
Shared 



 

Scope and sequence: IB Diploma CS 
Sha Tin College, class of 2027 

Time period Lesson focus 

September, October B2: Programming 
Mid term break  

November, December B1: Computational thinking 
B3: Object oriented programming 

Winter break  

January, February, March B4: Abstract data types 
A3: Databases 

April break  

May, June Year 12 timed assessments 
Internal assessment lessons 
Submit Internal Assessment draft (Criteria A, B, C) 

Summer break Submit Internal Assessment draft (Criteria D, E) 

September, October A1: Computer fundamentals 
A4: Machine learning 

Mid term break  

November, December A4: Machine learning (continued) 
A2: Networks 
Submit Internal Assessment final 

Winter break  

January, February, March Mock examinations 
Case study 
Exam revision 

April break  

May, June External examinations 
 
 



Detailed scope and sequence 
PROGRESS DRAFT 
 

Week of Topic Lesson Title Mapping Teaching & lea

18/08 B2: 
Programming 

1 Hello world  1. Install VS C
2. Install Githu
3. Create a Gi
4. Create a Gi
5. Add me as a
6. Practice upl
7. Checking th
 

●​ Solve
 

18/08 B2: 
Programming 

2 Numeric types & 
operations 

B2.1.1 Construct and trace programs using a range 
of global and local variables of various data types. 
 

●​ Data types: Boolean value, char, decimal, 
integer, string 

Exercise 1: Te
https://pbaumg
-1-temperature
 
Exercise 2: Sp
https://pbaumg
-2-spell-check
 
Exercise 3: Ma
https://pbaumg
-3-maze-navig
 
Exercise 4: Fre
https://pbaumg
-3-maze-navig
 
Exercise 5: Ro
https://pbaumg
-5-robot-instru
 
Leetcoode pro
 

●​ #1 - T
●​ #412
●​ #9 - P
●​ #125
●​ #88 -
●​ #26 -

proce
●​ #38 -

 
Hackerrank pr
 

●​ Simp
●​ Comp
●​ A Ver
●​ Diago
●​ Plus 
●​ Stairc
●​ Mini-
●​ Birthd

 

18/08 B2: 
Programming 

3 String types & 
operations 

B2.1.2 Construct programs that can extract and 
manipulate substrings. 
 

●​ Writing of programs that accurately 
identify and extract substrings from given 
strings, demonstrating the ability to 
perform various manipulations, such as 
altering, concatenating or replacing 

 

25/08 B2: 
Programming 

4 Arrays & lists B2.2.2 Construct programs that apply arrays and 
Lists. 
 

●​ One-dimensional (1D) arrays, 
two-dimensional (2D) arrays, ArrayLists in 
Java 

●​ One-dimensional (1D) Lists and 
two-dimensional (2D) Lists in Python 

●​ Add, remove and traverse elements in a 
dynamic list 

 

25/08 B2: 
Programming 

5 Arrays & lists  

25/08 B2: 
Programming 

6 Sequence & 
selection 

B2.3.1 Construct programs that implement the 
correct sequence of code instructions to meet 
program objectives. 
 

●​ The impact of instruction order on program 
functionality 

●​ Ways to avoid errors, such as infinite 
loops, deadlock, incorrect output 

 
B2.3.2 Construct programs utilizing appropriate 
selection structures. 
 

●​ Must include: if, else, else if (Java), elif 
(Python), to execute different code blocks 
based on specified conditions 

https://www.hackerrank.com/challenges/solve-me-first/problem
https://pbaumgarten.com/docs/ib-compsci-2027/b2.html#exercise-1-temperature-tracker
https://pbaumgarten.com/docs/ib-compsci-2027/b2.html#exercise-1-temperature-tracker
https://pbaumgarten.com/docs/ib-compsci-2027/b2.html#exercise-2-spell-checker
https://pbaumgarten.com/docs/ib-compsci-2027/b2.html#exercise-2-spell-checker
https://pbaumgarten.com/docs/ib-compsci-2027/b2.html#exercise-3-maze-navigator
https://pbaumgarten.com/docs/ib-compsci-2027/b2.html#exercise-3-maze-navigator
https://pbaumgarten.com/docs/ib-compsci-2027/b2.html#exercise-3-maze-navigator
https://pbaumgarten.com/docs/ib-compsci-2027/b2.html#exercise-3-maze-navigator
https://pbaumgarten.com/docs/ib-compsci-2027/b2.html#exercise-5-robot-instructions
https://pbaumgarten.com/docs/ib-compsci-2027/b2.html#exercise-5-robot-instructions
https://leetcode.com/problems/two-sum/description/
https://leetcode.com/problems/fizz-buzz/description/
https://leetcode.com/problems/palindrome-number/description/
https://leetcode.com/problems/valid-palindrome/description/
https://leetcode.com/problems/merge-sorted-array/description/
https://leetcode.com/problems/remove-duplicates-from-sorted-array/description/
https://leetcode.com/problems/count-and-say/description/
https://www.hackerrank.com/challenges/simple-array-sum/problem
https://www.hackerrank.com/challenges/compare-the-triplets/problem
https://www.hackerrank.com/challenges/a-very-big-sum/problem
https://www.hackerrank.com/challenges/diagonal-difference/problem
https://www.hackerrank.com/challenges/plus-minus/problem
https://www.hackerrank.com/challenges/staircase/problem
https://www.hackerrank.com/challenges/mini-max-sum/problem
https://www.hackerrank.com/challenges/birthday-cake-candles/problem


●​ Selection structures with or without 
Boolean operators (AND, OR, NOT) 
and/or relational operators (<, <=, >, >=, 
==, !=) to control program flow effectively 

25/08 B2: 
Programming 

7 Iteration B2.3.3 Construct programs that utilize looping 
structures to perform repeated actions. 
 
* Types of loops, including counted loops and 
conditional loops, and appropriate use of each type 
* Conditional statements within loops, using 
Boolean and/or relational operators to govern the 
loop’s execution 

01/09 B2: 
Programming 

8 Iteration  

01/09 B2: 
Programming 

9 Functions & 
modularisation 

B2.3.4 Construct functions and modularization. 
 

●​ Functions to define reusable blocks of 
code with different inputs 

●​ Modularization to create well-structured, 
reusable and maintainable code 

●​ The principles of scope (local versus 
global) 

●​ The benefits of code modularization, 
applying this concept to various 
programming scenarios 

 

01/09 B2: 
Programming 

10 Exception handling & 
debugging 
techniques 

B2.1.3 Describe how programs use common 
exception handling techniques. 
 
Potential points of failure in a program must include 
unexpected inputs, resource unavailability, logic 
errors. 
The role of exception handling in developing 
programs 
Exception handling constructs that effectively 
manage errors must include try/catch in Java, and 
try/except in Python, along with the finally block. 
 
B2.1.4 Construct and use common debugging 
techniques. 
 
Debugging techniques may include trace tables, 
breakpoint debugging, print statements and 
step-by- step code execution. 

Exercise 1: St
Exercise 2: Sim
 
 

08/09 B2: 
Programming 

11 Stacks B2.2.1 Compare static and dynamic data 
structures. 
 

●​ The fundamental differences between 
static and dynamic data structures, 
including their underlying mechanisms for 
memory allocation and resizing 

●​ The advantages and disadvantages of 
each type in various scenarios, 
considering factors such as speed, 
memory usage, flexibility 

 
B2.2.3 Explain the concept of a stack as a “last in, 
first out” (LIFO) data structure. 
 
Must include fundamental operations such as push, 
pop, peek and isEmpty 
How stack operations impact both performance and 
memory usage 

●​ Leetc
●​ Leetc
●​ Hack
●​ Adve

 



An appropriate stack for a specific problem 
 

08/09 B2: 
Programming 

12 Queues B2.2.4 Explain the concept of a queue as a “first in, 
first out” (FIFO) data structure. 
 
Must include fundamental operations such as 
enqueue, dequeue, front and isEmpty 
How queue operations impact both performance 
and memory usage 
An appropriate queue for a specific problem 

●​ Leetc
●​ Hack
●​ Adve

of As
 

08/09 B2: 
Programming 

13 Big O B2.4.1 Describe the efficiency of specific algorithms 
by calculating their Big O notation to analyse their 
scalability. 
 

●​ The time and space complexities of 
algorithms and calculating Big O notation 

●​ Algorithm choice based on scalability and 
efficiency requirements 

 

 

08/09 B2: 
Programming 

14 Search algorithms B2.4.2 Construct and trace algorithms to implement 
a linear search and a binary search for data 
retrieval. 
 

●​ The differences in efficiency between 
different methods of linear and binary 
search 

●​ Use of search technique based on 
efficiency requirements—for example, 
searching a database for a sorted/indexed 
list of names to find a phone number, 
versus searching by the number to identify 
the name 

 

●​ Leetc
●​ Hack
●​ Leetc

 

15/09 B2: 
Programming 

15 Search algorithms   

15/09 B2: 
Programming 

16 Sort algorithms B2.4.3 Construct and trace algorithms to implement 
bubble sort and selection sort, evaluating their time 
and space complexities. 
 

●​ The time and space complexities of each 
algorithm, denoted by their respective Big 
O notations 

●​ The advantages and disadvantages of 
each algorithm in terms of efficiency 
across various data sets 

 

●​ Hack
●​ Leetc
●​ Leetc
●​ Adve

 

15/09 B2: 
Programming 

17 Sort algorithms   

22/09 B2: 
Programming 

18 Recursion (HL) B2.4.4 Explain the fundamental concept of 
recursion and its applications in programming. (HL 
only) 
 

●​ The fundamentals of recursion and its 
advantages and limitations 

●​ The utility of recursion in solving problems 
that can be broken down into smaller, 
similar sub-problems 

●​ Recursive algorithms, including but not 
limited to quicksort 

●​ Hack
●​ Leetc
●​ Leetc
●​ Adve
●​ Leetc
●​ Leetc

 
Quicksort exer
Sudoku exerci
 

https://leetcode.com/problems/number-of-students-unable-to-eat-lunch/description/
https://www.hackerrank.com/challenges/queue-using-two-stacks/problem
https://adventofcode.com/2019/day/5
https://adventofcode.com/2019/day/5
https://leetcode.com/problems/binary-search/description/
https://www.hackerrank.com/challenges/icecream-parlor/problem
https://leetcode.com/problems/search-insert-position/description/
https://www.hackerrank.com/challenges/30-sorting/problem
https://leetcode.com/problems/sort-colors/description/
https://leetcode.com/problems/merge-sorted-array/description/
https://adventofcode.com/2020/day/5
https://www.hackerrank.com/challenges/30-recursion/problem
https://leetcode.com/problems/fibonacci-number/description/
https://leetcode.com/problems/permutations/description/
https://adventofcode.com/2019/day/6
https://leetcode.com/problems/flood-fill/description/
https://leetcode.com/problems/max-area-of-island/description/


●​ The limitations of recursion, including 
complexity and memory usage 

●​ Situations that best suit the use of 
recursion, including fractal image creation, 
traversing binary trees, sorting algorithms 

 
B2.4.5 Construct and trace recursive algorithms in 
a programming language. (HL only) 
 

●​ Simple, non-branching recursive 
algorithms in programming only 

22/09 B2: 
Programming 

19 Recursion (HL)   

22/09 B2: 
Programming 

20 Recursion (HL)   

22/09 B2: 
Programming 

21 File processing B2.5.1 Construct code to perform file-processing 
operations. 
 

●​ Programs that manipulate text files 
●​ Opening a sequential file in various modes 

(read, write, append) 
●​ How to read from and write to files, 

append data to an existing file, and close 
a file once operations are completed 

●​ Classes for Java users may include 
Scanner, FileWriter, BufferedReader. 

●​ Functions for Python users may include 
open(), read(), readline(), write(), close(). 

Log file parser
analytics 

29/09 B2: 
Programming 

22 Programming 
scenarios 

  

29/09 B2: 
Programming 

23 Programming 
scenarios 

  

29/09 B2: 
Programming 

24 Programming 
scenarios 

  

OCTOBER MID-TERM BREAK 

13/10 B2: 
Programming 

25 Programming 
scenarios 

  

13/10 B2: 
Programming 

26 Programming 
scenarios 

  

13/10 B2: 
Programming 

27 Programming 
scenarios 

  

13/10 B2: 
Programming 

28 Review   

20/10 B2: 
Programming 

29 Review   

20/10 B2: 
Programming 

30 Assessment   

20/10 B3: OOP 1 Introducing OOP B3.1.1 Evaluate the fundamentals of OOP. 
 

 



●​ Model real-world entities using OOP 
concepts: classes, objects, inheritance, 
encapsulation, polymorphism 

●​ The advantages and disadvantages of 
using OOP in various programming 
scenarios 

 

27/10 B3: OOP 2 Designing classes B3.1.2 Construct a design of classes, their methods 
and behaviour. 
 

●​ Classes and their methods, based on 
application requirements 

●​ The use of unified modelling language 
(UML) class diagrams to represent class 
relationships, attributes and methods, to 
aid effective software design and planning 

 

 

27/10 B3: OOP 3 Instantiating objects B3.1.4 Construct code to define classes and 
instantiate objects. 
 

●​ How to define classes and create objects 
from those classes 

●​ The role of constructors in initializing an 
object's state, setting initial values for its 
attributes to define its condition or 
characteristics at the time of creation 

 

 

27/10 B3: OOP 4 Encapsulation B3.1.5 Explain and apply the concepts of 
encapsulation and information hiding in OOP. 
 

●​ The principles of encapsulation and 
information hiding 

●​ Apply access modifiers such as private 
and public 

●​ Controlling access to class members 
●​ The importance of limiting access to 

maintain the integrity and security of an 
object's state 

 

 

27/10 B3: OOP 5 Statics & non-statics B3.1.3 Distinguish between static and non-static 
variables and methods. 
 

●​ The differences between static and 
non-static variables and methods, 
including their usage and scope 

●​ When to use instance variables instead of 
class variables, and how to apply these 
concepts effectively in code 

 

 

03/11 B3: OOP 6 Programming 
scenarios 

  

03/11 B3: OOP 7 Programming 
scenarios 

  

03/11 B3: OOP 8 Programming 
scenarios 

  

EXPLORER WEEK 



17/11 B3: OOP 9 Inheritance (HL) B3.2.1 Explain and apply the concept of inheritance 
in OOP to promote code reusability. 
 

●​ How inheritance enables a hierarchical 
relationship between parent and child 
classes 

●​ Extending existing classes, utilizing 
inheritance to reuse and extend 
functionalities 

●​ The impact of inheritance on access to 
parent class members with different 
access modifiers (private, public, 
protected, default) 

 

 

17/11 B3: OOP 10 Polymorphism 
(overriding) (HL) 

B3.2.2 Construct code to model polymorphism and 
its various forms, such as method overriding. 
 

●​ The principle of polymorphism and how it 
contributes to code flexibility and 
reusability 

●​ How to implement dynamic polymorphic 
behaviour through mechanisms like 
method overriding 

●​ How to apply static polymorphic behaviour 
to maximize code efficiency 

 

 

17/11 B3: OOP 11 Abstract classes 
(HL) 

B3.2.3 Explain the concept of abstraction in OOP. 
 

●​ The significance of abstraction in the 
development of modular code fragments 

●​ The use of abstract classes to establish 
common interfaces for sub-classes 

 

 

17/11 B3: OOP 12 Composition & 
aggregation (HL) 

B3.2.4 Explain the role of composition and 
aggregation in class relationships. 
 

●​ How to design objects by leveraging 
smaller component objects through 
composition and aggregation 

●​ That aggregation implies that the 
subcomponents can function 
independently of the aggregating class, 
while in composition, the subcomponents 
are tightly coupled and cannot exist 
outside the aggregating class 

 

24/11 B3: OOP 13 Design patterns (HL) B3.2.5 Explain commonly used design patterns in 
OOP. 
 

●​ The key design patterns such as 
singleton, factory and observer 

●​ The application of design patterns in 
solving recurring programming challenges 

 

 

24/11 B3: OOP 14 Programming 
scenarios (HL) 

  

24/11 B3: OOP 15 Programming 
scenarios (HL) 

  

01/12 B3: OOP 16 Programming   



scenarios (HL) 

01/12 B3: OOP 17 Programming 
scenarios (HL) 

  

01/12 B3: OOP 18 Exam style questions   

01/12 B3: OOP 19 Exam style questions   

08/12 B3: OOP 20 Assessment   

08/12 B1:Comp 
thinking 

1 Problem 
specification 

B1.1.1 Construct a problem specification. 
 

●​ The specification of a problem may 
include a problem statement, constraints 
and limitations, objectives and goals, input 
specifications, output specifications, 
evaluation criteria. 

 

08/12 B1:Comp 
thinking 

2 Computational 
thinking concepts & 
application 

B1.1.2 Describe the fundamental concepts of 
computational thinking. 
 

●​ Abstraction, algorithmic design, 
decomposition, pattern recognition 

 
B1.1.3 Explain how applying computational thinking 
to fundamental concepts is used to approach and 
solve problems in computer science. 
 

●​ Computational thinking does not 
necessarily involve programming—it is a 
toolkit of available techniques for 
problem-solving. 

●​ Real-world examples may include 
software development, data analysis, 
machine learning, database design, 
network security. 

 

08/12 B1:Comp 
thinking 

3 Trace flowcharts B1.1.4 Trace flowcharts for a range of programming 
algorithms. 
 

●​ Use of standard flowchart symbols to 
depict processes, decisions and flows of 
control 

●​ Standard flowchart symbols: Connector, 
Decision, Flowline, Input/Output, 
Process/Operation, Start/End 

●​ Flowcharts for execution flow, to track 
changes in variables and to determine 
output 

 

WINTER BREAK 

05/01 B4: ADTs  Intro to ADT (HL) B4.1.1 Explain the properties and purpose of ADTs 
in programming. 
 

●​ The core principles of ADTs, including 
their purpose in providing a high-level 
description of data structures and their 
associated operations 

 

05/01 B4: ADTs  Linked lists (HL) B4.1.2 Evaluate linked lists. 
 

●​ Lists must include singly, doubly, circular 

 



●​ Sketch of linked lists and implementation 
of basic operations diagrammatically, such 
as insertion, deletion, traversal, search 

●​ The advantages and disadvantages of 
using linked lists over other data 
structures like arrays, particularly in terms 
of memory utilization and performance 

 
B4.1.3 Construct and apply linked lists: singly, 
doubly and circular. 
 

●​ The basic operations on a linked list, such 
as insertion, deletion, traversal, search 

 

05/01 B4: ADTs  Linked lists (HL)   

05/01 B4: ADTs  Linked lists (HL)   

12/01 B4: ADTs  Binary search trees 
(HL) 

B4.1.4 Explain the structures and properties of 
BSTs. 
 

●​ How binary search trees (BSTs) are used 
for data organization 

●​ Insert, delete, traverse and searching 
nodes in a BST 

●​ Sketching a BST as a tree diagram 
 

 

12/01 B4: ADTs  Binary search trees 
(HL) 

  

12/01 B4: ADTs  Binary search trees 
(HL) 

  

19/01 B4: ADTs  Sets (HL) B4.1.5 Construct and apply sets as an ADT. 
 

●​ The fundamental characteristics of sets, 
including their unordered nature and the 
uniqueness of elements 

●​ Operations: union, intersection and 
difference 

●​ Code to check if an element is in a set, to 
add an element to a set, to remove an 
element, and to check whether one set is 
a subset/superset of another set 

 

 

19/01 B4: ADTs  Sets (HL)   

19/01 B4: ADTs  Sets (HL)   

19/01 B4: ADTs  Hashmaps (HL) B4.1.6 Explain the core principles of ADTs. 
 

●​ High-level description of data structures 
and their associated operations and 
purpose 

●​ The underlying mechanics of hash tables, 
including hashing functions, collision 
resolution strategies and load factors 

●​ The underlying mechanics of sets to store 
and manage data 

●​ HashMap and HashSet in Java; dict and 
set in Python 

 

 



26/01 B4: ADTs  Hashmaps (HL)   

26/01 B4: ADTs  Hashmaps (HL)   

26/01 B4: ADTs  Programming 
scenarios (HL) 

  

02/02 B4: ADTs  Programming 
scenarios (HL) 

  

02/02 B4: ADTs  Programming 
scenarios (HL) 

  

02/02 B4: ADTs  Exam style questions 
(HL) 

  

02/02 B4: ADTs  Exam style questions 
(HL) 

  

09/02 B4: ADTs  Exam style questions 
(HL) 

  

09/02 B4: ADTs  Assessment (HL)   

CHINESE NEW YEAR BREAK 

23/02 A3: 
Databases 

1 Database 
fundamentals 

A3.1.1 Explain the features, benefits and limitations 
of a relational database. 
 

●​ Features: composite keys, foreign keys, 
primary keys, relationships, tables 

●​ Benefits of databases: community support, 
concurrency control, data consistency, 
data integrity, data retrieval, reduced data 
duplication, reduced redundancy, reliable 
transaction processing, scalability, security 
features 

●​ Limitations of databases: “big data” 
scalability issues, design complexity, 
hierarchical data handling, rigid schema, 
object-relational impedance mismatch, 
unstructured data handling 

 

 

23/02 A3: 
Databases 

2 Schemas and data 
types 

A3.2.1 Describe database schemas. 
 

●​ Conceptual schema, logical schema, 
physical schema 

●​ Abstract definitions of the data structure 
and organization of the data at different 
levels 

 
A3.2.3 Outline the different data types used in 
relational databases. 
 

●​ The importance of data type consistency 
●​ The potential effects of choosing the 

wrong data type 
 

 

23/02 A3: 
Databases 

3 Entity relationship 
diagrams 

A3.2.2 Construct ERDs. 
 

●​ The significance of entity relationship 
diagrams (ERDs) in crafting organized, 
efficient database designs tailored for 

 



specific applications 
●​ The relationships between different data 

entities within a database 
●​ The roles of cardinality and modality in 

defining relationships in ERDs 
 
A3.2.4 Construct tables for relational databases. 
 

●​ The relationship between tables using 
primary keys, foreign keys, composite 
keys and concatenated keys 

●​ The importance of well-defined tables in 
ensuring data integrity 

02/03 A3: 
Databases 

4 Normalisation A3.2.5 Explain the difference between normal 
forms. 
 

●​ First normal form (1NF), second normal 
form (2NF), third normal form (3NF) 

●​ The terms atomicity, unique identification, 
functional dependencies, partial-key 
dependencies, non- key/transitive 
dependencies 

●​ Normalization issues can encompass data 
duplication, missing data, and a range of 
dependency concerns, including data 
dependencies, composite key 
dependencies, transitive dependencies, 
and multi-valued dependencies. 

 
A3.2.7 Evaluate the need for denormalizing 
databases. 
 

●​ The advantages and disadvantages of 
normalizing and denormalizing databases 

●​ Situations where denormalization can 
enhance performance, particularly in 
read-intensive applications 

●​ The balance between straightforward 
query structures and the risk of data 
redundancy in denormalized schemas 

 
 
 
 

02/03 A3: 
Databases 

5 Designing 3NF 
databases 

A3.2.6 Construct a database normalized to 3NF for 
a range of real-world scenarios 
 

●​ Examples may include library 
management, hospital management, 
e-commerce platforms, school 
management, employee management, 
inventory management, police crime 
reporting 

Event registrat
group into tabl

●​ Eg: S
treate

●​ Chan
old o

●​ Paym
 
Marksbook da
 
E-Commerce d

02/03 A3: 
Databases 

6 Introducing SQL A3.3.1 Outline the differences between data 
language types within SQL. 
 

●​ Data language types must include data 
definition language (DDL) and data 
manipulation language (DML) 

●​ SQL statements to define data structures 
or to manipulate data 

Construct the 

09/03 A3: 
Databases 

7 SQL update & insert 
 

A3.3.3 Explain how SQL can be used to update 
data in a database. 
 

Provide some 
with and UPDA



●​ Insert new records (INSERT INTO), 
modify data (UPDATE SET), remove data 
(DELETE) 

The performance implications of updating data in 
indexed columns, and how indexes might need to 
be rebuilt or reorganized following significant data 
modifications 

09/03 A3: 
Databases 

8 SQL joins A3.3.2 Construct queries between two tables in 
SQL. 
 

●​ Queries must include joins, relational 
operators, filtering, pattern matching, and 
ordering data 

●​ SQL commands: SELECT, DISTINCT, 
FROM, WHERE, BETWEEN, ORDER BY, 
GROUP BY, HAVING, ASC, DESC, JOIN, 
LIKE with % wildcard, AND, OR, NOT 
(note: Syntax may vary in different 
database systems) 

 

 

09/03 A3: 
Databases 

9 SQL aggregate 
functions (HL) 

A3.3.4 Construct calculations within a database 
using SQL’s aggregate functions. (HL only) 
 

●​ Aggregate functions on grouped data to 
aid reporting and decision-making 

●​ Aggregate commands: AVERAGE, 
COUNT, MAX, MIN, SUM 

 

 

09/03 A3: 
Databases 

10 Views (HL) A3.3.5 Describe different database views. (HL only) 
 

●​ Virtual views and materialized (snapshot) 
views 

●​ Hiding data complexity, data consistency, 
independence, performance, query 
simplification, read-only data or updatable 
data, security 

 

 

16/03 A3: 
Databases 

11 Transactions (HL) A3.3.6 Describe how transactions maintain data 
integrity in a database. (HL only) 
 

●​ The role of atomicity, consistency, isolation 
and durability (ACID) to ensure reliable 
processing of transactions 

●​ Transaction control language (TCL) 
commands: BEGIN TRANSACTION, 
COMMIT, ROLLBACK 

 

 

16/03 A3: 
Databases 

12 Alternatives & 
warehouses (HL) 

A3.4.1 Outline the different types of databases as 
approaches to storing data. 
 

●​ Databases models: NoSQL, cloud, spatial, 
in-memory 

●​ Examples of the use of the database 
model in real-world scenarios may include 
e-commerce platforms, geographic 
information systems (GIS), managed 
services, real-time analytics, social media 
platforms, SaaS. 

 

 



A3.4.2 Explain the primary objectives of data 
warehouses in data management and business 
intelligence. 
 

●​ The roles of append-only data, 
subject-oriented data, integrated data, 
time-variant data, non-volatile data and 
data optimized for query performance, to 
ensure efficient data storage and analysis 

 

16/03 A3: 
Databases 

13 Data mining & 
distributed 
databases (HL) 

A3.4.3 Explain the role of online analytical 
processing (OLAP) and data mining for business 
intelligence. 
 

●​ Data mining techniques must include 
classification, clustering, regression, 
association rule discovery, sequential 
pattern discovery, anomaly detection 
(note: This links to “A4 Machine learning”). 

●​ The uses of the techniques in extracting 
meaningful information from large data 
sets 

 
A3.4.4 Describe the features of distributed 
databases. 
 

●​ The need to maintain data consistency in 
a distributed database 

●​ The role of ACID to ensure reliable 
processing of transactions in distributed 
databases 

●​ Features of distributed databases: 
concurrency control, data consistency, 
data partitioning, data security, distribution 
transparency, fault tolerance, global query 
processing, location transparency, 
replication, scalability 

 

 

23/03 A3: 
Databases 

14 Using SQL with 
Python (bonus) 

  

23/03 A3: 
Databases 

15 Exam style questions   

23/03 A3: 
Databases 

16 Assessment   

APRIL BREAK 

YEAR 12 EXAMS 

 Internal 
assessment 

1 Assessment 
overview 

Advice on project selection 
Review of exemplar projects 
Research ideas 

 

 Internal 
assessment 

2 Submit project 
proposal 

  

 Internal 
assessment 

3,4 Criterion A​
Problem 
specification 

Scenario, context, success criteria  

 Internal 5,6 Criterion B​ Initial planning 
UML, structure diagram, gantt 

 



assessment Planning 

 Internal 
assessment 

7-12 Criterion C​
System overview 

1 lesson for each of... 
UX diagrams 
Flowcharts 
UML overview 
Extras such as case diagram, DFD, networking 
diagram, ML modeling etc 
Functional testing 
Structural testing 

 

 Internal 
assessment 

13-30 Programming Self directed programming time  

 Internal 
assessment 

31-33 Criterion D​
Development 
documentation and 
video 

Development documentation and video  

 Internal 
assessment 

34-35 Criterion E​
Evaluation 

  

SUMMER BREAK 

 A1: Computer 
fundamentals 

1 CPU components A1.1.1 Describe the functions and interactions of 
the main CPU components. 
 

●​ Units: arithmetic logic unit (ALU), control 
unit (CU) 

●​ Registers: instruction register (IR), 
program counter (PC), memory address 
register (MAR), memory data register 
(MDR), accumulator (AC) 

●​ Buses: address, data, control 
●​ Processors: single core processor, 

multi-core processor, co-processors 
●​ A diagrammatic representation of the 

relationship between the specified CPU 
components 

 

 A1: Computer 
fundamentals 

2 Primary memory, 
secondary memory 

A1.1.4 Explain the purposes of different types of 
primary memory. 
 

●​ Random-access memory (RAM), read 
only memory (ROM), cache (L1, L2, L3), 
registers 

●​ The interaction of the CPU with different 
types of memory to optimize performance 

●​ The relevance of the terms “cache miss” 
and “cache hit” 

 
A1.1.7 Describe internal and external types of 
secondary memory storage. 
 

●​ Internal hard drives: solid state drive 
(SSD), hard disk drive (HDD), embedded 
multimedia cards (eMMCs) 

●​ External hard drives: SSD, HDD, optical 
drives, flash drives, memory cards, 
network attached storage (NAS) 

●​ The scenarios in which the various types 
of drive are used 

Compare read
disk, SSD, US
 
poe starter: 
 
import time 
 
# Write a fi
data = "A" *
start_time =
with open("t
    file.wri
write_time =
print(f"Writ
 
# Read the f
start_time =
with open("t
    file.rea
read_time = 
print(f"Read
 

 A1: Computer 
fundamentals 

3 Fetch / decode / 
execute 

A1.1.5 Describe the fetch, decode and execute 
cycle. 

Implement a C
Implement cod
Provide a "me



 
●​ The basic operations a CPU performs to 

execute a single instruction in machine 
language 

●​ The interaction between memory and 
registers via the three buses: address, 
data, control 

 

 
Starting point f
 
class CPU: 
    def __init__(
        self.PC = 
        self.IR = N
        self.MAR 
        self.MDR 
        self.AC = 
        self.memo
 
    def fetch(se
        self.MAR 
        self.MDR 
        self.IR = s
        print(f"Fet
        self.PC +=
 
    def decode(
        print(f"De
        # Simulat
 
    def execute
        print(f"Exe
        self.AC +=
        print(f"Acc
 
cpu = CPU() 
for _ in range(3
    cpu.fetch() 
    cpu.decode
    cpu.execute
 
 

 A1: Computer 
fundamentals 

4 GPU (HL) A1.1.2 Describe the role of a GPU. 
 

●​ The architecture that allows graphics 
processing units (GPUs) to handle specific 
tasks and makes them suitable for 
complex computations 

●​ Real-world scenarios may include video 
games, artificial intelligence (AI), large 
simulations and other applications that 
require graphics rendering and machine 
learning. 

 
A1.1.3 Explain the differences between the CPU 
and the GPU. (HL only) 
 

●​ Differences in their design philosophies, 
usage scenarios 

●​ Differences in their core architecture, 
processing power, memory access, power 
efficiency 

●​ CPUs and GPUs working together: task 
division, data sharing, coordinating 
execution 

 

 
Access a GPU
the training tim
 

 A1: Computer 
fundamentals 

5 Pipelining (HL) A1.1.6 Describe the process of pipelining in 
multi-core architectures. (HL only) 
 

●​ The instructions fetch, decode, execute 

 



●​ Write-back stages to improve the overall 
system performance in multi-core 
architectures 

●​ Overview of how cores in multi-core 
processors work independently and in 
parallel 

 

 A1: Computer 
fundamentals 

6 Compression A1.1.8 Describe the concept of compression. 
 

●​ The differences between lossy 
compression methods and lossless 
compression methods 

●​ Run-length encoding and transform coding 
 

Implement run
(RAW), see ho
Decompress b
 
Use this as a s
 
# Example 5x
image = [ 
    [1, 1, 1
    [0, 0, 1
    [1, 0, 0
    [1, 1, 1
    [0, 0, 0
] 
 
def rle_comp
    compress
    for row 
        row_
        comp
    return c
 
def rle_deco
    decompre
    for row 
        row_
        deco
    return d
 
# Compress a
compressed_i
print("Compr
 
decompressed
rle_decompre
print("Decom
for row in d
    print(ro
 

 A1: Computer 
fundamentals 

7 Cloud computing A1.1.9 Describe the different types of services in 
cloud computing. 
 

●​ Services: software as a service (SaaS), 
platform as a service (PaaS), 
infrastructure as a service (IaaS) 

●​ The differences between the approaches 
of SaaS, PaaS, and IaaS in various 
real-world scenarios, recognizing that 
different degrees of control and flexibility 
influence resource management and 
resource availability 

 

 

 A1: Computer 
fundamentals 

8 Binary data A1.2.1 Describe the principal methods of 
representing data. 
 

●​ The representation of integers in binary 
and hexadecimal 

Possible activi
light up LEDs 
number. Perha



●​ Conversion of binary and hexadecimal 
integers to decimal, and vice versa 

●​ Conversion of integers from binary to 
hexadecimal, and vice versa 

 
A1.2.2 Explain how binary is used to store data. 
 

●​ The fundamentals of binary encoding and 
the impact on data storage and retrieval 

●​ The mechanisms by which data such as 
integers, strings, characters, images, 
audio and video are stored in binary form 

 

 A1: Computer 
fundamentals 

9    

 A1: Computer 
fundamentals 

10 Logic gates, truth 
tables, logic 
diagrams 

A1.2.3 Describe the purpose and use of logic 
gates. 
 

●​ The purpose and use of logic gates 
●​ The functions and applications of logic 

gates in computer systems 
●​ The role of logic gates in binary computing 
●​ Boolean operators: AND, OR, NOT, 

NAND, NOR, XOR, XNOR 
 
A1.2.4 Construct and analyse truth tables. 
 

●​ Truth tables to predict the output of simple 
logic circuits 

●​ Truth tables to determine outputs from 
inputs for a problem description 

●​ Truth tables and their relationship to a 
Boolean expression, with inputs and 
outputs 

●​ Truth tables derived from logic diagrams to 
aid the simplification of logical expressions 

●​ Karnaugh maps and algebraic 
simplification to simplify output 
expressions 

 
A.1.2.5 Construct logic diagrams. 
 

●​ Logic diagrams to demonstrate how logic 
gates are connected and interact in a 
circuit. 

●​ Use of standard gate symbols for AND, 
OR, NOT, NAND, NOR, XOR and XNOR 
gates 

●​ Inputs processed diagrammatically to 
produce outputs 

●​ Combinations of these gates to perform 
more complex logical operations 

●​ Boolean algebra rules to simplify complex 
logic diagrams and expressions 

 

 A1: Computer 
fundamentals 

11    

 A1: Computer 
fundamentals 

12    

 A1: Computer 13    



fundamentals 

 A1: Computer 
fundamentals 

14 Operating systems A1.3.1 Describe the role of operating systems. 
 

●​ Operating systems abstract hardware 
complexities to manage system resources 

 
A1.3.2 Describe the functions of an operating 
system. 
 

●​ Maintaining system integrity while running 
operating systems’ background operations 

●​ Memory management, file system, device 
management, scheduling, security, 
accounting, graphical user interface (GUI), 
virtualization, networking 

 
A1.3.3 Compare different approaches to 
scheduling. 
 

●​ Managing the execution of processes by 
allocating CPU time to optimize system 
performance 

●​ First-come first-served, round robin, 
multilevel queue scheduling, priority 
scheduling 

 
A1.3.4 Evaluate the use of polling and interrupt 
handling. 
 

●​ Event frequency, CPU processing 
overheads, power source (battery or 
mains), event predictability, controlled 
latency, security concerns 

●​ Real-world scenarios may include 
keyboard and mouse inputs, network 
communications, disk input/ output 
operations, embedded systems, real-time 
systems. 

 
A1.3.5 Explain the role of the operating system in 
managing multitasking and resource allocation. (HL 
only) 
 

●​ The challenges of multitasking and 
resource allocation, including task 
scheduling, resource contention and 
deadlock 

 

 A1: Computer 
fundamentals 

15 Operating systems   

 A1: Computer 
fundamentals 

16 Operating systems   

 A1: Computer 
fundamentals 

17 Control systems (HL) A1.3.6 Describe the use of the control system 
components. (HL only) 
 

●​ The input, process, output, and feedback 
mechanism (open-loop, closed-loop) 

●​ Controller, sensors, actuators, transducers 
and control algorithm 

 

 



A1.3.7 Explain the use of control systems in a 
range of real-world applications. (HL only) 
 

●​ Examples may include autonomous 
vehicles, home thermostats, automatic 
elevator controllers, automatic washing 
machines, traffic signal control systems, 
irrigation control systems, home security 
systems, automatic doors. 

 

 A1: Computer 
fundamentals 

18 Control systems (HL)   

 A1: Computer 
fundamentals 

19 Translation (HL) A1.4 Translation (HL only) 
 
A1.4.1 Evaluate the translation processes of 
interpreters and compilers. 
 

●​ The mechanics and use-cases of each 
translation approach 

●​ The difference in error detection, 
translation time, portability and 
applicability for different translation 
processes, including just-in-time 
compilation (JIT) and bytecode 
interpreters 

●​ Example scenarios where the translation 
method should be considered must 
include rapid development and testing, 
performance-critical applications and 
cross-platform development. 

 

 A1: Computer 
fundamentals 

20 Exam practice 
questions 

  

 A1: Computer 
fundamentals 

21 Assessment   

 A4: Machine 
learning 

1 Intro to ML A4.1.1 Describe the types of machine learning and 
their applications in the real world. 
 

●​ The different approaches to machine 
learning algorithms and their unique 
characteristics 

●​ Deep learning (DL), reinforcement 
learning (RL), supervised learning, 
transfer learning (TL), unsupervised 
learning (UL) 

●​ Real-world applications of machine 
learning may include market basket 
analysis, medical imaging diagnostics, 
natural language processing, object 
detection and classification, robotics 
navigation, sentiment analysis. 

 

 A4: Machine 
learning 

2 ML hardware A4.1.2 Describe the hardware requirements for 
various scenarios where machine learning is 
deployed. 
 

●​ The hardware configurations for different 
machine learning scenarios, considering 
factors such as processing, storage and 
scalability 

 



●​ Hardware configurations for machine 
learning ranging from standard laptops to 
advanced infrastructure 

●​ Advanced infrastructure must include 
application-specific integrated circuits 
(ASICs), edge devices, 
field-programmable gate arrays (FPGAs), 
GPUs, tensor processing units (TPUs), 
cloud-based platforms, high-performance 
computing (HPC) centres. 

 A4: Machine 
learning 

3 Pre-processing (HL) A4.2.1 Describe the significance of data cleaning. 
 

●​ The impact of data quality on model 
performance 

●​ Techniques for handling outliers, removing 
or consolidating duplicate data, identifying 
incorrect data, filtering irrelevant data, 
transforming improperly formatted data, 
and imputation, deletion or predictive 
modelling for missing data 

●​ Normalization and standardization as 
crucial preprocessing steps 

 
A4.2.2 Describe the role of feature selection. 
 

●​ Feature selection to identify and retain the 
most informative attributes of the data set 

●​ Feature selection strategies: filter 
methods, wrapper methods, embedded 
methods 

 
A4.2.3 Describe the importance of dimensionality 
reduction. 
 

●​ The curse of dimensionality considerations 
may include overfitting, computational 
complexity, data sparsity, the effectiveness 
of distance metrics, data visualization, 
sample size increases, memory usage. 

●​ Dimensionality reduction of variables, 
while preserving the relevant aspects of 
the data. Note: Statistical techniques such 
as principal component analysis (PCA) 
and linear discriminant analysis (LDA) are 
beyond the scope of this course. 

 

 A4: Machine 
learning 

4 Linear regression 
(HL) 

A4.3.1 Explain how linear regression is used to 
predict continuous outcomes. 
 

●​ The relationship between the independent 
(predictor) and dependent (response) 
variables 

●​ The significance of the slope and intercept 
in the regression equation 

●​ How well the model fits the data—often 
assessed using measures like r2. 

 

 

 A4: Machine 
learning 

5 Classification (HL) A4.3.2 Explain how classifications techniques in 
supervised learning are used to predict discrete 
categorical outcomes. 
 

 



●​ K-Nearest Neighbours (K-NN) and 
decision trees algorithms to categorize 
new data points, based on patterns 
learned from existing labelled data 

●​ Real-world applications of K-NN may 
include collaborative filtering 
recommendation systems. 

●​ Real-world applications of decision trees 
may include medical diagnosis based on a 
patient’s symptoms. 

 

 A4: Machine 
learning 

6 Hyper parameters 
(HL) 

A4.3.3 Explain the role of hyperparameter tuning 
when evaluating supervised learning algorithms. 
 

●​ Accuracy, precision, recall and F1 score 
as evaluation metrics 

●​ The role of hyperparameter tuning on 
model performance 

●​ Overfitting and underfitting when training 
algorithms 

 

 

 A4: Machine 
learning 

7 Clustering (HL) A4.3.4 Describe how clustering techniques in 
unsupervised learning are used to group data 
based on similarities in features. 
 

●​ Clustering techniques in unsupervised 
learning group data based on feature 
similarities 

●​ Real-world applications of clustering may 
include using purchasing data to segment 
a customer base. 

 

EXPECTED OCTOBER HALF TERM BREAK 

 A4: Machine 
learning 

8 Association rule (HL) A4.3.5 Describe how learning techniques using the 
association rule are used to uncover relations 
between different attributes in large data sets. 
 

●​ Mining techniques using the association 
rule and interpretation of the results for a 
given scenario For example, in crime 
analysis, the techniques may reveal that 
areas with high rates of vandalism also 
often experience incidents of theft, 
assisting law enforcement in predictive 
policing and resource allocation. 

 

 A4: Machine 
learning 

9 Reinforcement 
learning (HL) 

A4.3.6 Describe how an agent learns to make 
decisions by interacting with its environment in 
reinforcement learning. 
 

●​ The principle of cumulative reward and the 
foundational concepts of 
agent–environment interaction, 
encompassing actions, states, rewards 
and policies 

●​ The exploration versus exploitation 
trade-off as a core concept in 
reinforcement learning 

 

 A4: Machine 
learning 

10 Genetic algorithms 
(HL) 

A4.3.7 Describe the application of genetic 
algorithms in various real-world situations. 

 



 
●​ For example: population, fitness function, 

selection, crossover, mutation, evaluation, 
termination 

●​ A real-world application of genetic 
algorithms is seen in optimization 
problems, such as route planning (e.g. the 
“travelling salesperson problem”). 

 

 A4: Machine 
learning 

11 Artificial neural 
networks (HL) 

A4.3.8 Outline the structure and function of ANNs 
and how multi-layer networks are used to model 
complex patterns in data sets. 
 

●​ An artificial neural network (ANN) to 
simulate interconnected nodes or 
“neurons” to process and learn from input 
data, enabling tasks such as classification, 
regression and pattern recognition 

●​ Sketch of a single perceptron, highlighting 
its input, weights, bias, activation function 
and output 

●​ Sketch of a multi-layer perceptron (MLP) 
encompassing the input layer, one or more 
hidden layers and the output layer. 

 

 

 A4: Machine 
learning 

12 Artificial neural 
networks (HL) 

  

 A4: Machine 
learning 

13 Convolutional neural 
networks (HL) 

A4.3.9 Describe how CNNs are designed to 
adaptively learn spatial hierarchies of features in 
images. 
 

●​ Convolutional neural network (CNN) basic 
architecture: input layer, convolutional 
layers, activation functions, pooling layers, 
fully connected layers, output layer 

●​ The effect of the number of layers, kernel 
size and stride, activation function 
selection, and the loss function on how 
CNNs process input data and classify 
images 

 

 

 A4: Machine 
learning 

14 Ethics A4.4.1 Discuss the ethical implications of machine 
learning in real-world scenarios. 
 

●​ Ethical issues may include accountability, 
algorithmic fairness, bias, consent, 
environmental impact, privacy, security, 
societal impact, transparency. 

●​ The challenges posed by biases in training 
data 

●​ The ethics of using machine learning in 
online communication may include 
concerns about misinformation, bias, 
online harassment, anonymity, privacy. 

 
A4.4.2 Discuss ethical aspects of the increasing 
integration of computer technologies into daily life. 
 

●​ The importance of continually reassessing 
ethical guidelines as technology advances 

 



●​ The potential implications of emerging 
technologies such as quantum computing, 
augmented reality, virtual reality and the 
pervasive use of AI on society, individual 
rights, privacy and equity 

 

 A4: Machine 
learning 

15 Ethics   

 A4: Machine 
learning 

16 Model selection A4.3.10 Explain the importance of model selection 
and comparison in machine learning. 
 

●​ How different algorithms can yield different 
results depending on the data and type of 
problem 

●​ The reasons for selecting specific machine 
learning models over others, considering 
factors like the nature of the problem, its 
complexity and desired outcomes 

●​ The variability in algorithm performance 
based on the data’s characteristics 

 

 

 A4: Machine 
learning 

17 Exam style questions   

 A4: Machine 
learning 

18 Assessment   

 A2: Networks 1 Network types A2.1.1 Describe the purpose and characteristics of 
networks. 
 

●​ Networks: local area network (LAN), wide 
area network (WAN), personal area 
network (PAN), virtual private network 
(VPN) 

 
A2.1.2 Describe the purpose, benefits and 
limitations of modern digital infrastructures. 
 

●​ Modern digital infrastructure: the internet, 
cloud computing, distributed systems, 
edge computing, mobile networks 

●​ Examples where specific networks are 
used may include the worldwide web 
(WWW), cryptocurrency blockchains, 
smart traffic lights, a school. 

 

 

 A2: Networks 2 Network devices & 
transmission media 

A2.1.3 Describe the function of network devices. 
 

●​ Gateways, hardware firewalls, modems, 
network interface cards, routers, switches, 
wireless access points 

●​ How devices map to the layers of the 
TCP/IP model 

 
A2.3.2 Compare types of media for data 
transmission. 
 

●​ Wired transmission via fibre optic cables 
and twisted pair cables; wireless 
transmission 

●​ The advantages and disadvantages of 

 



these three types of data transmission 
●​ Factors to consider must include 

bandwidth, complexity of installation, cost, 
range, susceptibility to interference, 
attenuation, reliability, security. 

 A2: Networks 3 Topologies, models, 
segmentation 

A2.2.1 Describe the functions and practical 
applications of network topologies. 
 

●​ Network topologies: star, mesh, hybrid 
●​ Factors to consider must include reliability, 

transmission speed, scalability, data 
collisions, cost. 

●​ Examples may include home and small 
office settings, where reliability is 
paramount, and the use of networks in 
larger settings (e.g. corporations, 
government departments, college 
campuses). 

 
A2.2.3 Compare and contrast networking models. 
 

●​ Client-server and peer-to-peer models 
●​ The respective benefits and drawbacks of 

client-server and peer-to-peer models 
●​ Real-world applications may include web 

browsing, email services, online banking, 
file sharing, VoIP services, blockchain. 

 
A2.2.4 Explain the concepts and applications of 
network segmentation. 
 

●​ Segmentation for network performance 
and security, to reduce congestion, to 
manage network resources efficiently 

●​ Network segmentation must include the 
uses and roles of segmenting, subnetting 
and virtual local area networks (VLANs). 

 

 A2: Networks 4 Protocols A2.1.4 Describe the network protocols used for 
transport and application. 
 

●​ Protocols: transmission control protocol 
(TCP), user datagram protocol (UDP), 
hypertext transfer protocol (HTTP), 
hypertext transfer protocol secure 
(HTTPS), dynamic host configuration 
protocol (DHCP) 

 

 

 A2: Networks 5 TCP/IP model A2.1.5 Describe the function of the TCP/IP model. 
(HL only) 
 

●​ Application, transport, internet, network 
interface 

●​ The role of each layer and the interaction 
between these layers to ensure reliable 
data transmission over a network 

 

 

 A2: Networks 6 Servers A2.2.2 Describe the function of servers. (HL only) 
 

●​ Types of servers: domain name server 
(DNS), dynamic host configuration 

 



protocol (DHCP), file server, mail server, 
proxy server, web server 

●​ Factors to consider must include function, 
scalability, reliability and security. 

 

 A2: Networks 7 Practical: Create a 
socket server 

  

 A2: Networks 8 IP addressing A2.3.1 Describe different types of IP addressing. 
 

●​ The distinction between IPv4 and IPv6 
addressing 

●​ The differences between public IP 
addresses and private IP addresses, and 
between static IP addresses and dynamic 
IP addresses 

●​ The role of network address translation 
(NAT) to minimize the use of IP addresses 
and to facilitate communication between 
private internal networks and the public 
internet 

 

 A2: Networks 9 Packet switching & 
routing 

A2.3.3 Explain how packet switching is used to 
send data across a network. 
 

●​ The process of segmenting data into 
packets with a routing header attached, 
and independently transmitting control 
information, allowing the data to be 
reassembled at the destination 

●​ The role that switches and routers play in 
packet switching 

 
A2.3.4 Explain how static routing and dynamic 
routing move data across local area networks. (HL 
only) 
 

●​ The process of static routing, and its 
advantages and disadvantages 

●​ The process of dynamic routing, and its 
advantages and disadvantages 
(explanation of a specific routing protocol 
is not required) 

●​ Factors to consider must include 
configuration, maintenance, complexity, 
resource usage, convergence, scalability, 
network size. 

 

 A2: Networks 10 Firewalls in detail A2.4.1 Discuss the effectiveness of firewalls at 
protecting a network. 
 

●​ The function of firewalls in inspecting and 
filtering incoming and outgoing traffic 
based on whitelists, blacklists and rules 

●​ The strengths and limitations of firewalls 
●​ The role of NAT to enhance network 

security 
 

 

 A2: Networks 11 Vulnerabilities & 
countermeasures 
(HL) 

A2.4.2 Describe common network vulnerabilities. 
(HL only) 
 

●​ Distributed denial of service (DDoS), 
insecure network protocols, malware, 

 



man-in-the-middle (MitM) attacks, phishing 
attacks, SQL injection, cross-site scripting 
(XSS), unpatched software, weak 
authentication, zero-day exploits 

 
A2.4.3 Describe common network 
countermeasures. (HL only) 
 

●​ Content security policies, complex 
password policies, DDoS mitigation tools, 
email filtering solutions, encrypted 
protocols, input validation (filtering, 
whitelisting), intrusion detection systems 
(IDS), intrusion prevention systems (IPS), 
multifactor authentication (MFA), secure 
socket layer (SSL) certificate, transport 
layer security (TLS) certificate, update 
software, VPNs 

●​ The importance of regular security testing 
and employee training 

●​ Wireless security measures may include 
media access controllers (MAC), whitelists 
and blacklists. 

 A2: Networks 12    

 A2: Networks 13 Encryption & 
certificates 

A2.4.4 Describe the process of encryption and 
digital certificates. 
 

●​ The difference between symmetric and 
asymmetric cryptography 

●​ The role of digital certificates in 
establishing secure network connections 

●​ The use of public and private keys in 
asymmetric cryptography 

●​ The significance of encryption key 
management 

 

 

 A2: Networks 14 Practical: TBD   

 A2: Networks 15 Exam style questions   

 A2: Networks 16 Assessment   

EXPECTED WINTER BREAK 

YEAR 13 MOCK EXAMS 

 Case study 1 Introduce the case 
study 

Read the case study. Highlight and identify key 
points. 

 

 Case study 2 Understand the text 
of the case study 

Prepare definitions for the terminology list provided 
at the end of the case study. 

 

 Case study 3 Understand the text 
of the case study 

Quiz and test yourself and your peers on 
terminology definitions and introductory concepts. 

 

 Case study 4 Understand the 
technology in the 
case study 

Research  

 Case study 5 Understand the 
technology in the 
case study 

Research  



 Case study 6 Understand the 
technology in the 
case study 

Present  

 Case study 7 Consider the 
challenges of the 
case study 

* Research any background information on the 
challenge 
* Research and identify real-world examples of the 
challenges 

 

 Case study 8 Consider the 
challenges of the 
case study 

* Research any background information on the 
challenge 
* Research and identify real-world examples of the 
challenges 

 

 Case study 9 Review for exam 
questions 

Challenge 1  

 Case study 10 Review for exam 
questions 

Challenge 2  

 Case study 11 Review for exam 
questions 

Challenge 3 (HL)  

 Case study 12 Review for exam 
questions 

Challenge 4 (HL)  

 Case study 13 Exam practice 
questions 

Challenge 1  

 Case study 14 Exam practice 
questions 

Challenge 2  

 Case study 15 Exam practice 
questions 

Challenge 3 (HL)  

 Case study 16 Exam practice 
questions 

Challenge 4 (HL)  

END OF COURSE 
 
 
 


	Shared 
	Scope and sequence: IB Diploma CS 
	Detailed scope and sequence 

