

Tag, You’re It!
Minimum experience: Grades 1+, 2nd year using ScratchJr, 1st quarter or later

At a Glance

Overview and Purpose

Coders use a variety of blocks and sprites to create a mult-ipage story with a moral. The purpose of this project is to apply
previously learned concepts in a new context. Although the example project is about lessons learned while playing tag, this
project can be adapted to any story with a moral.

Objectives and Standards

Process objective(s): Product objective(s):

Statement:
●​ I will review how to use the “go to page” blocks to

create a story with multiple pages.
Question:

●​ How can we use the “go to page” blocks to create a
story with multiple pages?

Statement:
●​ I will storyboard and create a multi-page story with a

moral.
Question:

●​ How can we storyboard and create a multi-page story
with a moral?

Main standard(s): Reinforced standard(s):

1A-AP-10 Develop programs with sequences and simple
loops, to express ideas or address a problem.

●​ Programming is used as a tool to create products that
reflect a wide range of interests. Control structures
specify the order in which instructions are executed
within a program. Sequences are the order of
instructions in a program. For example, if dialogue is
not sequenced correctly when programming a simple
animated story, the story will not make sense. If the
commands to program a robot are not in the correct
order, the robot will not complete the task desired.
Loops allow for the repetition of a sequence of code
multiple times. For example, in a program to show
the life cycle of a butterfly, a loop could be combined
with move commands to allow continual but
controlled movement of the character. (source)

1A-AP-12 Develop plans that describe a program’s sequence
of events, goals, and expected outcomes.

●​ Creating a plan for what a program will do clarifies
the steps that will be needed to create a program and
can be used to check if a program is correct. Students
could create a planning document, such as a story

1A-AP-08 Model daily processes by creating and following
algorithms (sets of step-by-step instructions) to complete tasks.

●​ Composition is the combination of smaller tasks into
more complex tasks. Students could create and follow
algorithms for making simple foods, brushing their
teeth, getting ready for school, participating in clean-up
time. (source)

1A-AP-11 Decompose (break down) the steps needed to solve a
problem into a precise sequence of instructions.

●​ Decomposition is the act of breaking down tasks into
simpler tasks. Students could break down the steps
needed to make a peanut butter and jelly sandwich, to
brush their teeth, to draw a shape, to move a character
across the screen, or to solve a level of a coding app.
(source)

1A-AP-14 Debug (identify and fix) errors in an algorithm or
program that includes sequences and simple loops.

●​ Algorithms or programs may not always work correctly.
Students should be able to use various strategies, such
as changing the sequence of the steps, following the
algorithm in a step-by-step manner, or trial and error to
fix problems in algorithms and programs. (source)

https://bootuppd.org/
https://images.ctfassets.net/1devtjk7knks/1Nsm1wz0yAwVTI1S7rBx4v/53adf09a58b2cbc392f82ba8530e419f/End.png
https://images.ctfassets.net/1devtjk7knks/1Nsm1wz0yAwVTI1S7rBx4v/53adf09a58b2cbc392f82ba8530e419f/End.png
http://www.csteachers.org/page/standards
http://www.csteachers.org/page/standards
http://www.csteachers.org/page/standards
http://www.csteachers.org/page/standards

map, a storyboard, or a sequential graphic organizer,
to illustrate what their program will do. Students at
this stage may complete the planning process with
help from their teachers. (source)

1A-AP-15 Using correct terminology, describe steps taken and
choices made during the iterative process of program
development.

●​ At this stage, students should be able to talk or write
about the goals and expected outcomes of the
programs they create and the choices that they made
when creating programs. This could be done using
coding journals, discussions with a teacher, class
presentations, or blogs. (source)

Practices and Concepts
Source: K–12 Computer Science Framework. (2016). Retrieved from http://www.k12cs.org.

Main practice(s): Reinforced practice(s):

Practice 4: Developing and Using Abstractions
●​ "Abstractions are formed by identifying patterns and

extracting common features from specific examples
to create generalizations. Using generalized solutions
and parts of solutions designed for broad reuse
simplifies the development process by managing
complexity." (p. 78)

●​ P4.4. Model phenomena and processes and simulate
systems to understand and evaluate potential
outcomes. (p. 79)

Practice 5: Creating computational artifacts
●​ "The process of developing computational artifacts

embraces both creative expression and the
exploration of ideas to create prototypes and solve
computational problems. Students create artifacts
that are personally relevant or beneficial to their
community and beyond. Computational artifacts can
be created by combining and modifying existing
artifacts or by developing new artifacts. Examples of
computational artifacts include programs,
simulations, visualizations, digital animations, robotic
systems, and apps." (p. 80)

●​ P5.1. Plan the development of a computational
artifact using an iterative process that includes
reflection on and modification of the plan, taking into
account key features, time and resource constraints,
and user expectations. (p. 80)

●​ P5.2. Create a computational artifact for practical
intent, personal expression, or to address a societal
issue. (p. 80)

Practice 6: Testing and refining computational artifacts
●​ "Testing and refinement is the deliberate and iterative

process of improving a computational artifact. This
process includes debugging (identifying and fixing
errors) and comparing actual outcomes to intended
outcomes. Students also respond to the changing needs
and expectations of end users and improve the
performance, reliability, usability, and accessibility of
artifacts." (p. 81)

●​ P6.1. Systematically test computational artifacts by
considering all scenarios and using test cases." (p. 81)

●​ P6.2. Identify and fix errors using a systematic process.
(p. 81)

Practice 7: Communicating about computing
●​ "Communication involves personal expression and

exchanging ideas with others. In computer science,
students communicate with diverse audiences about
the use and effects of computation and the
appropriateness of computational choices. Students
write clear comments, document their work, and
communicate their ideas through multiple forms of
media. Clear communication includes using precise
language and carefully considering possible audiences."
(p. 82)

●​ P7.2. Describe, justify, and document computational
processes and solutions using appropriate terminology
consistent with the intended audience and purpose. (p.
82)

Main concept(s): Reinforced concept(s):

Control
●​ "Control structures specify the order in which

instructions are executed within an algorithm or
program. In early grades, students learn about
sequential execution and simple control structures.
As they progress, students expand their

Algorithms
●​ "Algorithms are designed to be carried out by both

humans and computers. In early grades, students learn
about age-appropriate algorithms from the real world.
As they progress, students learn about the
development, combination, and decomposition of

http://www.csteachers.org/page/standards
http://www.csteachers.org/page/standards
http://www.k12cs.org
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=88
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=89
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=90
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=90
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=90
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=91
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=91
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=91
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=92
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=92
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=92

understanding to combinations of structures that
support complex execution." (p. 91)

●​ Grade 2 - "Computers follow precise sequences of
instructions that automate tasks. Program execution
can also be nonsequential by repeating patterns of
instructions and using events to initiate instructions."
(p. 96)

Program Development
●​ "Programs are developed through a design process

that is often repeated until the programmer is
satisfied with the solution. In early grades, students
learn how and why people develop programs. As they
progress, students learn about the tradeoffs in
program design associated with complex decisions
involving user constraints, efficiency, ethics, and
testing." (p. 91)

●​ Grade 2 - "People develop programs collaboratively
and for a purpose, such as expressing ideas or
addressing problems." (p. 97)

algorithms, as well as the evaluation of competing
algorithms." (p. 91)

●​ Grade 2 - People follow and create processes as part of
daily life. Many of these processes can be expressed as
algorithms that computers can follow." (p. 96)

Modularity
●​ "Modularity involves breaking down tasks into simpler

tasks and combining simple tasks to create something
more complex. In early grades, students learn that
algorithms and programs can be designed by breaking
tasks into smaller parts and recombining existing
solutions. As they progress, students learn about
recognizing patterns to make use of general, reusable
solutions for commonly occurring scenarios and clearly
describing tasks in ways that are widely usable." (p. 91)

●​ Grade 2 - "Complex tasks can be broken down into
simpler instructions, some of which can be broken
down even further. Likewise, instructions can be
combined to accomplish complex tasks." (p. 97)

ScratchJr Blocks

Primary blocks Control, Looks, Motion, Triggering

Supporting blocks End, Sound

Vocabulary

Event (trigger) ●​ An action or occurrence detected by a program. Events can be user actions, such as clicking a
mouse button or pressing a key, or system occurrences, such as running out of memory. Most
modern applications, particularly those that run in Macintosh and Windows environments, are
said to be event-driven,because they are designed to respond to events. (source)

●​ The computational concept of one thing causing another thing to happen. (source)
●​ Any identifiable occurrence that has significance for system hardware or software.

User-generated events include keystrokes and mouse clicks; system-generated events include
program loading and errors. (source)

Moral ●​ The lesson about right and wrong learned from a story or event. (source)
●​ A warning or lesson we learn from a story

Parallel ●​ Refers to processes that occur simultaneously. Printers and other devices are said to be either
parallel or serial. Parallel means the device is capable of receiving more than one bit at a time
(that is, it receives several bits in parallel). Most modern printers are parallel. (source)

●​ The computational concept of making things happen at the same time. (source)

Parameter ●​ A specific piece of information used as input each time a process is run; for example, when a
person presses a vending machine button for an item, the information for the item location is
sent as a parameter so the machine knows what food to dispense. (Thank you, Peter Rich, for
the great example)

●​ A special kind of variable used in a procedure to refer to one of the pieces of data received as
input by the procedure. (source)

●​ In programming, the term parameter is synonymous with argument, a value that is passed to a
routine. (source)

http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=101
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=106
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=101
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=107
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=101
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=106
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=101
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=107
https://images.ctfassets.net/1devtjk7knks/3k9lPOiHl21kSk5HVLgJa7/8f287dc199ef945c9187430550a9ee56/Control.png
https://images.ctfassets.net/1devtjk7knks/PGEFzTkmMIczvIIWCfDTM/94562b203167a6399af02ab345ed7c0a/Looks.png
https://images.ctfassets.net/1devtjk7knks/1nSYTcYm3mgNc2EWTOIkMI/54cba1856ce09bfccec4168d4f79b7c0/Motion.png
https://images.ctfassets.net/1devtjk7knks/1lRGXzCqNxVP6kotP7FFIi/d0d09acb88e4e9b50fbfd724ee2f9e6c/Triggering.png
https://images.ctfassets.net/1devtjk7knks/1Nsm1wz0yAwVTI1S7rBx4v/53adf09a58b2cbc392f82ba8530e419f/End.png
https://images.ctfassets.net/1devtjk7knks/34nw2pmVYre1tQlVoMR0n5/f4ef1b5561302dd4a85671ada2b0371a/Sounds.png
http://www.webopedia.com/TERM/E/event.html
http://scratched.gse.harvard.edu/guide/files/CreativeComputing20141015.pdf#page=139
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=272
https://kids.wordsmyth.net/we/?rid=26857&ent_l=morals
http://www.webopedia.com/TERM/P/parallel.html
http://scratched.gse.harvard.edu/guide/files/CreativeComputing20141015.pdf#page=140
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=273
http://www.webopedia.com/TERM/P/parameter.html

Sprite ●​ A media object that performs actions on the stage in a Scratch project. (source)

Storyboard ●​ Like comic strips for a program, storyboards tell a story of what a coding project will do and can
be used to plan a project before coding.

More vocabulary
words from CSTA

●​ Click here for more vocabulary words and definitions created by the Computer Science Teachers
Association

Connections

Integration Potential subjects: History, language arts, media arts, social studies

Example(s): Rather than creating a new story with a moral, coders could recreate a historical,
contemporary, or fictional story with a moral, which would allow this project to integrate with history,
social studies, or language arts topics.

Vocations Authors, marketers, and media artists are often asked to create a story to sell a product or create a
narrative. Click here to visit a website dedicated to exploring potential careers through coding.

Resources

●​ Project files
○​ Video: Downloading project files (1:04)

●​ Sample project images

Project Sequence

Preparation (20+ minutes)

Suggested preparation Resources for learning more

Ensure all devices are
plugged in for charging over
night.

Customizing this project for
your class (10+ minutes):
Remix the project example to
include your own multi-page
story with a moral.

(10+ minutes) Read through
each part of this lesson plan
and decide which sections
the coders you work with
might be interested in and
capable of engaging with in
the amount of time you have
with them. If using projects
with sound, individual
headphones are very helpful.

●​ BootUp ScratchJr Tips
○​ Videos and tips on ScratchJr from our YouTube channel

●​ BootUp Facilitation Tips
○​ Videos and tips on facilitating coding classes from our YouTube channel

●​ Block Descriptions
○​ A document that describes each of the blocks used in ScratchJr

●​ Interface Guide
○​ A reference guide that introduces the ScratchJr interface

●​ Paint Editor Guide
○​ A reference guide that introduces features in the paint editor

●​ Tips and Hints
○​ Learn even more tips and hints by the creators of the app

●​ Coding as another language (CAL)
○​ A set of curriculum units for K-2 using both ScratchJr and KIBO robotics

●​ ScratchJr in Scratch
○​ If you’re using ScratchJr in Scratch, this playlist provides helpful tips and

resources

http://scratched.gse.harvard.edu/guide/files/CreativeComputing20141015.pdf#page=141
https://csteachers.org/k12standards/glossary/
https://csteachers.org/k12standards/glossary/
https://careerswithstem.com.au/
https://drive.google.com/file/d/0B342uiaCLSS3QkNhRjhYaGI0LWdoTmdma3lIU2N1WnpFWGo0/view?usp=sharing&resourcekey=0-paAxv0HiPkmJDL7xGmh2Xg
https://youtu.be/0mfnVV36SiE
https://drive.google.com/open?id=1owiB0X0LFE0cajS6D3F9Ul94ckags9fh
https://drive.google.com/file/d/0B342uiaCLSS3QkNhRjhYaGI0LWdoTmdma3lIU2N1WnpFWGo0/view?usp=sharing&resourcekey=0-paAxv0HiPkmJDL7xGmh2Xg
https://www.youtube.com/playlist?list=PLV4zluvZAlMrwM6kOo-jpdLlk3D_Hibzj
https://youtube.com/bootuppd
https://www.youtube.com/playlist?list=PLV4zluvZAlMpHQ0MbOkE52QC9f0SYNJVh
https://youtube.com/bootuppd
https://drive.google.com/open?id=0B3nMatUGHrRWZ2QyVFExQk1yejg
https://drive.google.com/open?id=0B3nMatUGHrRWbzFZWVV4R1dCSk0
https://drive.google.com/open?id=0B3nMatUGHrRWWVpCaVRadGc5VzA
https://www.scratchjr.org/learn/tips
https://sites.tufts.edu/codingasanotherlanguage/
https://youtube.com/playlist?list=PLV4zluvZAlMoE6P8y0VW4om93BkZqGakQ

Getting Started (10+ minutes)

Suggested sequence Resources, suggestions, and connections

1. Review and demonstration (2+ minutes):
Begin by asking coders to talk with a neighbor for 30 seconds
about something they learned last time; assess for general
understanding of the practices and concepts from the previous
project.

Explain that today we are going to create a multi-page story
with a moral; a warning or lesson we learn from the story.
Provide some examples of stories with a moral. You could read
a story, summarize a short story, compare multiple stories, or
use the sample project (or your own remixed version).

A note on say blocks: If you are displaying a sample project
with say blocks, it might help to read the text out loud using
various voices for each sprite as it is displayed. This strategy
might help early/pre-readers, as well as young coders who are
new to learning English. In addition, when young coders begin
working on their own project, you can encourage them to use
speech-to-text or emojis in their own say blocks instead of
typing out words (or use recorded sound blocks).

Practices reinforced:
●​ Communicating about computing

Video: Project Preview (1:17)
Video: Lesson pacing (1:48)

This can include a full class demonstration or guided
exploration in small groups or individually. For small group and
individual explorations, it might help to set a time limit for
exploration before discussing the project.

Example review discussion questions:

●​ What’s something new you learned last time you
coded?

○​ Is there a new block or word you learned?
●​ What’s something you want to know more about?
●​ What’s something you could add or change to your

previous project?
●​ What’s something that was easy/difficult about your

previous project?

2. Discuss (8+ minutes):
Have coders talk with each other about how they might create
a project like the one demonstrated. If coders are unsure, and
the discussion questions aren’t helping, you can model
thought processes: “I noticed the sprite moved around, so I
think they used a motion block. What motion block(s) might
be in the code? What else did you notice?” Another approach
might be to wonder out loud by thinking aloud different
algorithms and testing them out, next asking coders “what do
you wonder about or want to try?”

Have coders talk with each other about how they might create
a project with a moral. If coders are unsure, brainstorm
different stories with morals in them and have the class group
up to pick one of the stories to discuss.

After the discussion, coders will begin working on their project
as a class, in small groups, or at their own pace.

Practices reinforced:
●​ Communicating about computing

Note: Discussions might include full class or small groups, or
individual responses to discussion prompts. These discussions
which ask coders to predict how a project might work, or think
through how to create a project, are important aspects of
learning to code. Not only does this process help coders think
logically and creatively, but it does so without giving away the
answer.

Example discussion questions:

●​ What would we need to know to make a multi-page
story with a moral?

●​ What kind of blocks might we use?
●​ What else could you add or change in a project like

this?
●​ What code from our previous projects might we use in

a project like this?
●​ What kind of sprites might we see in a story with a

moral?
○​ What kind of code might they have?

Project Work (60+ minutes; 2+ classes)

Suggested sequence Resources, suggestions, and connections

3. Create a storyboard (15+ minutes):
Either hand out paper with at least four different quadrants

Standards reinforced:
●​ 1A-AP-12 Develop plans that describe a program’s

https://drive.google.com/file/d/0B342uiaCLSS3QkNhRjhYaGI0LWdoTmdma3lIU2N1WnpFWGo0/view?usp=sharing&resourcekey=0-paAxv0HiPkmJDL7xGmh2Xg
https://images.ctfassets.net/1devtjk7knks/PGEFzTkmMIczvIIWCfDTM/94562b203167a6399af02ab345ed7c0a/Looks.png
https://images.ctfassets.net/1devtjk7knks/PGEFzTkmMIczvIIWCfDTM/94562b203167a6399af02ab345ed7c0a/Looks.png
https://images.ctfassets.net/1devtjk7knks/PGEFzTkmMIczvIIWCfDTM/94562b203167a6399af02ab345ed7c0a/Looks.png
https://images.ctfassets.net/1devtjk7knks/34nw2pmVYre1tQlVoMR0n5/f4ef1b5561302dd4a85671ada2b0371a/Sounds.png
https://youtu.be/WISORNcEebg
https://youtu.be/B2sPAmQxiGc

(one for each page in ScratchJr), use handheld whiteboards, or
use a painting app on a device to encourage coders to
storyboard what they are going to create. It may help to model
this process with a separate set of random ideas.

Encourage coders to draw or write out not only the kinds of
sprites and backgrounds they’re going to use, but the kind of
code that will accompany them.

When coders are ready, have them show you their storyboard
and ask questions for clarification of their intent (which may
change once they start coding and get more ideas). If
approved, they may continue on to the next step (creating);
otherwise they can continue to think through and work on
their storyboard.

Note: Coders may change their mind midway through a
project and wish to rethink through their original storyboard.
This is part of the design process and it is encouraged they
revise their storyboard to reflect their new ideas.

sequence of events, goals, and expected outcomes
Practices reinforced:

●​ Creating computational artifacts
Concept reinforced:

●​ Program development

Resource: Example storyboard templates

Suggested storyboard questions:

●​ What’s the moral of the story?
○​ What happens first in your story?
○​ What happens next?
○​ What happens last?
○​ What will people learn from your story?

●​ How many pages will you have?
○​ What backdrop will you use for each page?
○​ What sprites will we see on each page?
○​ When will you go to the next page?

●​ What will the sprites do on each page?
○​ What kind of code might we use to do that?

●​ What are all of the ways we can interact with the
story?

○​ Which pages will have user interaction?
○​ In each of these ways we can interact with the

story, how might we use code to create that
interaction?

Suggestion: If coders need additional help, perhaps pair them
with someone who might help them with the storyboarding
process. Or, you could have coders meet with a peer to discuss
their storyboard before asking to share it with yourself. This
can be a great way to get academic feedback and ideas from a
peer.

Note: This process may take significantly longer than 15
minutes if storyboarding many different sprites in each page.
In general, it is best to keep things simple when first creating a
project, then adding more complexity if time permits.

4. Create a multi-page story with a moral (45+ minutes):
Ask coders to create a project based on the storyboards they
created. Facilitate by walking around and asking questions and
encouraging coders to try out new blocks.

Note: The more pages, the more time you can spend on each
project. This project could take several days.

Standards reinforced:
●​ 1A-AP-10 Develop programs with sequences and

simple loops, to express ideas or address a problem
Practices reinforced:

●​ Testing and refining computational artifacts
●​ Creating computational artifacts
●​ Developing and using abstractions

Concepts reinforced:
●​ Algorithms
●​ Control

Suggested questions:

●​ What sounds might we hear in each backdrop?
●​ What do you like about your project?

a.​ What do you want to change?

http://creately.com/blog/examples/storyboard-templates-creately/

●​ How could we add even more to your story than
what’s in your storyboard?

Assessment

Standards reinforced:
●​ 1A-AP-15 Using correct terminology, describe steps taken and choices made during the iterative process of program

development
Practices reinforced:

●​ Communicating about computing

Although opportunities for assessment in three different forms are embedded throughout each lesson, this page provides
resources for assessing both processes and products. If you would like some example questions for assessing this project, see
below:

Summative
Assessment of Learning

Formative
Assessment for Learning

Ipsative
Assessment as Learning

The debugging exercises, commenting
on code, and projects themselves can all
be forms of summative assessment if a
criteria is developed for each project or
there are “correct” ways of solving,
describing, or creating.

For example, ask the following after a
project:

●​ Can coders debug the
debugging exercises?

●​ Did coders use a variety of block
types in their algorithms and
can they explain how they work
together for specific purposes?

●​ Can coders explain how their
project is similar to their
storyboard?

●​ Did coders create a multi-page
story with a moral and at least
different sprites with
different algorithms?

○​ Choose a number
appropriate for the
coders you work with
and the amount of time
available.

●​ Did coders use at least ## pages
in their project?

○​ Choose a number
appropriate for the
coders you work with
and the amount of time
available.

○​ Can coders explain
when/how the project
will switch pages?

The 1-on-1 facilitating during each
project is a form of formative
assessment because the primary role of
the facilitator is to ask questions to
guide understanding; storyboarding can
be another form of formative
assessment.

For example, ask the following while
coders are working on a project:

●​ What are three different ways
you could change that sprite’s
algorithm?

●​ What happens if we change the
order of these blocks?

●​ What could you add or change
to this code and what do you
think would happen?

●​ How might you use code like
this in everyday life?

●​ See the suggested questions
throughout the lesson and the
assessment examples for more
questions.

The reflection and sharing section at the
end of each lesson can be a form of
ipsative assessment when coders are
encouraged to reflect on both current
and prior understandings of concepts
and practices.

For example, ask the following after a
project:

●​ How is this project similar or
different from previous
projects?

●​ What new code or tools were
you able to add to this project
that you haven’t used before?

●​ How can you use what you
learned today in future
projects?

●​ What questions do you have
about coding that you could
explore next time?

●​ See the reflection questions at
the end for more suggestions.

https://drive.google.com/open?id=1C5X0AETVTCmx4YTaHHrVGYB2hNCDUmJEBJokTiiudEk
https://drive.google.com/open?id=1C5X0AETVTCmx4YTaHHrVGYB2hNCDUmJEBJokTiiudEk#heading=h.p8l6f58fzth5

Extended Learning

Project Extensions

Suggested extensions Resources, suggestions, and connections

Switch costumes (15+ minutes)
5+ demonstration
Demonstrate how to use show and hide blocks
with message blocks to make it so one sprite hides
in the same location as another sprite that shows
to make it appear as though the sprite is changing
costumes. Emphasize the importance of making
sure the sprites are in the same location. For
example, making them hide into a doorway, then
the new sprite (costume) shows in the same
location to make it appear as though the costume
changed when the came back out of the door. See
the video for a demonstration.

Another option demonstrated in the video
involves changing costumes by switching pages to
the same backdrop. Although this option works,
you have to make sure every sprite is perfectly
lined up to do the transition (which may require
some iteration to get the timing correct if the
sprite is moving). Each method can work really
well depending on the project and purpose.

10+ minute application and exploration
Encourage coders to try and experiment with
using one of the two methods for making a sprite
appear to change costumes (it doesn’t have to
relate to this project’s theme). Facilitate by
walking around and asking questions about their
processes.

Standards reinforced:
●​ 1A-AP-10 Develop programs with sequences and simple loops, to

express ideas or address a problem
●​ 1A-AP-11 Decompose (break down) the steps needed to solve a

problem into a precise sequence of instructions.
Practices reinforced:

●​ Testing and refining computational artifacts
●​ Creating computational artifacts

Concepts reinforced:
●​ Algorithms
●​ Control

Video: Switching costumes (3:20)

Sample questions:

●​ When might you switch costumes in your projects?
○​ What kind of blocks might we use when switching

costumes?
○​ How can we hide the costume change?

■​ For example, moving off the page, hiding behind
another sprite, appearing to hide in a door or
container, etc.

Creating a transition overlay (Advanced) (15+
minutes)
5+ minute intro demonstration
Demonstrate how other projects (e.g., A Day at
the Beach and The Story of the Stunky Robot) use
a transition overlay in the project. Use the video
to learn the following process:

1.​ Demonstrate how to create a blank sprite
that is all one color.

2.​ Next, demonstrate creating another blank
sprite of the same color, but add your text
on one side of the sprite (e.g., something
like “The End” or “2 Hours Later”).

3.​ Use grow blocks to make the sprites as
large as possible.

Standards reinforced:
●​ 1A-AP-10 Develop programs with sequences and simple loops, to

express ideas or address a problem
●​ 1A-AP-11 Decompose (break down) the steps needed to solve a

problem into a precise sequence of instructions.
Practices reinforced:

●​ Testing and refining computational artifacts
●​ Creating computational artifacts

Concepts reinforced:
●​ Algorithms
●​ Control

Video: Creating a transition overlay (3:38)
Resource: Paint Editor Guide

https://images.ctfassets.net/1devtjk7knks/PGEFzTkmMIczvIIWCfDTM/94562b203167a6399af02ab345ed7c0a/Looks.png
https://images.ctfassets.net/1devtjk7knks/1lRGXzCqNxVP6kotP7FFIi/d0d09acb88e4e9b50fbfd724ee2f9e6c/Triggering.png
https://youtu.be/7jv5r9aafZA
https://youtu.be/7jv5r9aafZA
https://youtu.be/7jv5r9aafZA
https://docs.google.com/document/d/1ZX_QusoT5QSsOuBGjy0K0ETLnY_dTNDy5UcOy_rkaHk/edit?usp=sharing
https://docs.google.com/document/d/1ZX_QusoT5QSsOuBGjy0K0ETLnY_dTNDy5UcOy_rkaHk/edit?usp=sharing
https://docs.google.com/document/d/1-rDlRePMCo7LheomOK9FOCOl9FzObpcr1rfqJ0iNI6A/edit?usp=sharing
https://youtu.be/4mUqMz2oCHM
https://images.ctfassets.net/1devtjk7knks/PGEFzTkmMIczvIIWCfDTM/94562b203167a6399af02ab345ed7c0a/Looks.png
https://youtu.be/4mUqMz2oCHM
https://drive.google.com/open?id=0B3nMatUGHrRWWVpCaVRadGc5VzA

4.​ Drag the blank sprite over to one side of
the screen, then drag the sprite with the
text on the other side of the screen (the
text should now appear centered).

5.​ Use show and hide blocks in an algorithm
attached to either the start on green flag
or start on message blocks to make both
overlays show or hide.

10+ minute application and and 1-on-1
facilitating
Quickly review each of the steps for creating a
transition overlay (1 - create a blank sprite; 2 -
create a sprite with text; 3 - make the sprites big;
4 - position the sprites on the screen; and 5 -
trigger the transitions with code). Leave your
example code on the screen and give coders time
to replicate the process for creating a transition
overlay. Facilitate 1-on-1 as needed, but
encourage coders to work together.

Facilitation suggestion: This process might be a little complicated for
younger coders; however, you can group coders together in small groups to
collaboratively create their own transition screen. If coders complete their
stinky robot early, encourage them to begin working on their storyboard.

Advanced reverse engineering even more ideas
(15+ minutes each page):
1 minute intro demonstration
Demonstrate one of the following example pages
on the board without displaying the code:
Page 1

●​ Cat and Tic
Page 2

●​ Cat and Tic
Page 3

●​ Cat, Librarian, and Tic
Page 4

●​ Cat, Stool, Teacher, and Tic

9+ minute reverse engineering and peer-to-peer
coaching
Ask coders to see if they can figure out how to use
their code blocks to create algorithms that
recreates the entire page. Facilitate by walking
around and asking guiding questions.

1 minute explanation demonstration
If coders figured out how to get their sprites to do
something similar, have them document in their
journal, share with a partner, or have a volunteer
show the class their code and thought processes
that led to the code. Otherwise, reveal the code,
walk through each step of the algorithm, and
explain any new blocks.

4+ minute application and exploration
Encourage coders to try something similar, and
leave your code up on display while they work.
Facilitate by walking around and asking questions

Standards reinforced:
●​ 1A-AP-10 Develop programs with sequences and simple loops, to

express ideas or address a problem
●​ 1A-AP-11 Decompose (break down) the steps needed to solve a

problem into a precise sequence of instructions.
●​ 1A-AP-14 Debug (identify and fix) errors in an algorithm or

program that includes sequences and simple loops.
Practices reinforced:

●​ Communicating about computing
●​ Testing and refining computational artifacts
●​ Creating computational artifacts

Concepts reinforced:
●​ Algorithms
●​ Control

Video: Suggestions for reverse engineering (4:25)

Helpful tip: You could add code to loop the page coders are trying to
reverse engineer. To do this, add code on the next page that immediately
switches back to this page (i.e., on the next page attach a go to page block
to a start on green flag block to cycle back to the previous page).

Note: It is not recommended to show more than one page at a time, but to
show one page, give time for application and exploration, show another
page, give time for application and exploration, etc. This process could take
multiple classes. Also, some of these examples may be difficult for young
coders, so go slow and encourage copying and modifying code as it’s good
practice.

Alternative suggestion: If reverse engineering is too difficult for the coders
you work with, you could display the source code and have coders predict
what will happen.

Suggested guiding questions:

https://images.ctfassets.net/1devtjk7knks/PGEFzTkmMIczvIIWCfDTM/94562b203167a6399af02ab345ed7c0a/Looks.png
https://images.ctfassets.net/1devtjk7knks/1lRGXzCqNxVP6kotP7FFIi/d0d09acb88e4e9b50fbfd724ee2f9e6c/Triggering.png
https://images.ctfassets.net/1devtjk7knks/1lRGXzCqNxVP6kotP7FFIi/d0d09acb88e4e9b50fbfd724ee2f9e6c/Triggering.png
https://images.ctfassets.net/1devtjk7knks/24mwa7splWNhRWf3ZIKFz7/4ed58dc6690726296fa08ef1303e6a83/P1_Cat_-_Tag__You-r_It.PNG
https://images.ctfassets.net/1devtjk7knks/60QLwjArb3S6f52M0EJYbp/2f21459fb4a969e5f9838fe46c4c70ed/P1_Tic_-_Tag__You-r_It.PNG
https://images.ctfassets.net/1devtjk7knks/32kyjP1yyXJH3JPUrSDeNL/b4a5686887138ee3c010835123e9bc7c/P2_Cat_-_Tag__You-r_It.PNG
https://images.ctfassets.net/1devtjk7knks/31DFvzxPGQMyBMS1dYuN8c/e85caf4870efe13f02e780de12b7778e/P2_Tic_-_Tag__You-r_It.PNG
https://images.ctfassets.net/1devtjk7knks/5cuzTiTjcYUjokJNFHcBkG/88a0292c50475fe4bcdc2579efc0cb06/P3_Cat_-_Tag__You-r_It.PNG
https://images.ctfassets.net/1devtjk7knks/57i5wWp5B5K6H3lbbMn2fq/1151abf8a57f0a481340cbb72e491c3f/P3_Librarian_-_Tag__You-r_It.PNG
https://images.ctfassets.net/1devtjk7knks/7r2itBKqgNlbgxJ30aREFH/119523967bd79b2dc21c9474caec7501/P3_Tic_-_Tag__You-r_It.PNG
https://images.ctfassets.net/1devtjk7knks/2V1nc2PDlskMAAgRrdK11l/a5a38db0f409d11789bb59fa30dc16cf/P4_Cat_-_Tag__You-r_It.PNG
https://images.ctfassets.net/1devtjk7knks/1J5gf4saA30cuZGuKEDXgB/46f1f73604265af7dd54782ceee98aaf/P4_Stool_-_Tag__You-r_It.PNG
https://images.ctfassets.net/1devtjk7knks/5GNi0XlRO2j1w5lD9GURra/d7dc0f6599b370f07e895202f6e3588b/P4_Teacher_-_Tag__You-r_It.PNG
https://images.ctfassets.net/1devtjk7knks/1AekjVTRfXrPMwCa2rKB5Z/22a70c4831d761192f0c708fe371fe11/P4_Tic_-_Tag__You-r_It.PNG
https://youtu.be/--CZwUaK4So
https://images.ctfassets.net/1devtjk7knks/1Nsm1wz0yAwVTI1S7rBx4v/53adf09a58b2cbc392f82ba8530e419f/End.png
https://images.ctfassets.net/1devtjk7knks/1lRGXzCqNxVP6kotP7FFIi/d0d09acb88e4e9b50fbfd724ee2f9e6c/Triggering.png

about how coders might change their code so it’s
not the same as yours.

●​ What kind of blocks do you think you might need to do something
like that?

●​ Do you see a pattern where we might use a repeat?
●​ What trigger blocks do you think I used for that sprite?
●​ Did I use one trigger block or more than one?

○​ What makes you think that?

Potential discussion: There is not always one way to recreate something
with code, so coders may come up with alternative solutions to your own
code. When this occurs, it can open up an interesting discussion or journal
reflection on the affordances and constraints of such code.

Suggested application and exploration questions:

●​ What other code blocks could you use?
●​ What other sprites might use similar code?

Adding even more (5+ minutes):
If time permits, encourage coders to explore what
else they can create in ScratchJr. Although future
lessons will explore different features and blocks,
early experimentation should be encouraged.

While facilitating this process, monitor to make
sure coders don’t stick with one feature for too
long. In particular, coders like to edit their
sprites/backgrounds by painting on them or
taking photos. It may help to set a timer for
creation processes outside of using blocks so
coders focus their efforts on coding.

Standards reinforced:
●​ 1A-AP-10 Develop programs with sequences and simple loops, to

express ideas or address a problem
Practices reinforced:

●​ Testing and refining computational artifacts
●​ Creating computational artifacts

Concepts reinforced:
●​ Algorithms
●​ Control

Suggested questions:

●​ What else can you do with ScratchJr?
●​ What do you think the other blocks do?

a.​ Can you make your sprites do ____?
●​ What other sprites might we use in a story with a moral?
●​ What other sounds might we hear in our story?
●​ Can you customize how your sprites look?

Similar projects:
Have coders explore the sample projects built into
ScratchJr (or projects from other coders), and ask
them to find code similar to what they worked on
today.

Standards reinforced:
●​ 1A-AP-10 Develop programs with sequences and simple loops, to

express ideas or address a problem
Practices reinforced:

●​ Testing and refining computational artifacts
Concepts reinforced:

●​ Algorithms

Note: Coders may need a gentle reminder we are looking at other projects
to get ideas for our own project, not to simply play around. For example,
“look for five minutes,” “look at no more than five other projects,” or “find
three projects that each do one thing you would like to add to your
project.”

Generic questions:

●​ How is this project similar (or different) to something you worked
on today?

●​ What blocks did they use that you didn’t use?
a.​ What do you think those blocks do?

●​ What’s something you like about their project that you could add
to your project?

https://images.ctfassets.net/1devtjk7knks/1lRGXzCqNxVP6kotP7FFIi/d0d09acb88e4e9b50fbfd724ee2f9e6c/Triggering.png
https://images.ctfassets.net/1devtjk7knks/1lRGXzCqNxVP6kotP7FFIi/d0d09acb88e4e9b50fbfd724ee2f9e6c/Triggering.png
https://www.scratchjr.org/learn/tips/sample-projects

●​ How might we change the backdrop of this project?
●​ What other sound or looks blocks might we use in this project?
●​ Can you turn this project into a story with a moral?

Differentiation

Less experienced coders More experienced coders

ScratchJr is simple enough that it can be picked up relatively
quickly by less experienced coders. However, for those who
need additional assistance, pair them with another coder who
feels comfortable working cooperatively on a project. Once
coders appear to get the hang of using ScratchJr, they can
begin to work independently.

Because ScratchJr is not inherently difficult, experienced
coders might get bored with simple projects. To help prevent
boredom, ask if they would like to be a “peer helper” and have
them help out their peers when they have a question. If
someone asks for your help, guide them to a peer helper in
order to encourage collaborative learning.

Another approach is to encourage experienced coders to
experiment with their code or give them an individual
challenge or quest to complete within a timeframe.

Debugging Exercises (1-5+ minutes each)

Debugging exercises Resources and suggestions

Why isn’t Tic as fast as the cat?
●​ We need to set the speed to fast instead of

slow

Why don’t we see the cat run across the stage?

●​ We need to show the sprite after waiting
for 10

Why doesn’t the librarian speak when the cat and
Tic are running across the screen?

●​ We need to use the “start on green flag”
block instead of a “start on tap” block

Why does the stool move across the screen
multiple times?

●​ We need to change the parameter of the
move block to move a small amount (e.g.,
4) instead of a large amount (e.g., 40)

ScratchJr Debugging List

Standards reinforced:
●​ 1A-AP-14 Debug (identify and fix) errors in an algorithm or

program that includes sequences and simple loops
Practices reinforced:

●​ Testing and refining computational artifacts
Concepts reinforced:

●​ Algorithms
●​ Control

Display one of the debugging exercises and ask the class what they think
we need to fix in our code to get our project to work correctly. Think out
loud what might be wrong (e.g., did I use the wrong trigger block, did I
forget to repeat something, did I put a block in the wrong place, am I
missing blocks, etc.). Ask the class to talk with a neighbor how we might fix
the code. Have a volunteer come up to try and debug the code (or
demonstrate how). Repeat with each debugging exercise.

Unplugged Lessons and Resources

Standards reinforced:
●​ 1A-AP-08 Model daily processes by creating and following algorithms (sets of step-by-step instructions) to complete

tasks

Although each project lesson includes suggestions for the amount of class time to spend on a project, BootUp encourages
coding facilitators to supplement our project lessons with resources created by others. In particular, reinforcing a variety of
standards, practices, and concepts through the use of unplugged lessons. Unplugged lessons are coding lessons that teach

https://images.ctfassets.net/1devtjk7knks/1x2NLya1upCiRPAXo5yX4o/913e3f12a07c4f7d1c0c7f71af8961c6/Tag__You-r_It_-_Debugging1.PNG
https://images.ctfassets.net/1devtjk7knks/60QLwjArb3S6f52M0EJYbp/2f21459fb4a969e5f9838fe46c4c70ed/P1_Tic_-_Tag__You-r_It.PNG
https://images.ctfassets.net/1devtjk7knks/60QLwjArb3S6f52M0EJYbp/2f21459fb4a969e5f9838fe46c4c70ed/P1_Tic_-_Tag__You-r_It.PNG
https://images.ctfassets.net/1devtjk7knks/3ixSxuv6SVOCisOz5aGt0U/3a3128bfdb28b752016202013df092b4/Tag__You-r_It_-_Debugging2.PNG
https://images.ctfassets.net/1devtjk7knks/32kyjP1yyXJH3JPUrSDeNL/b4a5686887138ee3c010835123e9bc7c/P2_Cat_-_Tag__You-r_It.PNG
https://images.ctfassets.net/1devtjk7knks/32kyjP1yyXJH3JPUrSDeNL/b4a5686887138ee3c010835123e9bc7c/P2_Cat_-_Tag__You-r_It.PNG
https://images.ctfassets.net/1devtjk7knks/6fKMq63e0h0LF00uM4UMCB/ee7965795c435431e36c20afff1e82ef/Tag__You-r_It_-_Debugging3.PNG
https://images.ctfassets.net/1devtjk7knks/6fKMq63e0h0LF00uM4UMCB/ee7965795c435431e36c20afff1e82ef/Tag__You-r_It_-_Debugging3.PNG
https://images.ctfassets.net/1devtjk7knks/57i5wWp5B5K6H3lbbMn2fq/1151abf8a57f0a481340cbb72e491c3f/P3_Librarian_-_Tag__You-r_It.PNG
https://images.ctfassets.net/1devtjk7knks/57i5wWp5B5K6H3lbbMn2fq/1151abf8a57f0a481340cbb72e491c3f/P3_Librarian_-_Tag__You-r_It.PNG
https://images.ctfassets.net/1devtjk7knks/5MycU1NhuidGpH2mxxRJv8/bf69b9e8b50654aa130e175e8c7afffa/Tag__You-r_It_-_Debugging4.PNG
https://images.ctfassets.net/1devtjk7knks/5MycU1NhuidGpH2mxxRJv8/bf69b9e8b50654aa130e175e8c7afffa/Tag__You-r_It_-_Debugging4.PNG
https://images.ctfassets.net/1devtjk7knks/1J5gf4saA30cuZGuKEDXgB/46f1f73604265af7dd54782ceee98aaf/P4_Stool_-_Tag__You-r_It.PNG
https://images.ctfassets.net/1devtjk7knks/1J5gf4saA30cuZGuKEDXgB/46f1f73604265af7dd54782ceee98aaf/P4_Stool_-_Tag__You-r_It.PNG
https://images.ctfassets.net/1devtjk7knks/1J5gf4saA30cuZGuKEDXgB/46f1f73604265af7dd54782ceee98aaf/P4_Stool_-_Tag__You-r_It.PNG
https://docs.google.com/document/d/1j8_UMI8aNhQqHSxflkwQJpxRumn6LtQyoKQqVv-mQvI/edit?usp=sharing
https://images.ctfassets.net/1devtjk7knks/1lRGXzCqNxVP6kotP7FFIi/d0d09acb88e4e9b50fbfd724ee2f9e6c/Triggering.png

core computational concepts without computers or tablets. You could start a lesson with a short, unplugged lesson relevant to
a project, or use unplugged lessons when coders appear to be struggling with a concept or practice.

List of 100+ unplugged lessons and resources

Reflection and Sharing

Reflection suggestions Sharing suggestions

Coders can either discuss some of the following prompts with
a neighbor, in a small group, as a class, or respond in a physical
or digital journal. If reflecting in smaller groups or individually,
walk around and ask questions to encourage deeper responses
and assess for understanding. Here is a sample of a digital
journal designed for Scratch (source) and here is an example of
a printable journal useful for younger coders.

Sample reflection questions or journal prompts:

●​ How did you use computational thinking when
creating your project?

●​ What’s something we learned while working on this
project today?

○​ What are you proud of in your project?
○​ How did you work through a bug or difficult

challenge today?
●​ How did you help other coders with their projects?

○​ What did you learn from other coders today?
●​ What’s a fun algorithm you created today?
●​ What’s something you could create next time?
●​ What questions do you have about coding?

○​ What was challenging today?
●​ How did your storyboard help you plan out your

project?
○​ What did you end up adding that you didn’t

originally plan for in your storyboard?
●​ What is a moral in a story?
●​ What lessons have you learned in life that you could

use as a moral for a story?
●​ More sample prompts (may need adapting for

younger coders)

Standards reinforced:
●​ 1A-AP-15 Using correct terminology, describe steps

taken and choices made during the iterative process of
program development

Practices reinforced:
●​ Communicating about computing
●​ Fostering an inclusive culture

Concepts reinforced:
●​ Algorithms
●​ Control
●​ Modularity
●​ Program development

Peer sharing and learning video: Click here (1:33)
At the end of class, coders can share with each other
something they learned today. Encourage coders to ask
questions about each other’s code or share their journals with
each other. When sharing code, encourage coders to discuss
something they like about their code as well as a suggestion
for something else they might add.

https://docs.google.com/spreadsheets/d/1GNJVESt7mLrv_-RNjdti1obHLo8awWEhKUQ1w0YXF2A/edit?usp=sharing
https://docs.google.com/presentation/d/1ZqFg_GjL9sIpK2NpDyFzuAX0dB6iAM3J4iOgV3guym4/edit?usp=sharing
https://docs.google.com/presentation/d/1ZqFg_GjL9sIpK2NpDyFzuAX0dB6iAM3J4iOgV3guym4/edit?usp=sharing
http://scratched.gse.harvard.edu/ct/assessing.html
https://drive.google.com/file/d/1q2XYo7Y8XYOpRbqFFwj1fRS3Tmkvpiuz/view?usp=sharing
https://drive.google.com/file/d/1q2XYo7Y8XYOpRbqFFwj1fRS3Tmkvpiuz/view?usp=sharing
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
https://youtu.be/WC4qykY3OPI

	
	Tag, You’re It!
	At a Glance
	Overview and Purpose
	Objectives and Standards
	Process objective(s):
	Practices and Concepts
	ScratchJr Blocks
	Vocabulary
	Connections
	Resources

	Project Sequence
	Preparation (20+ minutes)
	Getting Started (10+ minutes)
	Project Work (60+ minutes; 2+ classes)
	Assessment

	Extended Learning
	Project Extensions
	Differentiation
	Debugging Exercises (1-5+ minutes each)
	Unplugged Lessons and Resources
	Reflection and Sharing

