Assignment 3

PM1/04 (Group B)

(Symbols have their usual meanings)

- 1. Define surface in R³. Define surface patch in R³. Give example.
- 2. Define regular surface patch.
- 3. Define an allowable surface patch. Define smooth surface.
- 4. Which of the following are regular surface patches? (in each case $u,v \in R$)

(i)
$$\sigma(u,v) = (\cos u, \sin u, v)$$
, (ii) $\sigma(u,v) = (u, v, uv)$, (iii) $\sigma(u,v) = (u, v^2, v^3)$, (iv) $\sigma(u,v) = (u+u^2, v, v^2)$

- 5. Define derivative of smooth map $f: S \to S$, where S and S being two surfaces in R³. Write down the expression of derivative of smooth maps at any point p in terms of surface patches.
- 6. If $f: S \to \tilde{S}$ is a smooth map between surfaces at any point $p \in S$, prove that the derivative $D_p f: T_p S \to T_{f(p)} \tilde{S}$ is linear.
- 7. If $f: S \to S$ is a smooth map between surfaces. Then prove that f is a local diffeomorphism if and only if for all $p \in S$, the linear map $D_p f: T_p S \to T_{f(p)} S$ is invertible.
- 8. Define standard unit normal of the surface patch σ at p. When a surface is said to be orientable?