godotengine.org/en/stable/classes/class_node.html#class-node-method-queue-free

Spawning meteoroids
Task 3: Create a Meteoroid scene representing an indestructible meteoroid. Add an Obstacle
Spawner node (as a container) with a Timer child, which will spawn a meteoroid every second.

Optional: Create an array meteoroids in the GameState. Use it to keep track of all meteoroids
on the screen.

Meteoroids moving in a random direction are spawned in regular intervals (and registered in the
GameState.meteoroids array).

Random number generation — Godot Engine (stable) documentation in English
Timer — Godot Engine (stable) documentation in English

Collisions with meteoroids
Task 4: The player should lose a life on collision with the meteoroids and the meteoroid is
destroyed.
Groups — Godot Engine (stable) documentation in English
Node — Godot Engine (stable) documentation in English (is_in_group() method)

Adding the selected node to a group.

Bullets destroyed on collision
Task 5: If the bullets collide with the meteoroids, they get destroyed. Use signals.

Enemies
Task 6: Create an Enemy scene that bounce from the left to the right, then to the left again
while shooting in regular intervals (use the Timer node). They also move slowly down and are
destroyed after leaving the screen.

It is recommended to create a new Enemy Bullet node instead of using the original Bullet for
both player’s and enemy’s.

Optional: Create an array enemies in the GameState. Use it to keep track of all enemies on the
screen.

https://docs.godotengine.org/en/stable/tutorials/math/random_number_generation.html
https://docs.godotengine.org/en/stable/classes/class_timer.html
https://docs.godotengine.org/en/stable/tutorials/scripting/groups.html
https://docs.godotengine.org/en/stable/classes/class_node.html#class-node-method-is-in-group

Spawning enemies
Task 7: Enemies are spawned in regular intervals.
VisibleOnScreenNotifier2D — Godot Engine (stable) documentation in English

Destroying enemies
Task 8: When an enemy is hit, it is destroyed and the bullet as well.

Enemies hurting the player
Task 9: The player loses a life on collision with the enemies’ bullets or the enemies themselves.

Score
Task 10: The player gets points for every avoided meteoroid/enemy and every destroyed
enemy.

Optional Tasks
Opt. Task 1: Refactor! There’s probably a lot of copy-pasted code right now. Try to deal with it
by inheriting from your custom base class (which derives from Node2D). (At least go for a
common ancestor for the EnemyBullet and the Bullet).
Opt. Task 2: Improve the gameplay of the game and try to make it fun!

Useful resources
Step by step — Godot Engine (stable) documentation in English
GDScript — Godot Engine (stable) documentation in English
Applying object-oriented principles in Godot — Godot Engine (stable) documentation in English

Assets sources
Kenney • Space Shooter Redux

https://docs.godotengine.org/en/stable/classes/class_visibleonscreennotifier2d.html
https://docs.godotengine.org/en/stable/getting_started/step_by_step/index.html
https://docs.godotengine.org/en/stable/tutorials/scripting/gdscript/index.html
https://docs.godotengine.org/en/stable/tutorials/best_practices/what_are_godot_classes.html
https://www.kenney.nl/assets/space-shooter-redux

	Space Shooter
	Starting point
	Steps
	Reverse engineering to reverse movement
	Player’s movement
	Shooting
	Spawning meteoroids
	Collisions with meteoroids
	Bullets destroyed on collision
	Enemies
	Spawning enemies
	Destroying enemies
	Enemies hurting the player
	Score
	Optional Tasks

	Useful resources
	Assets sources

