
Event & Processing Time
in Table API and SQL

Problem Definition
Many operations of relational queries on streaming data are defined on time:

-​ Windowed aggregates (GROUP BY or OVER ORDER BY)
-​ Windowed stream-stream joins
-​ Joins between streams and “history” tables
-​ Time-based predicates

Flink’s Table API and SQL support two time modes, event-time and processing-time. In
event-time, the associated time of a row depends on an attribute of the row. In processing-time
it is the wallclock time when the row arrives at an operator.

In order to define a time-dependent query, we need to refer to the time attribute for event-time or
indicate processing time. In either case the time expression must relate to a table. This is
important for join queries as the following query shows:

SELECT​ ​a.amount​,​ r.rate
FROM​ ​
 amounts ​AS​ a,
​ ​ rates ​AS​ ​r
WHERE ​
 a.currency = r.currency AND
 r.proctime ​=​ ​(
​ ​​ ​ SELECT​ ​MAX(r2.proctime)
​ ​​ ​ FROM​ ​rates ​AS​ r2
​ ​​ ​AND​ ​r2.proctime ​<=​ a.proctime)

The query joins two streaming tables. Table 1 is a streaming table with amounts in different
currencies. Table 2 is a (slowly changing) streaming table of currency exchange rates.
We want to join the amounts stream with the exchange rate of the corresponding currency that
is valid when the amounts row arrives, i.e, we have a join condition on the proctime attributes of
both tables.

In this document we propose how to specify event and processing-time in Table API and SQL
queries.

Processing Time
For processing-time, we define a virtual system attribute. When specifying a query, users refer
to the attribute to define processing time semantics. However, the attribute is only used during
parsing and validation of Table API and SQL queries and converted into a special expression
before optimization. During optimization and translation, we know how to handle the rowtime.

This design has the following benefits.

-​ Records do not carry any additional data.
-​ Defining processing time feels very natural because it is just referring to an attribute.

Event Time
The event-time case is harder to handle. In contrast to processing-time, the result of a query
specified with event-time semantics does only depend on the input data and the query and must
be equivalent to the result of running the same query on the same input data in batch (or
streaming) mode.

In Flink’s DataStream API, several aspects of event-time are implicitly handled by Flink’s
runtime:

-​ Record timestamps are manually assigned once by a timestamp extractor and
thenceforth automatically managed

-​ Record timestamps are hidden metadata and not accessible
-​ Timestamps for records which result from windowed aggregates are automatically

assigned

For the Table API and SQL, the whole semantics of a query must be explicitly spelled out and
may not depend on system behavior. This is important in order to comply with the semantics of
batch SQL queries.

Let’s look at an example again and extend the previous join query. Now we want to first
aggregate all amounts of the same currency per day before joining it with the rates stream. With
standard SQL this looks like:

SELECT​
 a.amount​Sum, r.rate, a.day
FROM​ ​
 (
 SELECT
 currency,
 SUM(amount) AS amountSum,

 CEIL(rowtime TO DAY) AS day
 FROM amounts
 GROUP BY currency, CEIL(rowtime TO DAY)
) AS a
​ ​ rates ​AS​ ​r
WHERE ​
 a.currency = r.currency AND
 r.rowtime ​=​ ​(
​ ​​ ​ SELECT​ ​MAX(r2.rowtime)
​ ​​ ​ FROM​ ​rates ​AS​ r2
​ ​​ ​AND​ ​r2.rowtime ​<=​ a.day)

This query is composed of two parts:

-​ an inner query which sums the amounts per currency and day (tumbling window)
-​ an outer query which joins the resulting daily aggregates with the last (closing) rate of

the day.
The important part here is that the outer query depends on a time attribute (CEIL(rowtime TO
DAY) AS day) which is computed in the inner query. This attribute is the new event-time row of
the intermediate table (a). By fully specifying the event-time attribute, the example query can be
executed on a stream and on a batch table and will produce identical results (given appropriate
watermarks in the stream).

Running the same query on a batch table would not be possible if we would treat event-time as
an internal concept or implicitly assign new event-time timestamps to rows as the DataStream
API does. Consequently, a users need to be able to explicitly specify the event-time attributes of
tables by either forwarding the time attribute of the input table or computing new values if the
query combined multiple rows as in GROUP BY aggregates, and joins.

Definition of Event Time Attributes, Timestamps and Watermarks
In order to achieve semantic equivalence for batch and streaming (event-time) queries, users
must be able to define attributes to which time dependent operations, such as windows and
joins, relate. Flink’s event-time operators rely on record timestamps and watermarks.
Timestamps are metadata which is attached to each record. Watermarks are special records
that are injected into a stream and which tell operators when to trigger computations and clean
up state. These watermarks and record timestamps must be properly aligned, i.e., records are
expected to arrive (almost) in timestamp order and watermarks follow the same order with a bit
of slack to allow for out-of-order timestamped records.

The Table API and SQL require that streams, which are converted into Tables (either from a
DataStream or a StreamTableSource) and which should be processed with event-time
semantics, have already timestamps and watermarks assigned. A time-dependent query must
refer to the existing event-time timestamp. An operation which is performed on the table that
generates new records (windows, joins, …) needs to assign event-time timestamps to these

records. As discussed before, the definition of the timestamps must be included in the query in
order to have the query semantics completely specified. However, we also must ensure that the
relationship between timestamps and watermarks is respected. There are basically two ways to
achieve that:

1.​ Do not change watermarks and only allow timestamps which are aligned with
watermarks.​
The goal of this approach is preserve the existing watermarks. Hence, we can only allow
new timestamps which are aligned with the existing watermarks. This implies that only a
value which is derived from the existing timestamp attribute can be used as a timestamp.
Also the logic for how to derive the new timestamp would be restricted, i.e., only certain
expressions would be allowed to compute a new timestamp.​
For example, the timestamps of records which originate from a GROUP BY window
aggregation must be equal to the end time of the window (see CEIL(rowtime TO DAY) as
an example). In fact, Flink’s DataStream API assigns records from windowed aggregates
the end-time of the window as timestamp.

2.​ Reassign watermarks according to new timestamps.​

This approach would allow to specify new timestamps and require to reassign new
watermarks as well. However, the approach as a few challenges and drawbacks. First,
the choice of new timestamps is very limited due to the requirement of increasing
timestamps. Timestamps can only be derived from existing attributes. Therefore, only
the current timestamp attribute or attributes which have the same order as the current
timestamp attribute but are off by a constant are viable options. Eventually, this approach
does not add much more freedom compared to the first approach. Moreover, we would
need a strategy to assign watermarks such as following the max timestamp by a
constant interval (like the BoundedOutOfOrdernessAssigner available in the DataStream
API).

Since the second approach does not provide significantly more freedom to users, I would
propose to stick with the first approach for now. Later we can still think about relaxing the
conditions.

Usage of Event-Time Attributes
Now that we discussed why event-time attributes need to be specified and how they can be
specified, we need to discuss how we can represent this in the APIs and during translation and
optimization.

Event-time processing is based on actual data. Hence, event-time timestamps should be
defined and used just like regular attributes. I see two approaches with advantages and
drawbacks of how to integrate them into the API and translation process.

1.​ Dedicated event-time attribute.​
In this approach, there is a dedicate attribute (configurable per table environment, by
default called “rowtime”) which serves as event-time column. Hence, all time-based
operations always have to reference this attribute and the event-time timestamp is
modified by specifying an attribute with the corresponding name. This approach has the
following benefits:

-​ We know when an event-time attribute is defined because of its name and can
immediately validate that it has a valid value.

-​ We know exactly, which attribute is a valid event-time attribute to be used in a
window or join. Since we validate that the time attribute is valid when it is defined,
we are sure that it is valid.

Drawbacks are:
-​ The schema of tables is constrained, i.e., attribute names cannot be freely

chosen. This makes portability of queries to batch tables more difficult.
-​ Since the time attribute needs to be specified on a table environment level, all

tables in a table environment are affected and queries have a dependency on the
table environment configuration.

2.​ Arbitrary event-time attributes.​

Another approach would be to allow any name for event-time attributes. The attribute
would be initially defined when defining the schema of the table, i.e., either when
converting a DataStream into a Table or by a StreamTableSource. ​
The benefit of this approach is that users would have full flexibility in choice of attribute
names. Queries become more portable to batch tables. ​
The drawback is the more complex implementation. Whenever an attribute is used as a
time attribute, we have to check that it is a valid time attribute, i.e., we have to backtrack
its origin or annotate all valid time attributes with a certain flag. We would need to check
how we can implement this in

In my opinion, we should not restrict the choice of attribute names even though it is harder to
implement.

Summary
-​ For processing time, we add a virtual attribute which is translated into an expression

after validation and before optimization
-​ For event time

-​ We require an initial definition of a time attribute.
-​ Time attributes are regular attributes but requires some validity checks.
-​ The time attribute can be transformed into another valid time attribute (depending

on the operation). Time attribute transformations must be aligned with existing
watermarks and are (initially) restricted.

-​ When defining a time-dependent operation, we check that the attribute is a valid
time attribute.

	Event & Processing Time
	in Table API and SQL
	Problem Definition
	Processing Time
	Event Time
	Definition of Event Time Attributes, Timestamps and Watermarks
	Usage of Event-Time Attributes

	Summary

