
RESO Standard Event Model

Goal
The goal of this document is to propose creating a common model for RESO events.

Background and Motivation
There are many different event-based models in use in the RESO ecosystem currently, with
additional ones being proposed as time goes on.

Having many different ways of doing the same thing, each with their own terminology and
methodologies, causes duplication of work and reduces extensibility when new event-based
models are added to the domain. There is a software development principle called DRY, or
Don't Repeat Yourself, which applies here. Beyond increasing complexity and time to market,
using different underlying models also causes decoherence in the event model, which is
discussed in a later section.

To address this, the recommendation is that a separation of concerns be made between the
underlying event data structure and data and metadata that accompany a given event.

Precedent
Using a common data structure for events is not a novel concept. There are existing
specifications which share this goal as well. Perhaps it even makes sense to consider using
existing work for this purpose rather than creating our own standards.

Even if we decide to proceed with our own model, the fact that the CloudEvents project exists
and is supported by several large cloud-computing platforms speaks to the fact that having a
common event model is not only feasible, but a reasonable design choice when dealing with
many different kinds of events.

If we opt to create our own solution, maybe there are principles from prior work that can be
reused, as it's nice to avoid reinventing the wheel.

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://cloudevents.io/
https://cloudevents.io/

Event-Driven Systems

What Are Events?
An Event is the fact that something occurred in a given system.

Events are often accompanied by a change in state to one or more entities in that system, which
may be processed by subscribers of those events.

Some attributes are common to all events, such as the time at which an event occurred or its
source, while others are specific to a given class or type of event.

Event-driven systems use these facts to take actions based on the particular type of event that
occurred.

Event-Driven Systems
Event-driven systems function by processing events and their related data, called streams, as
they occur rather than in batches of static data obtained from a database or API.

Stream processing is not only good for things like data replication, as it can be used to
rehydrate or replay a database at any given point in time from historical logs, but has many
advantages where analytics are concerned since stream processors can be used to interpret
event data changes during ingestion that are often lost or unavailable during batch processing.

Another use for streaming data is in anomaly detection, as state changes may be audited on a
granular level between any two points in time and alerts triggered on unexpected patterns as
they are encountered based on historical trends.

Events and Stream Coherence
The lack of a common event model in the RESO ecosystem means that different code has to be
written to handle many different kinds of events in different ways, which makes it difficult to
construct a common narrative from the event stream for a given entity.

At present, Consumers must fetch data from several disparate sources and try and stitch them
together on their own rather than the narrative being told in a simple manner by the party
responsible for those data: the Producer.

Improving coherence where events are concerned not only leads to increased productivity and
software reuse, but allows for greater insight to be gained by event-based systems.

Life Cycle of RESO Domain Objects
The RESO domain model consists of objects such as Properties (Listings), Members, Offices,
Media, and other Data Dictionary resources. Each of these entities have their own event life
cycles which have significance in relation to the type of object being acted upon.

For example, Listings go through a Transaction Management process before they're marketed
on the MLS, at which point they generate InternetTracking events that signal interest (or lack
thereof), until they go off market in some way, sold or otherwise, at which point there is more TM
work to be done. During most of this process, HistoryTransactional events occur on the Listing
as well, such as price changes, which potentially change the number of InternetTracking events
that occur.

In general, the following information is usually captured when an event occurs:

●​ Who - who or what caused the event.
●​ What - the item the event applies to.
●​ Where - where or in which system the event occurred.
●​ Why - why the event occurred, or event type.
●​ When - the timestamp of the event.
●​ How - this would be the resulting state change and any data that accompanied the

event.

This is a bit overly simplistic in some ways, but it paints a basic picture that's easy to
understand.

Sample Lifecycle

Who What Where Why When How

Appraiser Property Appraiser
System

TM: Appraised 2020-08-01T21:
37:58+00:00

Data: Link to
Report

TM Coordinator Property TM System TM: Listing
Agreement
Signed

2020-08-02T11:
37:58+00:00

Data: Link to
Contracts and
Documents

Member Property MLS HT: Property
Listed

2020-08-03T01:
37:58+00:00

Data: Listing
Record

Member Property MLS HT: Price
Changed

2020-08-10T11:
37:58+00:00

Data: Price
Change Info

Consumer Property Portal Vendor IT: Listing
Viewed

2020-08-10T01:
37:58+00:00

Data: Tracking
Info (number of
views)

Consumer Property Portal Vendor IT: Listing
Viewed

2020-08-11T13:
37:58+00:00

Data: Tracking
info (number of
views)

Member Property Showing System TM: Property
Shown

2020-08-11T11:
37:58+00:00

Data: Showing
Info

Member Property Lockbox System TM: Lockbox
Opened

2020-08-11T14:
37:58+00:00

Data: Lockbox
Info

TM Coordinator Property TM System TM: Contract
Signed

2020-08-11T22:
37:58+00:00

Data: Link to
Contracts and
Documents

Member Property MLS HT: Sold 2020-08-12T23:
37:58+00:00

Data: Final
Listing Data

Consider a property that's been listed at too high of a price: the contract is amended and the
price is lowered, which hopefully leads to an increase in Internet Tracking views, which leads to
an increase in the number of showings, and then hopefully a sale.

It's much easier to construct a narrative of the life cycle of the listing if all of these events are in
a single stream rather than split across many different resources that may be difficult or
impossible to relate currently. Having event data in a common format facilitates this analysis,
and homogeneous data are easier to ingest into machine learning platforms for further analysis
as well.

Other entities such as Members and Offices have their own life cycle events, such as continuing
education or changes in membership. Having a single narrative in those cases is also helpful,

since the events that relate to Members and Offices don't really exist on their own but rather
accompany the entity they're associated with.

Equivalence of Current RESO Event Models
To demonstrate equivalence of current RESO models, we show that the various models can be
represented by a single event model.

Since DL's event structure is more generic than HistoryTransactional and InternetTracking, it's
the easiest place to start.

1) Show we can model InternetTracking events using the EventModel.

Let's say that a tracking event with the following data occurred:

GET /InternetTracking('12345')?$expand=EventSourceSystem

{
 EventKey: "12345",
 ObjectID: "42",
 ObjectIdType: "ListingKey",
 EventSourceSystemId: "100",
 EventSourceSystem: {
 OrganizationalUniqueId: "100",
 OrganizationType: "MLS",
 ...
 },
 ActorType: "Client",
 EventType: "Favorited",
 EventTimestamp: "2020-07-31T20:40:11+00:00",
 EventOriginatingSystemID: "200"
}

This is equivalent to the following EventModel record (with some minor enum additions):

GET /EventModel('12345')

{
 TransactionId: "12345",
 EventSubject: "42",
 SubjectType: "Property",
 SystemType: "MLS",
 Entity: "Client",
 Event: "Favorited",

 State: "Recorded",
 Recorder: "100",
 Timestamp: "2020-07-31T20:40:11+00:00",
 Application: "200"
}

2) Show we can model HistoryTransactional events using the EventModel.

Let's say a history event with the following data occurred:

GET /HistoryTransactional('111')?$expand=OriginatingSystem,ChangedByMember

{
 HistoryTransactionalKey: "111",
 ResourceRecordKey: "10",
 SubjectType: "Property",
 OriginatingSystemID: "100",
 OriginatingSystem: {
 OrganizationalUniqueId: "100",
 OrganizationType: "MLS",
 ...,
 OrganizationMlsVendorOuid: "200"
 },
 ChangedByMemberKey: "100",
 ChangedByMember: {
 MemberKey: "100",
 MemberType: "Assistant",
 },
 ChangeType: "Status Change",
 ModificationTimestamp: "2020-07-31T20:40:11+00:00"
}

Equivalent Event Model record (with some enums added):

GET /EventModel('111')

{
 TransactionId: "111",
 EventSubject: "10",
 SubjectType: "Property",
 System: "MLS",
 Entity: "Assistant",
 Event: "Status Change",
 State: "Recorded",
 Recorder: "100",
 Timestamp: "2020-07-31T20:40:11+00:00",

 Application: "200"
}

You may have noticed something missing in the previous example…

What about HistoryTransactional change data? Each HistoryTransactional Event usually has a
set of fields and values that have changed. Before we show how change sets are represented,
it's important to note that there is actually a design issue with HistoryTransactional at the
moment.

Generally, if an Assistant changed 10 fields in a given Listing and saved the work, that change
set would be wrapped in a single transaction, with its own TransactionID that would be
associated with all fields that had changed during the process. However, that's not the case
currently. Each change gets its own row and unique key, but the underlying TransactionID for
the overall change set doesn't currently exist. This causes potential issues with transactional
consistency, as the information about the original transaction is lost. We can address this in a
straightforward manner.

The EventModel offers the "ContextSet," which is a key/value pair of data that can be
associated with a single event. In the case of HistoryTransactional, it's appropriate that this
would be the change data for the given record.

In the previous example, the status changed for the given Listing record. One would also
assume the ContractStatusChangeDate of the record was updated as well.

Using the ContextSet, change data may represented as follows (again with some enum
additions):

GET /EventModel('111')?$expand=ContextSet

{
 TransactionId: "111",
 EventSubject: "10",
 SubjectType: "Property",
 System: "MLS",
 Entity: "Assistant",
 Event: "Status Change",
 State: "Recorded",
 Recorder: "100",
 Timestamp: "2020-07-31T20:40:11+00:00",
 Application: "200",
 ContextSet: [
 {Key: "StandardStatus", Value: "Sold"},
 {Key: "ContractStatusChangeDate", Value: "2020-07-31"}

https://members.reso.org/display/EC/2020-03-24+Distributed+Ledger+Call+Notes?preview=%2F67962734%2F67962736%2FDistributed-Ledger_Evolving-Event-Model_2020-03.pdf

]
}

Similar to cases (1) and (2) above, we could also show the HistoryTransactional and
InternetTracking representation of these events. However it's implied by the fact we were able to
convert both of these models to the EventModel proposed by DL with no loss of information.

Transitioning to a Common Event Model
Before recommendations can be made regarding transitioning to a common event model, we
need to decide whether we're going to take this step.

To restate the goal, we want to consider adopting a common underlying event data structure,
while using enumerations and additional event data to differentiate between different classes
and types of events. It would seem feasibility has been demonstrated at this point.

There's also a question of whether we want to use the CloudEvents model rather than coming
up with one of our own.

An example of the previous events in CloudEvents format would be as follows:

{
 "id" : "111",
 "specversion" : "1.5.0",
 "type" : "org.reso.events.Property.StatusChange",
 "source" : "https://api.reso.org/Property/10",
 "time" : "2020-07-31T20:40:11+00:00",
 "eventsubject" : "10",
 "subjecttype" : "Property",
 "system": "MLS",
 "entity": "Assistant",
 "event": "Status Change",
 "state": "Recorded",
 "datacontenttype" : "application/json",
 "data" : {
 "StandardStatus" : "Sold",
 "ContractStatusChangeDate" : "2020-07-31"
 }
}

Note how closely this resembles what we arrived at in our previous payload:

GET /EventModel('111')?$expand=ContextSet

{
 TransactionId: "111",
 EventSubject: "10",
 SubjectType: "Property",
 System: "MLS",
 Entity: "Assistant",
 Event: "Status Change",
 State: "Recorded",
 Recorder: "100",
 Timestamp: "2020-07-31T20:40:11+00:00",
 Application: "200",
 ContextSet: [
 {Key: "StandardStatus", Value: "Sold"},
 {Key: "ContractStatusChangeDate", Value: "2020-07-31"}
]
}

Even if we don't use the CloudEvents specification right away, it might make sense to look into it
as a candidate for an Endorsement at some point. We would essentially get interoperability with
many of the leading cloud providers as well as tools that could be used out of the box to
Produce and Consume events by doing so.

	RESO Standard Event Model
	Goal
	Background and Motivation
	Precedent
	Event-Driven Systems
	What Are Events?
	Event-Driven Systems
	Events and Stream Coherence
	Life Cycle of RESO Domain Objects

	Equivalence of Current RESO Event Models
	Transitioning to a Common Event Model

