
Systems Medicine Chapter 2
Dynamical compensation, mutant resistance, and type-2 diabetes

We now build on our work in chapter 1 on the glucose-insulin system. We will
understand how it breaks down in type-2 diabetes and identify principles that apply
broadly to other hormone circuits.

The insulin circuit is one of a hundred or so endocrine systems in the body. Endocrine
organs communicate with distant organs via hormones that flow in the bloodstream.
We will see that endocrine organs face three universal challenges. They must:

(i) Work precisely even though they communicate with distant organs that
have unknown parameters that change over time. This is the problem of
robustness to parameter variations.
(ii) Maintain a proper organ size, even though cell populations tend to grow or
shrink exponentially. This is the problem of organ size control.
(iii) Avoid harmful mutant cells that can overgrow and take over the organ.
This is the problem of mutant resistance.

We will discover a unifying and beautiful circuit design that addresses all three
problems at once! This chapter also introduces the fundamental physiological laws
that will accompany us through the book. Before we start, let’s take a nice deep sigh
of relief.

The minimal model cannot explain the robustness of glucose levels to variations
in insulin sensitivity.
We ended the last chapter with a mystery. The insulin-glucose feedback loop of the
minimal model explained the rise and fall of glucose after a meal but failed to explain
how glucose levels are maintained when physiological parameters, like insulin
sensitivity s, change.
The minimal model predicts that insulin resistance (low s) raises the glucose baseline
above 5mM and lengthens the response time in the glucose tolerance test. However,
most people with insulin resistance, including people with obesity, maintain a normal
5mM glucose steady-state concentration, and exhibit normal glucose responses. The
minimal model is thus not robust to parameters like s. It is also not robust to



differences in blood volume, which dilute out insulin, or to the beta-cell maximal
insulin production rate, q. In fact, the minimal model is not robust to any of its
parameters.

Robustness must involve additional processes beyond the minimal model’s
glucose-insulin feedback loop. Indeed, the way that the body compensates for
decreased insulin sensitivity is by making more insulin. Each beta cell upregulates its
insulin production capacity to the maximal possible. Then, there is an increase in the
number and mass of beta cells. This is called beta cell hyperplasia—more cells—and
hypertrophy—bigger cells. The two processes together increase the total mass of beta
cells - with hypertrophy the dominant cause in humans after age 2. More beta cell
mass means more insulin production. For example, people with obesity are insulin
resistant and have more total beta cell mass than lean individuals. This extra secretion
compensates for insulin resistance.

It’s like factories making cars. To make more cars, one can increase production from
each factory – but only up to a limit. Beyond that, more factories are needed.

Let’s use the phase portrait to understand the effect of beta cell mass changes (Fig.
2.1, 2.2). The original set point with 5mM glucose, occurs at the intersection of the
two nullclines. Insulin resistance shifts the blue nullcline, and raises the fixed point to
higher glucose (Fig 2.1). This is appropriate for short term (hours to days)
physiological changes in insulin sensitivity, such as acute stress or inflammation,
where elevated glucose is useful. However, long-term excess glucose over weeks
causes beta-cell mass to gradually increase. This raises the other nullcline, shifting
glucose levels back towards their original level (Fig. 2.2). In this compensated state,
insulin secretion is higher than in the original setpoint, due to the enlarged beta-cell
functional mass.

For these shifts to produce precisely the right glucose level, 5mM, beta cells must stop
expanding at exactly the right mass (Fig 2.2). Remarkably, they do. The resulting
increase in insulin exactly compensates for the decrease in . Although each unit𝑠
of insulin is less effective, the amount of insulin produced is increased precisely
enough to compensate.

This compensation is seen in the hyperbolic relation, in which healthy people show
an inverse relationship between insulin sensitivity, s, and steady-state fasting insulin,
Ist. This hyperbolic relationship, Ist~1/s, maintains a constant product of the two
variables: (Kahn et al. 1993) (Fig. 2.3). By contrast, for people with𝑠𝐼

𝑠𝑡
= 𝑐𝑜𝑛𝑠𝑡

diabetes, the same product is lower (Fig. 2.3, right). The origin of this hyperbolic
relationship has long been a mystery; we will soon understand it.

A slow feedback loop on beta cell numbers provides compensation.
To explain how such precise compensation can come about, we need to extend the
minimal model by adding an equation to describe how beta-cell total mass, , can𝐵
change.



Here we enter the realm of the dynamics of cell
populations. These dynamics are unlike the
dynamics of protein concentrations inside cells or
molecules in the blood. For example, we used an
equation for glucose that, at its core, has
production and removal terms,

. Glucose safely converges to𝑑𝐺/𝑑𝑡 = 𝑚 − α𝐺
a stable fixed point, (Fig 2.4).𝐺

𝑠𝑡
= 𝑚/α

Cells, in contrast, live on a knife’s edge. Their
biology contains an inherent instability, due to
exponential growth. Cells increase their biomass
and divide (proliferate) at rate p and are removed
at rate r (Fig 2.5). The removal rate includes
active cell death (apoptosis) and other processes
that take the cells out of the game like
exhaustion, de-differentiation and senescence.
Since all cells come from cells, and all biomass is
made by biomass, production of biomass is
intrinsically autocatalytic. It is a rate constant p
times the total mass of the cells: production=p B.
Removal of beta-cell mass B is, as usual, B times
the rate at which cells are removed: removal= r
B. As a result, the change in total cell mass B is
the difference between production and removal rates:

(1) 𝑑𝐵/𝑑𝑡 = 𝑝𝐵 − 𝑟𝐵 = 𝑝 − 𝑟( )𝐵 = µ𝐵.

The key point is that the cell mass B appears in both growth and removal. It can
therefore be taken outside the parentheses, leaving B times the net growth rate of
cells, the difference between production and removal rates.µ = 𝑝 − 𝑟,

The problem is that if production exceeds removal, growth rate is positive and totalµ
cell mass rises exponentially, B~ (Fig 2.6). Such explosive growth occurs in early𝑒µ𝑡



cancer. On the other hand, if removal
exceeds production, is negative, andµ
cell numbers exponentially decay to zero,
as in degenerative diseases. It is hard to
keep total cell mass constant over time.
This is known as the problem of organ
size control.
Here we introduce the first of the three
laws of physiology that are the
foundation of this book

Law 1: All cells come from cells.

The problem of organ size control is a natural outcome of this law.

Organ size control is an amazing and universal problem. Our body constantly replaces
its cells; about a million cells are made and removed every second. We make and
remove about 100g of tissue every day (Sender and Milo 2021). If the production and
removal rates were not precisely equal, we would exponentially explode or collapse.

To keep cell numbers constant, we need feedback control to balance growth and
removal - to reach zero net growth rate, . Moreover, the feedback loop mustµ = 0
keep the organ at a good functional size. Hence, the feedback mechanism must
somehow register the biological activity of the cells and accordingly control their
growth rate.

Organ size control in beta cells is provided by feedback from glucose.
Organ size control of beta cells is achieved
by means of glucose, as pointed out by
Brian Topp and Dianne Finegood (Topp et
al. 2000). The feedback signal is blood
glucose, which controls both the growth and
removal rates, such that . Asµ = µ(𝐺)
measured in rodent islets, the removal rate
of beta cells is high at low glucose, and falls
sharply around 5mM glucose (Fig 2.7).
Removal rate rises again at high glucose, a
phenomenon called glucotoxicity, to which
we will return soon.

For now, let’s focus on the region around
5mM. Biomass growth (which includes
both cell division and growth of mass per
cell) rises with glucose. For example beta
cells proliferate faster than normal in a fetus



exposed to high glucose from a diabetic mother. Therefore, the curves describing the
rates for growth and removal cross near , the fixed point that we seek𝐺

0
= 5𝑚𝑀 

with zero growth rate (Fig 2.8).

This way of plotting production and removal rates is called a rate plot, an important
tool for understanding tissue-level circuits. The crossing point of the curves is the
steady state, where cell production equals cell removal, and total cell mass does not
change.

Another way of plotting this is to use the net growth rate , de�ined as the differenceµ
between production and removal. Net growth

rate crosses zero at (Fig 2.9).µ 𝐺
0( ) = 0

The fixed point is stable for both𝐺
0

= 5𝑚𝑀 
beta-cells and blood glucose. It is stable because
perturbing glucose away from the fixed point
causes it to move back. We can see this on our
rate plot (Fig 2.10). If glucose is above 5mM,
beta cells grow faster than they are removed.
Total beta cell mass increases, leading to more
insulin, pushing glucose back down towards
5mM. Conversely, if glucose is below 5mM,
beta-cells are removed more rapidly than they
grow, leading to less insulin, pushing glucose
levels back up. These stable dynamics are
indicated by the arrowheads pointing into the
fixed point in Fig 2.10.

This cell mass feedback loop operates on the
timescale of weeks, which is the growth rate of
beta cell biomass. It is much slower than the
insulin-glucose feedback loop that operates over
minutes to hours. The slow feedback loop of
cell mass dynamics keeps beta cells at a proper
functional steady-state total mass and keeps
glucose, averaged over weeks, at 5mM.

The steep drop of the removal curve at
is important for the precision of the𝐺

0
= 5𝑚𝑀 

glucose fixed-point. Due to the steepness of the
removal curve, variations in growth rate (black
curves) do not shift the 5mM fixed point by
much (Fig 2.11). The steep removal curve is
generated by the cooperativity of enzymes that
sense glucose inside beta cells (Karin et al.
2016b).



The cell mass feedback circuit maintains homeostasis despite parameter
variations.
The slow feedback on beta cells can maintain a
5mM glucose steady state despite variations in
insulin sensitivity, s. To explain things in a
quantitative way, we need to see this
mathematically, not only graphically. To do so,
let’s add beta cell mass changes to the minimal
model. This leads to a revised model, the BIG
model which stands for the
Beta-cell-Insulin-Glucose model, Fig 2.12. It is
simply the two equations of the minimal model of
chapter 1 with a new equation, Eq 4, for the total
beta-cell mass B:

(2) 𝑑𝐺/𝑑𝑡 = 𝑚 − 𝑠 𝐼 𝐺 

(3) 𝑑𝐼/𝑑𝑡 = 𝑞𝐵𝑓 𝐺( ) − γ𝐼 

(4) 𝑑𝐵/𝑑𝑡 = 𝐵 µ 𝐺( ),     µ 𝐺
0( ) = 0

The only way to reach steady state in Eq 4 is either at B=0, meaning no beta cells at
all, and therefore no insulin; or at zero net growth rate , which occurs whenµ 𝐺( ) = 0
G= =5mM glucose. The latter is the stable solution that describes healthy people.𝐺

0
This powerful locking of glucose is similar to controllers in engineering known as
integral feedback loops. If you want to know more about integral feedback in biology,
see the 2018 Systems Biology course videos on my website or the book “Introduction
to Systems Biology” (2019).

It is easy to calculate the steady state of the BIG model, thanks to Eq. 4, that locks
glucose steady state at = G0 =5mM. We can use this to find the insulin steady state𝐺

𝑠𝑡

level by plugging into the steady state of Eq. 2, by setting , to find𝐺
𝑠𝑡

𝑑𝐺
𝑑𝑡 = 0

. The lower s, the higher the insulin concentration. This means that the𝐼
𝑠𝑡

= 𝑚
𝑠𝑡

/𝑠𝐺
𝑠𝑡

product of insulin steady-state level and insulin sensitivity is constant,

.𝑠𝐼
𝑠𝑡

=
𝑚

𝑠𝑡

𝐺
𝑠𝑡

= 𝑐𝑜𝑛𝑠𝑡

This explains the hyperbolic relation of Fig 2.3!

Finally, the beta-cell steady-state mass can be determined from equation 3, by setting
, to find that𝑑𝐼/𝑑𝑡 = 0

(5) .𝐵
𝑠𝑡

= γ
𝐼

𝑠𝑡

𝑞𝑓 𝐺
𝑠𝑡( ) =

γ𝑚
𝑠𝑡

𝑞𝑠𝐺
𝑠𝑡

𝑓 𝐺
𝑠𝑡( )

Interesting: beta cell mass varies inversely with insulin sensitivity, B~1/s. Beta-cell
mass grows when s is small, as observed in people with insulin resistance. Beta cell
mass shrinks when insulin sensitivity is high, as in starvation. In fact, beta cell mass
varies with every parameter in the minimal model. Therefore, the organ-size control
feedback makes beta-cell mass expand or contract to precisely buffer out the
effects of parameter changes. It keeps the 5mM steady-state despite variations in
any of the minimal-model model parameters, including maximal insulin production



per beta cell, q, insulin removal rate, , and even the fasting supply of glucose by theγ
liver, .𝑚

𝑠𝑡

The same circuit appears in many hormone systems - a circuit motif
The same circuit logic appears in many hormone systems that perform homeostasis,
namely tight control of an important factor in the body. The cells that secrete a
hormone in response to a signal also grow in response to the same signal.

For example, the concentration of free
calcium ions in the blood is regulated
tightly around 1mM by a hormone
called PTH, secreted by the
parathyroid gland (Fig 2.13)
(El-Samad, Goff, and Khammash
2002). The circuit has a negative
feedback loop similar to
insulin-glucose, but with inverted
signs: PTH causes increase of
calcium, and calcium inhibits PTH
secretion. The slow feedback loop
occurs because parathyroid cell
proliferation is regulated by calcium.

Other organ systems have similar
‘secrete and grow’ circuits (Fig 2.14),
in which the size of the organ expands
or contracts to buffer variation in
parameters. For example, thyroid
hormone, essential for regulating
metabolism, is secreted by the thyroid gland at the throat. The controlling signal
is called TSH, which causes the thyroid gland cells to both secrete thyroid hormone
and to proliferate. The thyroid is famous for over-growing, sometimes to the size of a
grapefruit, when more thyroid hormone is needed. This condition is called goiter.

Other systems with the same secrete-and-grow circuit shown in Fig 2.14 include acid
secretion in the stomach by parietal cells under control of the hormone gastrin;
secretion of cortisol by the adrenal gland under control of ACTH, and production of
melanin by melanocytes in the skin under control of MSH. While the systems shown
in Fig 2.14 differ in their molecular function, they share essentially the same circuit
design as the insulin-glucose system. This is thus a circuit motif.

The circuit also makes the dynamics robust
Remarkably, this circuit can also resolve the question of how glucose dynamics on the
scale of hours are invariant to changes in insulin sensitivity. I mean that the BIG
model shows how, in the glucose tolerance test, the response to a given input ,𝑚(𝑡) 
such as drinking 75g of glucose, yields the same output curve G(t), including the
same amplitude and response time, for widely different values of the insulin
sensitivity parameters.



This is unusual. Changing a key parameter in most models alters their dynamics. One
might call such robustness of a dynamical response rheostasis, complementing the
better-known concept of homeostasis which refers to maintaining a robust steady-state
concentration of a metabolite.

This rheostatic ability was discovered by Omer Karin during his PhD with me (Karin
et al. 2016a). We named it dynamic compensation (DC): Starting from steady-state,
the output dynamics in response to an input is invariant with respect to the value of a
parameter. To avoid trivial cases, the parameter must matter to the dynamics when the
system is away from steady state (technically, to be observable). Solved exercise 1 at
the end of the chapter shows how
dynamic compensation occurs in the
BIG model based on rescaling of the
variables.

Let’s see how dynamic compensation
works. We will use the separation of
timescales in this system: cell mass
changes much slower (weeks) than
hormones (hours). Suppose that insulin
sensitivity drops by a factor of two,
representing insulin resistance (Fig
2.15). As a result, insulin is less
effective and glucose levels rise.
Because glucose affects beta-cell
growth rate, total beta cell mass rises
over weeks (Fig 2.15 upper panels show
the dynamics on the scale of weeks).
More beta cells means that more insulin
is secreted, gradually pushing glucose
down to baseline. In the new steady
state, there is twice the mass of beta
cells and twice as much insulin.
Glucose returns to its 5mM baseline.

Let’s now zoom in to the timescale of
hours (Fig 2.15, lower panels). The
response of glucose to a meal before
the drop in s is identical to the response long after the drop (time-point 1 and
timepoint 3). In terms of glucose dynamics, the insulin resistance is invisible! The
insulin response, however, is two times higher. Glucose dynamics in response to a
meal are abnormal only during the transient period of days to weeks in which
beta-cell mass has not yet reached its new, compensatory, steady-state (time-point 2).

Dynamic compensation thus allows people with different insulin sensitivity to show𝑠 
the same glucose meal dynamics. Their insulin dynamics scale as 1/s, namely more
insulin when there is insulin resistance. This is indeed seen in experiments that follow
non-diabetic people with and without insulin resistance over a day with three
standardized meals (lower panels in Fig 2.16) (Polonsky, Given, and Van Cauter
1988). Their glucose levels rise and fall in the same way (lower left panel, Fig 2.16),
but insulin levels are higher in people with insulin-resistance (lower middle panel, Fig
2.16). As the model predicts, when normalized by the fasting insulin baseline, there is



almost no difference in insulin between the two groups (lower right panel, Fig 2.16).
The BIG model (upper panels in Fig 2.16) captures these observations.

This circuit seems so robust. What about diseases such as diabetes? How and why do
things break down?

Prediabetes is due to an upper limit to beta cell compensation
Before full-fledged diabetes sets in, there is a
stage called prediabetes (Fig. 2.17). In
prediabetes, blood glucose shifts to higher
and higher steady-state values, rising above
5mM. Prediabetes is clinically defined by
fasting glucose between 5.6 mM and the
diabetes threshold of 6.9 mM. Prediabetes
has no symptoms, and occurs in 1 of 3
Americans, though 80% don’t know that they
have it. It is dangerous because people with
prediabetes transit to type-2 diabetes at a rate
of about 10% per year.

Prediabetes is often associated with insulin
resistance. When insulin resistance is strong,
beta cells must grow in functional mass - its
ability to secrete insulin - by a large factor to
compensate. But there is, in biology, always a
limit to such compensation processes. This is
our second law,

Law 2: biological processes saturate.



In adulthood beta cells stop dividing. They can compensate by increasing their insulin
secretion per unit biomass and the size of each beta cell. When functional beta-cell
mass approaches its carrying capacity -- determined by the maximal insulin secretion
per unit biomass time the maximal size of a beta cell -- compensation stops working.
Beta cells hit a ceiling, and effectively the model returns to the minimal model of
chapter 1 with a constant beta-cell mass. Recall that the minimal model has no
robustness. Any further rise in insulin resistance causes glucose levels to rise above
5mM. The stronger the insulin resistance, the higher the glucose.

One insight from the model is that prediabetes can result not only from low s, but also
from other parameter changes. As seen in Eq 5, beta cell mass goes as a specific
combination of model parameters, . Thus, a decrease in beta-cell insulin𝐵~ 𝑚γ

𝑞𝑠
production capacity q or insulin sensitivity s, or an increase in liver glucose
production m or insulin removal rate , or a combination of these changes, can causeγ
beta cells to hit their carrying capacity and compensation to saturate.

Having such a “parameter group” simplifies the understanding for the onset of
disease. It also points to the way drugs or interventions work; for example, the
diabetes drug metformin lowers liver production of glucose and thus lowers m,
whereas exercise raises s. But both interventions act to prevent prediabetes.

Another pathway to diabetes is a rapid rise in insulin resistance that is too fast for beta
cells to grow and catch up. This happens in some cases in pregnancy, when insulin
resistance rises due to signals secreted from the placenta in order to direct glucose
towards the fetus rather than mom's cells. This is one cause of gestational diabetes.
Eventually, if untreated, prediabetes leads to full-fledged type-2 diabetes. This disease
shows a loss of beta cells and insulin, with a dramatic rise in glucose levels (Fig 2.17).
At late stages, beta cells are gone, and the patient becomes dependent on insulin
injections. We will next see that the transition to insulin-dependent type-2 diabetes is
due to a dynamic instability that is built into the feedback loop.

Type-2 Diabetes is linked with instability due to a U-shaped removal curve
Type-2 diabetes occurs when production of
insulin does not meet the demand. Glucose
levels go too high, damaging blood vessels
and nerves.

The disease is linked with the phenomenon of
glucotoxicity that we mentioned above:
glucose at high levels kills beta cells. Patients
lose their beta cells and are not able to make
enough insulin.

Glucotoxicity was quantified in an experiment
by (Efanova et al. 1998) on rodent beta-cell
islets. Islets were incubated for 40h in
different concentrations of glucose. The
fraction of dead islet cells dropped sharply at
5mM glucose but then rose again above
10mM glucose (Fig 2.18).



The rate plot can help us see why glucotoxicity is so dangerous. It adds an unstable
fixed point, the point at which proliferation rate crosses removal rate a second time
(white circle in Fig 2.19). As long as glucose concentration lies below the unstable
point, glucose safely returns to the stable
5mM point. However, if glucose (averaged
over weeks) crosses the unstable fixed
point, beta cell removal rate exceeds
growth rate. Beta cells die, there is less
insulin and hence glucose rises even more.
This is a vicious cycle, in which glucose
disables or kills the cells that control it. It
resembles end-stage type-2 diabetes.

This rate plot can explain several risk
factors for type-2 diabetes. The first risk
factor is a diet high in fat and sugars. Such
a diet makes it more likely that glucose
fluctuates to high levels, crossing into the unstable region. A lean diet can move the
system back into the stable region.

In fact, type-2 diabetes is often curable if addressed at early stages, by changing diet
and exercising. This can bring average
glucose G back into the stable region even
if the unstable fixed point was crossed. G
then flows back to normal 5mM.
Unfortunately, it is difficult for many
people to stick with such lifestyle
changes.

The second major risk factor is aging.
With age, the growth rate of cells drops in
all tissues including beta cells. This means
that the unstable fixed point moves to
lower levels of G (Fig 2.20), making it
easier to cross into the unstable region. Note that the stable fixed point also creeps up
slightly. Indeed, with age the glucose set point mildly increases in healthy people.

A final risk factor is genetics. A shifted
glucotoxicity curve can make the unstable
fixed point come closer to 5mM (Fig
2.21).

Why does glucotoxicity occur? Much is
known about how it occurs, which is
different from why it occurs. Glucotoxicity
is caused by programmed cell death that is
regulated by the same processes that
control beta cell growth and insulin
secretion—glycolysis, ATP production and
calcium influx. A contributing factor for cell death is reactive oxygen species (ROS)
generated by the accelerated glycolysis in beta-cells presented with high glucose. Beta
cells seem designed to die at high glucose—they are among the cells most sensitive to
ROS, lacking the protective mechanisms found in other cell types.



Thus, it is intriguing to find a functional explanation for glucotoxicity—why is this
dangerous effect not removed by natural selection?

Mainstream views are that glucotoxicity is a mistake or accident, exposed perhaps
only recently due to our lifestyle and longevity. In this book, we take the point of view
that such processes have an important physiological role. They are crucial in the
young reproductive organism. Their benefit outweighs the cost of diseases in the old.

The circuit is fragile to invasion by mutants that misread the signal
In 2017, Karin et al (Karin and Alon 2017) provided an explanation for glucotoxicity
by considering a fundamental fragility of the organ size-control circuit motif. The
fragility is to take-over by mutant cells that misread the input signal. Mutant cells
arise when dividing cells make errors in DNA replication, leading to mutations.
Mutations also arise passively over time, even in non dividing cells. Rarely but surely,
given the number of beta cells and the number of cell divisions in a lifetime1, a
mutation will arise that affects the way that the cell reads the input signal. This is our
third and final law,

Law 3: cells mutate.
Let’s examine such a mutation in beta cells. Beta cells sense glucose by breaking it
down in a process called glycolysis, leading to ATP production, which activates
insulin release through a cascade of events.

The first step in glycolysis is to modify glucose chemically. This is done by the
enzyme glucokinase. Most cell types express a glucokinase variant that binds even
tiny (micromolar) amounts of glucose, with a halfway-binding constant to glucose of

. But beta cells express a special variant with . This half-way𝐾 = 40 µ𝑀 𝐾 = 8𝑚𝑀 
point is perfect for sensing the 5mM range of glucose in normal conditions.

A mutation that affects the binding constant of glucokinase, reducing it, say, by a𝐾
factor of five, causes the mutant beta cell to mis-sense glucose concentration as if it
were five times higher than it really is. The mutant beta cell therefore does glycolysis
as if there was much more glucose around. It’s as if the mutant “thinks” that glucose
concentration G is actually 5G.

If our feedback design did not include
glucotoxicity, such a mutant cell that
interprets 5mM glucose as 25mM would
have a higher proliferation rate (black
curve) than removal rate (red curve). It
would think ‘Oh, we need more insulin!’
and proliferate (Fig 2.22). The mutant
cell therefore has a growth advantage
over other beta cells, which sense 5mM

1 Mutant cells that misread glucose are inevitable. Humans have about 109 beta cells. To generate these
cells required at least 109 cell divisions starting from the fertilized egg. The mutation rate is about
10-9/base-pair/division. That means that every possible point mutation (single letter change in the
genome) will be found in about 1 beta cell on average. Glucose mis-sensing can be caused by a large
number of mutations, as exemplified by dominant activating glucokinase mutations (Christesen et al.
2008) so there should be multiple such mutant cells in everyone at birth. Human cells accumulate
several tens of additional mutations per year even without dividing.



correctly. The mutant cell will multiply exponentially, particularly if this mutation
occurs during embryonic development or early childhood when beta cells proliferate
rapidly. This will eventually produce a substantial population of mutant beta cells.
This is dangerous because such a population of mutant cells produces a lot of insulin,
attempting to push glucose down to a set-point level that they think is 5mM, but in
reality is 1mM, causing lethally low glucose.

Mutant expansion has a second, devious property: as the mutant cell population starts
to push glucose below 5mM, normal cells begin to be removed because their removal
exceeds proliferation (they die to try to reduce insulin and increase glucose). The
mutant’s advantage is enhanced by killing off the normal cells.

Thus, biology has a challenge not usually seen in engineering. Suppose you want to
control temperature; you use a thermostat. You can count on the thermostat being
precise. It will not start dividing and mutating. Biology, in contrast, needs special
designs to prevent takeover by mutant cells.

Biphasic (U-shaped) response curves can protect against mutant takeover
To resist such mutant cells, we must give them a growth disadvantage. This is what
glucotoxicity does. The mutant cell misreads glucose as very high. As a result, its
removal rate exceeds proliferation. The mutant kills itself (Fig 2.23). Mutants are
removed.

Isn't that neat?

The downside of this strategy is that it creates an unstable fixed point, with its vicious
cycle. There is thus a tradeoff between resisting mutants and resisting disease.
In our evolutionary past, nutrition and
activity probably prevented average
glucose from being very high for
weeks. The unstable fixed point was
rarely crossed. Our modern lifestyle
makes it more likely for glucose to
exceed the unstable point, exposing a
fragility to disease.

Glucotoxicity is a cell-autonomous
strategy that eliminates mutants that
strongly misread glucose. However,
this strategy is still vulnerable to
certain mutations of smaller effect -
mutant cells that misread 5mM glucose
as a slightly higher level that lies
between the two fixed points (hatched
region in Fig 2.23). Such mutant cells still have a growth advantage, because they are
too weak to be killed by glucotoxicity, and have higher proliferation rate than removal
rate.

Designs that can help against intermediate mutants are found in this system: beta cells
are arranged in the pancreas in isolated islets clusters of ~1000 cells. A mutant might
take over one islet, but not the entire organ. Relatively slow growth rates for beta cells
also help keep such mutants in check. Karin et al (Karin and Alon, 2017) estimate that



only a small fraction of the islets are taken over by mutants in a lifetime. And, as we
will see in chapter 4, there are additional safeguards against these mutants, whose
failure provides a mechanism for why the immune-system attacks beta-cells in type-1
diabetes.

The glucotoxicity mutant-resistance mechanism can be generalized to other organs: to
resist mutant takeover of a tissue-level feedback loop, the feedback signal must be
toxic at both low and high levels. Such U-shaped phenomena are known as biphasic
responses, because their curves have a rising and falling phase. Biphasic responses
occur across physiology. Examples include neurotoxicity, in which both under-excited
and over-excited neurons die, and immune-cell toxicity at very low and very high
antigen levels. These toxicity phenomena are linked with diseases, for example
Parkinson’s disease in the case of neurons.

Not all endocrine systems have such biphasic responses, however, requiring other
mutant resistance strategies as we will study in chapter 4.

Summary
By modeling the glucose regulation system, we came upon new questions that reveal
challenges shared by many organ-level circuits. First, organs have a fundamental
instability due to exponential cell growth dynamics. They therefore require feedback
to maintain steady-state and a proper size. This is the problem of organ size control.
The feedback loops use a signal related to the tissue function - blood glucose in the
case of beta cells - to make organ size and function arrive at a proper stable
fixed-point. This fixed point is maintained as the cells constantly turn over on the
scale of days to months.

A second fact of life for hormone circuits is that they operate on distant target tissues
by secreting hormones into the bloodstream. The challenge is that the target tissues
have variation in their parameters, such as insulin resistance. Hormone circuits thus
need to be robust to such distant parameters in order to maintain good steady-state
values (homeostasis) and dynamic responses (rheostasis) of the metabolites they
control. We saw how hormone circuits can achieve this robustness by means of
dynamic compensation (DC). In dynamic compensation, tissue size grows and shrinks
to precisely buffer the variation in parameters. As shown in the solved exercise below,
DC arises due to a symmetry of the equations.

Finally, organ-level feedback loops need to be protected from the unavoidable
production of mutant cells that misread the signal and can take over the tissue. This
problem of mutant resistance leads to a third principle: biphasic responses found
across physiological systems, in which the signal is toxic at both high and low levels.
Biphasic responses protect against strong mis-sensing mutant cells by giving them a
growth disadvantage. This comes at the cost of fragility to dynamic instability and
disease.

Thus, all three constraints- organ size control, robustness and mutant-resistance- are
addressed by a single integrated circuit design - the secrete-and-grow circuit. This
circuit design is also found in numerous other hormone circuits.



Exercises:
Solved Exercise 1: Show that the BIG model has dynamic compensation (DC).

To establish DC, we need to show that when starting at steady-state, glucose
output in response to a given input is the same regardless of the value𝐺 𝑡( ) 𝑚 𝑡( )
of . To do so, we will derive scaled equations that do not depend on s. To get𝑠
rid of s in the equations, we rescale insulin to , and beta cell mass to𝐼

~
= 𝑠𝐼

. Hence vanishes from the glucose equation𝐵
~

= 𝑠𝐵 𝑠

(7) 𝑑𝐺/𝑑𝑡 = 𝑚 − 𝐼
~

𝐺
Multiplying the insulin and beta-cell equations (Eq 5, 6) by leads to scaled𝑠
equations with no 𝑠

(8) 𝑑𝐼
~

𝑑𝑡  = 𝑞 𝐵
~

𝑓 𝐺( ) − γ𝐼
~

(9) 𝑑𝐵
~

𝑑𝑡 = 𝐵
~

µ 𝐺( )  𝑤𝑖𝑡ℎ µ 𝐺
𝑜( ) = 0

Now that none of the equations depends on s, we only need to show that the
initial conditions of these scaled equations also do not depend on If both the𝑠.  
equations and initial conditions are independent of s, so is the entire dynamics.

There are three initial condition values that we need to check, for G, and ,𝐼
~

  𝐵
~

which we assume begin at steady-state at time t=0. Note that if the system
begins away from steady-state, there is no DC generally. The first initial
condition, is independent on s because is the only way𝐺 𝑡 = 0( ) = 𝐺

𝑠𝑡
𝐺

𝑠𝑡
= 𝐺

0

for to be at steady-state in Eq 9. This means that the second initial condition,𝐵
~

from Eq 6, is independent of , which we can use in Eq 7 to find𝐼
~

𝑠𝑡
= 𝑚

0
/𝐺

0
𝑠

that the third initial condition is also independent of s.𝐵
𝑠𝑡

= γ 𝐼
~

𝑠𝑡
/𝐺

0
𝑓(𝐺

𝑜
)

Because the dynamic equations and initial conditions do not depend on s, the
output G(t) for any input m(t) is invariant to , and we have DC.𝑠

Although G(t) is independent on s, insulin and beta cells do depend on it, as we
can see by returning to original variables and . The lower s, the𝐵 = 𝐵

~
/𝑠 𝐼 = 𝐼

~
/𝑠

higher the steady-state insulin, as well as beta-cell mass, which rises to precisely
compensate for the decreases in s.

Similar considerations show that the model has DC with respect to the parameter
, the rate of insulin secretion per beta cell, and hence to the total blood volume.𝑞
There is no DC, however, to the insulin removal rate parameter, γ.

Dynamic compensation arises from the structure of the equations: the parameter 𝑠
cancels out due to the linearity of the dB/dt equation with B, which is a natural
consequence of cells arising from cells. also cancels out from the dI/dt equation𝑠 
because the insulin production term, q B f(G), is also linear in B, a natural outcome of
the fact that beta-cells secrete insulin.



2. Brain uptake of glucose, BIG model: The brain takes up glucose from the blood
at an insulin-independent rate.

(a) Write a BIG model with a term describing this effect.

(a) Write a formula for the steady states of glucose, insulin and beta-cells, Gst, Ist and
Bst.

(b) Is the steady-state blood glucose level Gst affected by the brain's uptake rate?
Compare this to the minimal model.

(d) Discuss why the BIG model design might be biologically useful when organs like
the brain have varying fuel demands (50 words).

3. The BIG model – numerical simulation
Write a computer code to numerically solve the BIG model equations. Set all
parameter values to 1, f(G)=G2 and beta-cell growth rate dB/dt=0.01 (G-5). Note that
due to the “0.01”, the rate of change of B(t) is much slower than the rate of change of
G(t) and I(t). This represents the slow rate of beta-cell turnover compared to the fast
hormone reactions.

(a) Plot G(t), B(t) and I(t) when at time t=100, there is a drop of insulin sensitivity
from s=1 to s=0.2. The plot should show the transition of B(t) from one steady-state to
a new one. (Hint: the initial steady state of B is determined by setting all the time
derivatives in the BIG model to zero). Explain in 50 words.

(b) Plot G(t) and I(t) in response to a meal, in the situation of (a). Model a meal by a
pulse of glucose input. Thus, m(t) goes from an initial value m0 =1 to a higher value
m1 =2 for 1 time unit then back down to m0. Let the meal begin at three different
times, before, right after and long after the drop of insulin sensitivity: tmeal=90, 110
and 300. Plot a comparison of the response in the three meals in terms of how high
and how quickly glucose rises and falls. Make sure the plots zoom in around the
region of interest where glucose changes. Interpret using the concept of dynamical
compensation (100 words).

4. A model for prediabetes:
In this exercise we add to the BIG model a carrying capacity to beta cells and study
the consequences of their loss of ability to compensate for parameter changes. The
BIG model with carrying capacity is:

𝑑𝐺
𝑑𝑡 = 𝑚 − 𝑠 𝐼 𝐺

𝑑𝐼
𝑑𝑡 = 𝑞𝐵𝑓 𝐺( ) − γ 𝐼

𝑑𝐵
𝑑𝑡 = 𝐵 𝑝 𝐺( ) 1 − 𝐵

𝐶( ) − 𝑟 𝐺( )( )
where p(G) is beta cell biomass growth rate, r(G) is biomass removal rate and the
carrying capacity is C. The shapes of p(G) and r(G) are given schematically in figure
2.19.

(a) Since insulin has the fastest removal time, assume that I is at steady state and
tracks the slower changes in B and G. Write the equation for Ist as a function
of B and G.

(b) Plug in this Ist solution to the other two equations. This reduces the model
from three to two differential equations. Sketch the two nullclines for B and G.



Note that the B nullcline has a shape
of an inverted U (Fig 2.24).

(c) How many fixed points are there?
Interpret these fixed points in terms
of healthy and diseased states.

(d) Find steady state glucose as a
function of insulin sensitivity s.
What happens to the 5mM glucose
set point when insulin resistance
rises? What do changes in the other
parameters do to the fixed points?
Relate this to prediabetes.

(e) When does the transition to
late-stage type-2 diabetes occur, in
which beta function is lost?
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