Shared

Scope and sequence: IB Diploma CS

Sha Tin College, class of 2027

Time period

Lesson focus

September, October

B2: Programming

Mid term break

November, December

B1: Computational thinking
B3: Object oriented programming

Winter break

January, February, March

B4: Abstract data types
A3: Databases

April break

May, June

Year 12 timed assessments

Internal assessment lessons
Submit Internal Assessment draft (Criteria A, B, C)

Summer break

Submit Internal Assessment draft (Criteria D, E)

September, October

A1: Computer fundamentals
A4: Machine learning

Mid term break

November, December

A4: Machine learning (continued)
A2: Networks

Submit Internal Assessment final

Winter break

January, February, March

Mock examinations

Case study

Exam revision

April break

May, June

External examinations

Detailed scope and sequence

PROGRESS DRAFT

B2.3.2 Construct programs utilizing appropriate
selection structures.

e Mustinclude: if, else, else if (Java), elif
(Python), to execute different code blocks
based on specified conditions

Week of Topic Lesson Title Mapping Teaching & le:
18/08 B2: 1 Hello world 1. Install VS C
Programming 2. Install Githt
3. Create a Gi
4. Create a Gi
5. Add me as
6. Practice upl
7. Checking tt
® Solve
18/08 B2: 2 Numeric types & B2.1.1 Construct and trace programs using a range | Exercise 1: Te
Programming operations of global and local variables of various data types. %Ft)s_i//pba_tim‘
-1-temperatur
e Data types: Boolean value, char, decimal, .
integer, string Exerglse 2 SF(
https://pbaum
. -2-spell-check
18/08 B2: 3 String types & B2.1.2 Construct programs that can extract and
Programming operations manipulate substrings. Exercise 3: M.
https://pbaum
e Writing of programs that accurately -3-maze-navic
identify and extract substrings from given
strings, demonstrating the ability to Exercise 4: Fr
perform various manipulations, such as mps_//m
. . . -3-maze-navic
altering, concatenating or replacing -
Exercise 5: Re
https://pbaum
25/08 B2: 4 Arrays & lists B2.2.2 Construct programs that apply arrays and -5-robot-instru
Programming Lists.
Leetcoode prc
e One-dimensional (1D) arrays,
two-dimensional (2D) arrays, ArrayLists in o #1-
Java ° #412
e One-dimensional (1D) Lists and o #9-|
two-dimensional (2D) Lists in Python e #125
e Add, remove and traverse elements in a e #88-
dynamic list o #26-
proce
e #38-
25/08 B2: 5 Arrays & lists
Programming Hackerrank pr
25/08 B2: 6 Sequence & B2.3.1 Construct programs that implement the e Simp
Programming selection correct sequence of code instructions to meet e Com
program objectives. e AVe
e Diag
e The impact of instruction order on program e Plus
functionality e Stair
e Ways to avoid errors, such as infinite e Mini-
loops, deadlock, incorrect output e Birth

https://www.hackerrank.com/challenges/solve-me-first/problem
https://pbaumgarten.com/docs/ib-compsci-2027/b2.html#exercise-1-temperature-tracker
https://pbaumgarten.com/docs/ib-compsci-2027/b2.html#exercise-1-temperature-tracker
https://pbaumgarten.com/docs/ib-compsci-2027/b2.html#exercise-2-spell-checker
https://pbaumgarten.com/docs/ib-compsci-2027/b2.html#exercise-2-spell-checker
https://pbaumgarten.com/docs/ib-compsci-2027/b2.html#exercise-3-maze-navigator
https://pbaumgarten.com/docs/ib-compsci-2027/b2.html#exercise-3-maze-navigator
https://pbaumgarten.com/docs/ib-compsci-2027/b2.html#exercise-3-maze-navigator
https://pbaumgarten.com/docs/ib-compsci-2027/b2.html#exercise-3-maze-navigator
https://pbaumgarten.com/docs/ib-compsci-2027/b2.html#exercise-5-robot-instructions
https://pbaumgarten.com/docs/ib-compsci-2027/b2.html#exercise-5-robot-instructions
https://leetcode.com/problems/two-sum/description/
https://leetcode.com/problems/fizz-buzz/description/
https://leetcode.com/problems/palindrome-number/description/
https://leetcode.com/problems/valid-palindrome/description/
https://leetcode.com/problems/merge-sorted-array/description/
https://leetcode.com/problems/remove-duplicates-from-sorted-array/description/
https://leetcode.com/problems/count-and-say/description/
https://www.hackerrank.com/challenges/simple-array-sum/problem
https://www.hackerrank.com/challenges/compare-the-triplets/problem
https://www.hackerrank.com/challenges/a-very-big-sum/problem
https://www.hackerrank.com/challenges/diagonal-difference/problem
https://www.hackerrank.com/challenges/plus-minus/problem
https://www.hackerrank.com/challenges/staircase/problem
https://www.hackerrank.com/challenges/mini-max-sum/problem
https://www.hackerrank.com/challenges/birthday-cake-candles/problem

e Selection structures with or without
Boolean operators (AND, OR, NOT)
and/or relational operators (<, <=, >, >=,
==, 1=) to control program flow effectively

25/08

B2:
Programming

Iteration

B2.3.3 Construct programs that utilize looping
structures to perform repeated actions.

* Types of loops, including counted loops and
conditional loops, and appropriate use of each type
* Conditional statements within loops, using
Boolean and/or relational operators to govern the
loop’s execution

01/09

B2:
Programming

Iteration

01/09

B2:
Programming

Functions &
modularisation

B2.3.4 Construct functions and modularization.

e Functions to define reusable blocks of
code with different inputs

e Modularization to create well-structured,
reusable and maintainable code

e The principles of scope (local versus
global)

e The benefits of code modularization,
applying this concept to various
programming scenarios

01/09

B2:
Programming

10

Exception handling &
debugging
techniques

B2.1.3 Describe how programs use common
exception handling techniques.

Potential points of failure in a program must include
unexpected inputs, resource unavailability, logic
errors.

The role of exception handling in developing
programs

Exception handling constructs that effectively
manage errors must include try/catch in Java, and
try/except in Python, along with the finally block.

B2.1.4 Construct and use common debugging
techniques.

Debugging techniques may include trace tables,
breakpoint debugging, print statements and
step-by- step code execution.

Exercise 1: St
Exercise 2: Si

08/09

B2:
Programming

1

Stacks

B2.2.1 Compare static and dynamic data
structures.

e The fundamental differences between
static and dynamic data structures,
including their underlying mechanisms for
memory allocation and resizing

e The advantages and disadvantages of
each type in various scenarios,
considering factors such as speed,
memory usage, flexibility

B2.2.3 Explain the concept of a stack as a “last in,
first out” (LIFO) data structure.

Must include fundamental operations such as push,
pop, peek and isEmpty

How stack operations impact both performance and
memory usage

Leetc
Leetc
Hack
Adve

An appropriate stack for a specific problem

08/09 B2: 12 Queues B2.2.4 Explain the concept of a queue as a “first in, Leetc
Programming first out” (FIFO) data structure. Hack
Must include fundamental operations such as Adve
enqueue, dequeue, front and isEmpty of As
How queue operations impact both performance _
and memory usage
An appropriate queue for a specific problem
08/09 B2: 13 Big O B2.4.1 Describe the efficiency of specific algorithms
Programming by calculating their Big O notation to analyse their
scalability.
e The time and space complexities of
algorithms and calculating Big O notation
e Algorithm choice based on scalability and
efficiency requirements
08/09 B2: 14 Search algorithms B2.4.2 Construct and trace algorithms to implement ® Leetc
Programming a linear search and a binary search for data e Hack
retrieval.
® |eeflc
e The differences in efficiency between
different methods of linear and binary
search
e Use of search technique based on
efficiency requirements—for example,
searching a database for a sorted/indexed
list of names to find a phone number,
versus searching by the number to identify
the name
15/09 B2: 15 Search algorithms
Programming
15/09 B2: 16 Sort algorithms B2.4.3 Construct and trace algorithms to implement ® Hack
Programming bubble sort and selection sort, evaluating their time o Leck
and space complexities.
® |eel
e The time and space complexities of each ® Adve
algorithm, denoted by their respective Big
O notations
e The advantages and disadvantages of
each algorithm in terms of efficiency
across various data sets
15/09 B2: 17 Sort algorithms
Programming
22/09 B2: 18 Recursion (HL) B2.4.4 Explain the fundamental concept of ® Hack
Programming recursion and its applications in programming. (HL e Leet
only)
® |eeflc
e The fundamentals of recursion and its ® Adve
advantages and limitations ® Leet
e The utility of recursion in solving problems o Leet

that can be broken down into smaller,
similar sub-problems

e Recursive algorithms, including but not
limited to quicksort

Quicksort exe
Sudoku exerci

https://leetcode.com/problems/number-of-students-unable-to-eat-lunch/description/
https://www.hackerrank.com/challenges/queue-using-two-stacks/problem
https://adventofcode.com/2019/day/5
https://adventofcode.com/2019/day/5
https://leetcode.com/problems/binary-search/description/
https://www.hackerrank.com/challenges/icecream-parlor/problem
https://leetcode.com/problems/search-insert-position/description/
https://www.hackerrank.com/challenges/30-sorting/problem
https://leetcode.com/problems/sort-colors/description/
https://leetcode.com/problems/merge-sorted-array/description/
https://adventofcode.com/2020/day/5
https://www.hackerrank.com/challenges/30-recursion/problem
https://leetcode.com/problems/fibonacci-number/description/
https://leetcode.com/problems/permutations/description/
https://adventofcode.com/2019/day/6
https://leetcode.com/problems/flood-fill/description/
https://leetcode.com/problems/max-area-of-island/description/

The limitations of recursion, including
complexity and memory usage
Situations that best suit the use of
recursion, including fractal image creation,
traversing binary trees, sorting algorithms
B2.4.5 Construct and trace recursive algorithms in
a programming language. (HL only)
Simple, non-branching recursive
algorithms in programming only
22/09 B2: 19 Recursion (HL)
Programming
22/09 B2: 20 Recursion (HL)
Programming
22/09 B2: 21 File processing B2.5.1 Construct code to perform file-processing Log file parsel
Programming operations. analytics
Programs that manipulate text files
Opening a sequential file in various modes
(read, write, append)
How to read from and write to files,
append data to an existing file, and close
a file once operations are completed
Classes for Java users may include
Scanner, FileWriter, BufferedReader.
Functions for Python users may include
open(), read(), readline(), write(), close().
29/09 B2: 22 Programming
Programming scenarios
29/09 B2: 23 Programming
Programming scenarios
29/09 B2: 24 Programming
Programming scenarios
OCTOBER MID-TERM BREAK
13/10 B2: 25 Programming
Programming scenarios
13/10 B2: 26 Programming
Programming scenarios
13/10 B2: 27 Programming
Programming scenarios
13/10 B2: 28 Review
Programming
20/10 B2: 29 Review
Programming
20/10 B2: 30 Assessment
Programming
20/10 B3: OOP 1 Introducing OOP B3.1.1 Evaluate the fundamentals of OOP.

e Model real-world entities using OOP
concepts: classes, objects, inheritance,
encapsulation, polymorphism

e The advantages and disadvantages of
using OOP in various programming
scenarios

27110 B3: OOP

Designing classes

B3.1.2 Construct a design of classes, their methods
and behaviour.

e Classes and their methods, based on
application requirements

e The use of unified modelling language
(UML) class diagrams to represent class
relationships, attributes and methods, to
aid effective software design and planning

27110 B3: OOP

Instantiating objects

B3.1.4 Construct code to define classes and
instantiate objects.

e How to define classes and create objects
from those classes

e The role of constructors in initializing an
object's state, setting initial values for its
attributes to define its condition or
characteristics at the time of creation

27/10 B3: OOP

Encapsulation

B3.1.5 Explain and apply the concepts of
encapsulation and information hiding in OOP.

e The principles of encapsulation and
information hiding

e Apply access modifiers such as private
and public
Controlling access to class members
The importance of limiting access to
maintain the integrity and security of an
object's state

27/10 B3: OOP

Statics & non-statics

B3.1.3 Distinguish between static and non-static
variables and methods.

e The differences between static and
non-static variables and methods,
including their usage and scope

e When to use instance variables instead of
class variables, and how to apply these
concepts effectively in code

03/11 B3: OOP Programming
scenarios

03/11 B3: OOP Programming
scenarios

03/11 B3: OOP Programming

scenarios

EXPLORER WEEK

17/11 B3: OOP 9 Inheritance (HL) B3.2.1 Explain and apply the concept of inheritance
in OOP to promote code reusability.

e How inheritance enables a hierarchical
relationship between parent and child
classes

e Extending existing classes, utilizing
inheritance to reuse and extend
functionalities

e The impact of inheritance on access to
parent class members with different
access modifiers (private, public,
protected, default)

17/11 B3: OOP 10 Polymorphism B3.2.2 Construct code to model polymorphism and
(overriding) (HL) its various forms, such as method overriding.

e The principle of polymorphism and how it
contributes to code flexibility and
reusability

e How to implement dynamic polymorphic
behaviour through mechanisms like
method overriding

e How to apply static polymorphic behaviour
to maximize code efficiency

17/11 B3: OOP 11 Abstract classes B3.2.3 Explain the concept of abstraction in OOP.
(HL)

e The significance of abstraction in the
development of modular code fragments

e The use of abstract classes to establish
common interfaces for sub-classes

17/11 B3: OOP 12 Composition & B3.2.4 Explain the role of composition and
aggregation (HL) aggregation in class relationships.

e How to design objects by leveraging
smaller component objects through
composition and aggregation

e That aggregation implies that the
subcomponents can function
independently of the aggregating class,
while in composition, the subcomponents
are tightly coupled and cannot exist
outside the aggregating class

24/11 B3: OOP 13 Design patterns (HL) | B3.2.5 Explain commonly used design patterns in
OOP.

e The key design patterns such as
singleton, factory and observer

e The application of design patterns in
solving recurring programming challenges

24/11 B3: OOP 14 Programming
scenarios (HL)

24/11 B3: OOP 15 Programming
scenarios (HL)

01/12 B3: OOP 16 Programming

scenarios (HL)

01/12 B3: OOP 17 Programming
scenarios (HL)
01/12 B3: OOP 18 Exam style questions
01/12 B3: OOP 19 Exam style questions
08/12 B3: OOP 20 Assessment
08/12 B1:Comp 1 Problem B1.1.1 Construct a problem specification.
thinking specification

e The specification of a problem may
include a problem statement, constraints
and limitations, objectives and goals, input
specifications, output specifications,
evaluation criteria.

08/12 B1:Comp 2 Computational B1.1.2 Describe the fundamental concepts of
thinking thinking concepts & computational thinking.
application

e Abstraction, algorithmic design,

decomposition, pattern recognition
B1.1.3 Explain how applying computational thinking
to fundamental concepts is used to approach and
solve problems in computer science.

e Computational thinking does not
necessarily involve programming—it is a
toolkit of available techniques for
problem-solving.

e Real-world examples may include
software development, data analysis,
machine learning, database design,
network security.

08/12 B1:Comp 3 Trace flowcharts B1.1.4 Trace flowcharts for a range of programming
thinking algorithms.

e Use of standard flowchart symbols to
depict processes, decisions and flows of
control

e Standard flowchart symbols: Connector,
Decision, Flowline, Input/Output,
Process/Operation, Start/End

e Flowcharts for execution flow, to track
changes in variables and to determine
output

WINTER BREAK

05/01 B4: ADTs Intro to ADT (HL) B4.1.1 Explain the properties and purpose of ADTs
in programming.

e The core principles of ADTs, including
their purpose in providing a high-level
description of data structures and their
associated operations

05/01 B4: ADTs Linked lists (HL) B4.1.2 Evaluate linked lists.

e Lists must include singly, doubly, circular

e Sketch of linked lists and implementation
of basic operations diagrammatically, such
as insertion, deletion, traversal, search

e The advantages and disadvantages of
using linked lists over other data
structures like arrays, particularly in terms
of memory utilization and performance

B4.1.3 Construct and apply linked lists: singly,
doubly and circular.

e The basic operations on a linked list, such
as insertion, deletion, traversal, search

05/01 B4: ADTs Linked lists (HL)

05/01 B4: ADTs Linked lists (HL)

12/01 B4: ADTs Binary search trees B4.1.4 Explain the structures and properties of
(HL) BSTs.

e How binary search trees (BSTs) are used
for data organization

e Insert, delete, traverse and searching
nodes in a BST

e Sketching a BST as a tree diagram

12/01 B4: ADTs Binary search trees
(HL)
12/01 B4: ADTs Binary search trees
(HL)
19/01 B4: ADTs Sets (HL) B4.1.5 Construct and apply sets as an ADT.

e The fundamental characteristics of sets,
including their unordered nature and the
uniqueness of elements

e Operations: union, intersection and
difference

e Code to check if an element is in a set, to
add an element to a set, to remove an
element, and to check whether one set is
a subset/superset of another set

19/01 B4: ADTs Sets (HL)
19/01 B4: ADTs Sets (HL)
19/01 B4: ADTs Hashmaps (HL) B4.1.6 Explain the core principles of ADTs.

e High-level description of data structures
and their associated operations and
purpose

e The underlying mechanics of hash tables,
including hashing functions, collision
resolution strategies and load factors

e The underlying mechanics of sets to store
and manage data

e HashMap and HashSet in Java; dict and
set in Python

26/01 B4: ADTs Hashmaps (HL)
26/01 B4: ADTs Hashmaps (HL)
26/01 B4: ADTs Programming
scenarios (HL)
02/02 B4: ADTs Programming
scenarios (HL)
02/02 B4: ADTs Programming
scenarios (HL)
02/02 B4: ADTs Exam style questions
(HL)
02/02 B4: ADTs Exam style questions
(HL)
09/02 B4: ADTs Exam style questions
(HL)
09/02 B4: ADTs Assessment (HL)
CHINESE NEW YEAR BREAK
23/02 A3: 1 Database A3.1.1 Explain the features, benefits and limitations
Databases fundamentals of a relational database.
e Features: composite keys, foreign keys,
primary keys, relationships, tables
e Benefits of databases: community support,
concurrency control, data consistency,
data integrity, data retrieval, reduced data
duplication, reduced redundancy, reliable
transaction processing, scalability, security
features
e Limitations of databases: “big data”
scalability issues, design complexity,
hierarchical data handling, rigid schema,
object-relational impedance mismatch,
unstructured data handling
23/02 A3: 2 Schemas and data A3.2.1 Describe database schemas.
Databases types
e Conceptual schema, logical schema,
physical schema
e Abstract definitions of the data structure
and organization of the data at different
levels
A3.2.3 Outline the different data types used in
relational databases.
e The importance of data type consistency
e The potential effects of choosing the
wrong data type
23/02 A3: 3 Entity relationship A3.2.2 Construct ERDs.
Databases diagrams
e The significance of entity relationship
diagrams (ERDs) in crafting organized,
efficient database designs tailored for

specific applications

e The relationships between different data
entities within a database

e The roles of cardinality and modality in
defining relationships in ERDs

A3.2.4 Construct tables for relational databases.

e The relationship between tables using
primary keys, foreign keys, composite
keys and concatenated keys

e The importance of well-defined tables in
ensuring data integrity

02/03 A3: Normalisation A3.2.5 Explain the difference between normal
Databases forms.
e First normal form (1NF), second normal
form (2NF), third normal form (3NF)
e The terms atomicity, unique identification,
functional dependencies, partial-key
dependencies, non- key/transitive
dependencies
e Normalization issues can encompass data
duplication, missing data, and a range of
dependency concerns, including data
dependencies, composite key
dependencies, transitive dependencies,
and multi-valued dependencies.
A3.2.7 Evaluate the need for denormalizing
databases.
e The advantages and disadvantages of
normalizing and denormalizing databases
e Situations where denormalization can
enhance performance, particularly in
read-intensive applications
e The balance between straightforward
query structures and the risk of data
redundancy in denormalized schemas
02/03 A3: Designing 3NF A3.2.6 Construct a database normalized to 3NF for | Event registra
Databases databases a range of real-world scenarios group iﬂt<|3E tabc‘
° g: S
e Examples may include library treat
management, hospital management, ¢ 82615
e-commerce platforms, school e Payn
management, employee management,
inventory management, police crime Marksbook da
reporting
E-Commerce
02/03 A3: Introducing SQL A3.3.1 Outline the differences between data Construct the
Databases language types within SQL.
e Data language types must include data
definition language (DDL) and data
manipulation language (DML)
e SQL statements to define data structures
or to manipulate data
09/03 A3: SQL update & insert | A3.3.3 Explain how SQL can be used to update Provide some

Databases

data in a database.

with and UPD.

e Insert new records (INSERT INTO),
modify data (UPDATE SET), remove data
(DELETE)

The performance implications of updating data in
indexed columns, and how indexes might need to
be rebuilt or reorganized following significant data
modifications

09/03 A3: 8 SQL joins A3.3.2 Construct queries between two tables in
Databases SQL.

e Queries must include joins, relational
operators, filtering, pattern matching, and
ordering data

e SQL commands: SELECT, DISTINCT,
FROM, WHERE, BETWEEN, ORDER BY,
GROUP BY, HAVING, ASC, DESC, JOIN,
LIKE with % wildcard, AND, OR, NOT
(note: Syntax may vary in different
database systems)

09/03 A3: 9 SQL aggregate A3.3.4 Construct calculations within a database
Databases functions (HL) using SQL'’s aggregate functions. (HL only)

e Aggregate functions on grouped data to
aid reporting and decision-making

e Aggregate commands: AVERAGE,
COUNT, MAX, MIN, SUM

09/03 A3: 10 Views (HL) A3.3.5 Describe different database views. (HL only)
Databases

e Virtual views and materialized (snapshot)
views

e Hiding data complexity, data consistency,
independence, performance, query
simplification, read-only data or updatable
data, security

16/03 A3: 11 Transactions (HL) A3.3.6 Describe how transactions maintain data
Databases integrity in a database. (HL only)

e The role of atomicity, consistency, isolation
and durability (ACID) to ensure reliable
processing of transactions

e Transaction control language (TCL)
commands: BEGIN TRANSACTION,
COMMIT, ROLLBACK

16/03 A3: 12 Alternatives & A3.4.1 Outline the different types of databases as
Databases warehouses (HL) approaches to storing data.

e Databases models: NoSQL, cloud, spatial,
in-memory

e Examples of the use of the database
model in real-world scenarios may include
e-commerce platforms, geographic
information systems (GIS), managed
services, real-time analytics, social media
platforms, SaaS.

A3.4.2 Explain the primary objectives of data
warehouses in data management and business
intelligence.

e The roles of append-only data,
subject-oriented data, integrated data,
time-variant data, non-volatile data and
data optimized for query performance, to
ensure efficient data storage and analysis

16/03 A3: 13 Data mining & A3.4.3 Explain the role of online analytical
Databases distributed processing (OLAP) and data mining for business
databases (HL) intelligence.

e Data mining techniques must include
classification, clustering, regression,
association rule discovery, sequential
pattern discovery, anomaly detection
(note: This links to “A4 Machine learning”).

e The uses of the techniques in extracting
meaningful information from large data
sets

A3.4.4 Describe the features of distributed
databases.

e The need to maintain data consistency in
a distributed database

e The role of ACID to ensure reliable
processing of transactions in distributed
databases

e Features of distributed databases:
concurrency control, data consistency,
data partitioning, data security, distribution
transparency, fault tolerance, global query
processing, location transparency,
replication, scalability

23/03 A3: 14 Using SQL with
Databases Python (bonus)
23/03 A3: 15 Exam style questions
Databases
23/03 A3: 16 Assessment
Databases
APRIL BREAK
YEAR 12 EXAMS
Internal 1 Assessment Advice on project selection
assessment overview Review of exemplar projects
Research ideas
Internal 2 Submit project
assessment proposal
Internal 3,4 Criterion A Scenario, context, success criteria
assessment Problem
specification
Internal 5,6 Criterion B Initial planning

UML, structure diagram, gantt

assessment Planning
Internal 7-12 Criterion C 1 lesson for each of...
assessment System overview UX diagrams
Flowcharts
UML overview
Extras such as case diagram, DFD, networking
diagram, ML modeling etc
Functional testing
Structural testing
Internal 13-30 Programming Self directed programming time
assessment
Internal 31-33 Criterion D Development documentation and video
assessment Development
documentation and
video
Internal 34-35 Criterion E
assessment Evaluation
SUMMER BREAK
A1: Computer | 1 CPU components A1.1.1 Describe the functions and interactions of
fundamentals the main CPU components.
e Units: arithmetic logic unit (ALU), control
unit (CU)
e Registers: instruction register (IR),
program counter (PC), memory address
register (MAR), memory data register
(MDR), accumulator (AC)
Buses: address, data, control
Processors: single core processor,
multi-core processor, co-processors
e A diagrammatic representation of the
relationship between the specified CPU
components
A1: Computer | 2 Primary memory, A1.1.4 Explain the purposes of different types of Compare reac
fundamentals secondary memory | primary memory. disk, SSD, US
e Random-access memory (RAM), read poe starter:
only memory (ROM), cache (L1, L2, L3), import time
registers
e The interaction of the CPU with different # Write a f
types of memory to optimize performance | data = "A" -
e The relevance of the terms “cache miss” start_time :
and “cache hit’ with open(™
file.wr:
A1.1.7 Describe internal and external types of ‘;iiﬁiz;l;}ﬁl
secondary memory storage.
Read the -
e Internal hard drives: solid state drive start_time
(SSD), hard disk drive (HDD), embedded with open(™
multimedia cards (eMMCs) file.re
e External hard drives: SSD, HDD, optical Pe"f‘d—tiTe =
drives, flash drives, memory cards, print(f"Rea
network attached storage (NAS)
e The scenarios in which the various types
of drive are used
A1: Computer |3 Fetch / decode / A1.1.5 Describe the fetch, decode and execute Implement a C
fundamentals execute cycle. Implement cox

Provide a "me

e The basic operations a CPU performs to
execute a single instruction in machine
language

e The interaction between memory and
registers via the three buses: address,
data, control

Starting point

class CPU:
def __init__(
self.PC =
self.IR = N
self. MAR
self. MDR
self. AC =
self.mem

def fetch(se
self. MAR
self. MDR
self.IR = s
print(f'Fe:
self.PC +:

def decode(
print(f'De
Simulat

def execute
print(f"Ex
self.AC +:
print(f"Ac

cpu = CPU()

for _in range(
cpu.fetch()
cpu.decode
cpu.execute

A1: Computer
fundamentals

GPU (HL)

A1.1.2 Describe the role of a GPU.

e The architecture that allows graphics
processing units (GPUs) to handle specific
tasks and makes them suitable for
complex computations

e Real-world scenarios may include video
games, artificial intelligence (Al), large
simulations and other applications that
require graphics rendering and machine
learning.

A1.1.3 Explain the differences between the CPU
and the GPU. (HL only)

e Differences in their design philosophies,
usage scenarios

e Differences in their core architecture,
processing power, memory access, power
efficiency

e CPUs and GPUs working together: task
division, data sharing, coordinating
execution

Access a GPL
the training tin

A1: Computer
fundamentals

Pipelining (HL)

A1.1.6 Describe the process of pipelining in
multi-core architectures. (HL only)

e The instructions fetch, decode, execute

e Write-back stages to improve the overall
system performance in multi-core
architectures

e Overview of how cores in multi-core
processors work independently and in
parallel

A1: Computer
fundamentals

Compression

A1.1.8 Describe the concept of compression.

e The differences between lossy
compression methods and lossless
compression methods

e Run-length encoding and transform coding

Implement rur
(RAW), see hc
Decompress

Use thisas a

Example 5:

image = [
[1,
[0,
[1,
[1,
(e,

-

-

-

OrRr OO0
-

-

def rle_conm,
compres:
for row
row.

com,

return

def rle_dect
decompr
for row
row

decq

return

Compress .
compressed_:
print("Comp

decompresse
rle_decompr
print("Decor
for row in

print(r

A1: Computer
fundamentals

Cloud computing

A1.1.9 Describe the different types of services in
cloud computing.

e Services: software as a service (SaaS),
platform as a service (PaaS),
infrastructure as a service (laaS)

e The differences between the approaches
of SaaS, PaaS, and laaS in various
real-world scenarios, recognizing that
different degrees of control and flexibility
influence resource management and
resource availability

A1: Computer
fundamentals

Binary data

A1.2.1 Describe the principal methods of
representing data.

e The representation of integers in binary
and hexadecimal

Possible activ
light up LEDs
number. Perh:

e Conversion of binary and hexadecimal
integers to decimal, and vice versa

e Conversion of integers from binary to
hexadecimal, and vice versa

A1.2.2 Explain how binary is used to store data.

e The fundamentals of binary encoding and
the impact on data storage and retrieval

e The mechanisms by which data such as
integers, strings, characters, images,
audio and video are stored in binary form

A1: Computer
fundamentals

A1: Computer
fundamentals

10

Logic gates, truth
tables, logic
diagrams

A1.2.3 Describe the purpose and use of logic
gates.

The purpose and use of logic gates

The functions and applications of logic
gates in computer systems

The role of logic gates in binary computing
Boolean operators: AND, OR, NOT,
NAND, NOR, XOR, XNOR

A1.2.4 Construct and analyse truth tables.

e Truth tables to predict the output of simple
logic circuits

e Truth tables to determine outputs from
inputs for a problem description

e Truth tables and their relationship to a
Boolean expression, with inputs and
outputs

e Truth tables derived from logic diagrams to
aid the simplification of logical expressions

e Karnaugh maps and algebraic
simplification to simplify output
expressions

A.1.2.5 Construct logic diagrams.

e Logic diagrams to demonstrate how logic
gates are connected and interact in a
circuit.

e Use of standard gate symbols for AND,
OR, NOT, NAND, NOR, XOR and XNOR
gates

e Inputs processed diagrammatically to
produce outputs

e Combinations of these gates to perform
more complex logical operations

e Boolean algebra rules to simplify complex
logic diagrams and expressions

A1: Computer
fundamentals

1

A1: Computer
fundamentals

12

A1: Computer

13

fundamentals

A1: Computer
fundamentals

14

Operating systems

A1.3.1 Describe the role of operating systems.

e Operating systems abstract hardware
complexities to manage system resources

A1.3.2 Describe the functions of an operating
system.

e Maintaining system integrity while running
operating systems’ background operations

e Memory management, file system, device
management, scheduling, security,
accounting, graphical user interface (GUI),
virtualization, networking

A1.3.3 Compare different approaches to
scheduling.

e Managing the execution of processes by
allocating CPU time to optimize system
performance

e First-come first-served, round robin,
multilevel queue scheduling, priority
scheduling

A1.3.4 Evaluate the use of polling and interrupt
handling.

e Event frequency, CPU processing
overheads, power source (battery or
mains), event predictability, controlled
latency, security concerns

e Real-world scenarios may include
keyboard and mouse inputs, network
communications, disk input/ output
operations, embedded systems, real-time
systems.

A1.3.5 Explain the role of the operating system in
managing multitasking and resource allocation. (HL
only)

e The challenges of multitasking and
resource allocation, including task
scheduling, resource contention and
deadlock

A1: Computer
fundamentals

15

Operating systems

A1: Computer
fundamentals

16

Operating systems

A1: Computer
fundamentals

17

Control systems (HL)

A1.3.6 Describe the use of the control system
components. (HL only)

e The input, process, output, and feedback
mechanism (open-loop, closed-loop)

e Controller, sensors, actuators, transducers
and control algorithm

A1.3.7 Explain the use of control systems in a
range of real-world applications. (HL only)

e Examples may include autonomous
vehicles, home thermostats, automatic
elevator controllers, automatic washing
machines, traffic signal control systems,
irrigation control systems, home security
systems, automatic doors.

A1: Computer
fundamentals

18

Control systems (HL)

A1: Computer
fundamentals

19

Translation (HL)

A1.4 Translation (HL only)

A1.4.1 Evaluate the translation processes of
interpreters and compilers.

e The mechanics and use-cases of each
translation approach

e The difference in error detection,
translation time, portability and
applicability for different translation
processes, including just-in-time
compilation (JIT) and bytecode
interpreters

e Example scenarios where the translation
method should be considered must
include rapid development and testing,
performance-critical applications and
cross-platform development.

A1: Computer
fundamentals

20

Exam practice
questions

A1: Computer
fundamentals

21

Assessment

A4: Machine
learning

Intro to ML

A4.1.1 Describe the types of machine learning and
their applications in the real world.

e The different approaches to machine
learning algorithms and their unique
characteristics

e Deep learning (DL), reinforcement
learning (RL), supervised learning,
transfer learning (TL), unsupervised
learning (UL)

e Real-world applications of machine
learning may include market basket
analysis, medical imaging diagnostics,
natural language processing, object
detection and classification, robotics
navigation, sentiment analysis.

A4: Machine
learning

ML hardware

A4.1.2 Describe the hardware requirements for
various scenarios where machine learning is
deployed.

e The hardware configurations for different
machine learning scenarios, considering
factors such as processing, storage and
scalability

Hardware configurations for machine
learning ranging from standard laptops to
advanced infrastructure

Advanced infrastructure must include
application-specific integrated circuits
(ASICs), edge devices,
field-programmable gate arrays (FPGAs),
GPUs, tensor processing units (TPUs),
cloud-based platforms, high-performance
computing (HPC) centres.

A4: Machine
learning

Pre-processing (HL)

A4.2.1 Describe the significance of data cleaning.

The impact of data quality on model
performance

Techniques for handling outliers, removing
or consolidating duplicate data, identifying
incorrect data, filtering irrelevant data,
transforming improperly formatted data,
and imputation, deletion or predictive
modelling for missing data

Normalization and standardization as
crucial preprocessing steps

A4.2.2 Describe the role of feature selection.

Feature selection to identify and retain the
most informative attributes of the data set
Feature selection strategies: filter
methods, wrapper methods, embedded
methods

A4.2.3 Describe the importance of dimensionality
reduction.

The curse of dimensionality considerations
may include overfitting, computational
complexity, data sparsity, the effectiveness
of distance metrics, data visualization,
sample size increases, memory usage.
Dimensionality reduction of variables,
while preserving the relevant aspects of
the data. Note: Statistical techniques such
as principal component analysis (PCA)
and linear discriminant analysis (LDA) are
beyond the scope of this course.

A4: Machine
learning

Linear regression
(HL)

A4.3.1 Explain how linear regression is used to
predict continuous outcomes.

The relationship between the independent
(predictor) and dependent (response)
variables

The significance of the slope and intercept
in the regression equation

How well the model fits the data—often
assessed using measures like r2.

A4: Machine
learning

Classification (HL)

A4.3.2 Explain how classifications techniques in
supervised learning are used to predict discrete
categorical outcomes.

e K-Nearest Neighbours (K-NN) and
decision trees algorithms to categorize
new data points, based on patterns
learned from existing labelled data

e Real-world applications of K-NN may
include collaborative filtering
recommendation systems.

e Real-world applications of decision trees
may include medical diagnosis based on a
patient's symptoms.

A4: Machine 6 Hyper parameters A4.3.3 Explain the role of hyperparameter tuning
learning (HL) when evaluating supervised learning algorithms.
e Accuracy, precision, recall and F1 score
as evaluation metrics
e The role of hyperparameter tuning on
model performance
e Overfitting and underfitting when training
algorithms
A4: Machine |7 Clustering (HL) A4.3.4 Describe how clustering techniques in
learning unsupervised learning are used to group data

based on similarities in features.

e Clustering techniques in unsupervised
learning group data based on feature
similarities

e Real-world applications of clustering may
include using purchasing data to segment
a customer base.

EXPECTED OCTOBER HALF TERM BREAK

A4: Machine
learning

8

Association rule (HL)

A4.3.5 Describe how learning techniques using the
association rule are used to uncover relations
between different attributes in large data sets.

e Mining techniques using the association
rule and interpretation of the results for a
given scenario For example, in crime
analysis, the techniques may reveal that
areas with high rates of vandalism also
often experience incidents of theft,
assisting law enforcement in predictive
policing and resource allocation.

A4: Machine
learning

Reinforcement
learning (HL)

A4.3.6 Describe how an agent learns to make
decisions by interacting with its environment in
reinforcement learning.

e The principle of cumulative reward and the
foundational concepts of
agent—environment interaction,
encompassing actions, states, rewards
and policies

e The exploration versus exploitation
trade-off as a core concept in
reinforcement learning

A4: Machine
learning

10

Genetic algorithms
(HL)

A4.3.7 Describe the application of genetic
algorithms in various real-world situations.

e For example: population, fithess function,
selection, crossover, mutation, evaluation,
termination

e Areal-world application of genetic
algorithms is seen in optimization
problems, such as route planning (e.g. the
“travelling salesperson problem”).

A4: Machine 1" Artificial neural A4.3.8 Outline the structure and function of ANNs
learning networks (HL) and how multi-layer networks are used to model
complex patterns in data sets.

e An artificial neural network (ANN) to
simulate interconnected nodes or
“neurons” to process and learn from input
data, enabling tasks such as classification,
regression and pattern recognition

e Sketch of a single perceptron, highlighting
its input, weights, bias, activation function
and output

e Sketch of a multi-layer perceptron (MLP)
encompassing the input layer, one or more
hidden layers and the output layer.

A4: Machine 12 Artificial neural

learning networks (HL)

A4: Machine 13 Convolutional neural | A4.3.9 Describe how CNNs are designed to

learning networks (HL) adaptively learn spatial hierarchies of features in
images.

e Convolutional neural network (CNN) basic
architecture: input layer, convolutional
layers, activation functions, pooling layers,
fully connected layers, output layer

e The effect of the number of layers, kernel
size and stride, activation function
selection, and the loss function on how
CNNs process input data and classify
images

A4: Machine 14 Ethics A4.4.1 Discuss the ethical implications of machine
learning learning in real-world scenarios.

e Ethical issues may include accountability,
algorithmic fairness, bias, consent,
environmental impact, privacy, security,
societal impact, transparency.

e The challenges posed by biases in training
data

e The ethics of using machine learning in
online communication may include
concerns about misinformation, bias,
online harassment, anonymity, privacy.

A4.4.2 Discuss ethical aspects of the increasing
integration of computer technologies into daily life.

e The importance of continually reassessing
ethical guidelines as technology advances

The potential implications of emerging
technologies such as quantum computing,
augmented reality, virtual reality and the
pervasive use of Al on society, individual
rights, privacy and equity

A4: Machine
learning

15

Ethics

A4: Machine
learning

16

Model selection

A4.3.10 Explain the importance of model selection
and comparison in machine learning.

How different algorithms can yield different
results depending on the data and type of
problem

The reasons for selecting specific machine
learning models over others, considering
factors like the nature of the problem, its
complexity and desired outcomes

The variability in algorithm performance
based on the data’s characteristics

A4: Machine
learning

17

Exam style questions

A4: Machine
learning

18

Assessment

A2: Networks

Network types

A2.1.1 Describe the purpose and characteristics of
networks.

Networks: local area network (LAN), wide
area network (WAN), personal area
network (PAN), virtual private network
(VPN)

A2.1.2 Describe the purpose, benefits and
limitations of modern digital infrastructures.

Modern digital infrastructure: the internet,
cloud computing, distributed systems,
edge computing, mobile networks
Examples where specific networks are
used may include the worldwide web
(WWW), cryptocurrency blockchains,
smart traffic lights, a school.

A2: Networks

Network devices &
transmission media

A2.1.3 Describe the function of network devices.

Gateways, hardware firewalls, modems,
network interface cards, routers, switches,
wireless access points

How devices map to the layers of the
TCP/IP model

A2.3.2 Compare types of media for data
transmission.

Wired transmission via fibre optic cables
and twisted pair cables; wireless
transmission

The advantages and disadvantages of

these three types of data transmission

e Factors to consider must include
bandwidth, complexity of installation, cost,
range, susceptibility to interference,
attenuation, reliability, security.

A2: Networks

Topologies, models,
segmentation

A2.2.1 Describe the functions and practical
applications of network topologies.

Network topologies: star, mesh, hybrid
Factors to consider must include reliability,
transmission speed, scalability, data
collisions, cost.

e Examples may include home and small
office settings, where reliability is
paramount, and the use of networks in
larger settings (e.g. corporations,
government departments, college
campuses).

A2.2.3 Compare and contrast networking models.

Client-server and peer-to-peer models
The respective benefits and drawbacks of
client-server and peer-to-peer models

e Real-world applications may include web
browsing, email services, online banking,
file sharing, VolIP services, blockchain.

A2.2.4 Explain the concepts and applications of
network segmentation.

e Segmentation for network performance
and security, to reduce congestion, to
manage network resources efficiently

e Network segmentation must include the
uses and roles of segmenting, subnetting
and virtual local area networks (VLANS).

A2: Networks

Protocols

A2.1.4 Describe the network protocols used for
transport and application.

e Protocols: transmission control protocol
(TCP), user datagram protocol (UDP),
hypertext transfer protocol (HTTP),
hypertext transfer protocol secure
(HTTPS), dynamic host configuration
protocol (DHCP)

A2: Networks

TCP/IP model

A2.1.5 Describe the function of the TCP/IP model.
(HL only)

e Application, transport, internet, network
interface

e The role of each layer and the interaction
between these layers to ensure reliable
data transmission over a network

A2: Networks

Servers

A2.2.2 Describe the function of servers. (HL only)

e Types of servers: domain name server
(DNS), dynamic host configuration

protocol (DHCP), file server, mail server,
proxy server, web server

e Factors to consider must include function,
scalability, reliability and security.

A2: Networks

Practical: Create a
socket server

A2: Networks

IP addressing

A2.3.1 Describe different types of IP addressing.

e The distinction between IPv4 and IPv6
addressing

e The differences between public IP
addresses and private IP addresses, and
between static IP addresses and dynamic
IP addresses

e The role of network address translation
(NAT) to minimize the use of IP addresses
and to facilitate communication between
private internal networks and the public
internet

A2: Networks

Packet switching &
routing

A2.3.3 Explain how packet switching is used to
send data across a network.

e The process of segmenting data into
packets with a routing header attached,
and independently transmitting control
information, allowing the data to be
reassembled at the destination

e The role that switches and routers play in
packet switching

A2.3.4 Explain how static routing and dynamic
routing move data across local area networks. (HL
only)

e The process of static routing, and its
advantages and disadvantages

e The process of dynamic routing, and its
advantages and disadvantages
(explanation of a specific routing protocol
is not required)

e Factors to consider must include
configuration, maintenance, complexity,
resource usage, convergence, scalability,
network size.

A2: Networks

10

Firewalls in detail

A2.4.1 Discuss the effectiveness of firewalls at
protecting a network.

e The function of firewalls in inspecting and
filtering incoming and outgoing traffic
based on whitelists, blacklists and rules
The strengths and limitations of firewalls
The role of NAT to enhance network
security

A2: Networks

1

Vulnerabilities &
countermeasures
(HL)

A2.4.2 Describe common network vulnerabilities.
(HL only)

e Distributed denial of service (DDoS),
insecure network protocols, malware,

man-in-the-middle (MitM) attacks, phishing
attacks, SQL injection, cross-site scripting
(XSS), unpatched software, weak
authentication, zero-day exploits

A2.4.3 Describe common network
countermeasures. (HL only)

e Content security policies, complex
password policies, DDoS mitigation tools,
email filtering solutions, encrypted
protocols, input validation (filtering,
whitelisting), intrusion detection systems
(IDS), intrusion prevention systems (IPS),
multifactor authentication (MFA), secure
socket layer (SSL) certificate, transport
layer security (TLS) certificate, update
software, VPNs

e The importance of regular security testing
and employee training

o Wireless security measures may include
media access controllers (MAC), whitelists
and blacklists.

A2: Networks | 12
A2: Networks | 13 Encryption & A2.4.4 Describe the process of encryption and
certificates digital certificates.
e The difference between symmetric and
asymmetric cryptography
e The role of digital certificates in
establishing secure network connections
e The use of public and private keys in
asymmetric cryptography
e The significance of encryption key
management
A2: Networks | 14 Practical: TBD
A2: Networks | 15 Exam style questions
A2: Networks | 16 Assessment
EXPECTED WINTER BREAK
YEAR 13 MOCK EXAMS
Case study 1 Introduce the case Read the case study. Highlight and identify key
study points.
Case study 2 Understand the text Prepare definitions for the terminology list provided
of the case study at the end of the case study.
Case study 3 Understand the text Quiz and test yourself and your peers on
of the case study terminology definitions and introductory concepts.
Case study 4 Understand the Research
technology in the
case study
Case study 5 Understand the Research
technology in the
case study

Case study 6 Understand the Present
technology in the
case study
Case study 7 Consider the * Research any background information on the
challenges of the challenge
case study * Research and identify real-world examples of the
challenges
Case study 8 Consider the * Research any background information on the
challenges of the challenge
case study * Research and identify real-world examples of the
challenges
Case study 9 Review for exam Challenge 1
questions
Case study 10 Review for exam Challenge 2
questions
Case study 11 Review for exam Challenge 3 (HL)
questions
Case study 12 Review for exam Challenge 4 (HL)
questions
Case study 13 Exam practice Challenge 1
questions
Case study 14 Exam practice Challenge 2
questions
Case study 15 Exam practice Challenge 3 (HL)
questions
Case study 16 Exam practice Challenge 4 (HL)

questions

END OF COURSE

	Shared
	Scope and sequence: IB Diploma CS
	Detailed scope and sequence

