
Tab 1

MCP Metadata RFC
Authors: Victor Morales (@electrocucaracha)
Date: June 19, 2025

As adoption of the Model Context Protocol (MCP) continues to grow, the need for a
standardized mechanism to expose server metadata becomes increasingly important. This RFC
proposes a convention for serving MCP server metadata through a well-known URI:
/.well-known/mcp.json.

The primary goal of this proposal is to improve the discoverability of MCP servers. By exposing
a machine-readable metadata document, MCP servers can enable automated tools—such as
registries, dashboards, and developer tooling—to efficiently discover, index, and interact with
MCP instances consistently.

Providing a standard, well-known endpoint for this metadata also facilitates enterprise adoption
by enabling clients to programmatically determine in advance the tools, resources, and prompt
capabilities offered by each server, reducing the risk of prompt poisoning attacks. This
predictable discovery process simplifies the external integration, supports compliance and
governance workflows, and enhances interoperability across diverse MCP implementations.

This enhancement not only aligns with established web conventions (e.g., RFC 8615:
Well-Known URIs) and reduces the operational burden on consumers by providing a
standardized source of truth for server characteristics, including capabilities, supported features,
and ownership information.

Metadata Scope
The metadata document is intended to expose the following key elements:

●​ Overview of the MCP server
●​ Features offered by the server
●​ Supported authentication mechanisms
●​ Supported transport protocols
●​ Tool identity and description
●​ Full JSON Schema definitions for accepted parameters and return values

Benefits
Introducing a well-known metadata file provides multiple benefits to the MCP ecosystem:

●​ Automated Discovery – Registries can automatically detect and catalog MCP servers.

https://datatracker.ietf.org/doc/html/rfc8615
https://datatracker.ietf.org/doc/html/rfc8615

●​ Simplified Integration – Consumers no longer need to rely on out-of-band documentation
or manual configuration.

●​ Ecosystem Growth – Encourages interoperability.

Samples

Implementation Example

The following Python code demonstrates how to expose the metadata using the MCP Python
SDK:

 @self._mcp.custom_route("/.well-known/mcp.json", methods=["GET"])

 async def well_known_mcp(_: Request) -> Response:

 if self._metadata is None:

 features = []

 for items, item_type in [

 (await self._mcp.list_tools(), "tool"),

 (await self._mcp.list_prompts(), "prompt"),

 (await self._mcp.list_resources(), "resource"),

]:

 for item in items:

 t = vars(item)

 t["type"] = item_type

 features.append(t)

 repo = git.Repo(search_parent_directories=True)

 self._metadata = JSONResponse(

 {

 "name": "GitHub MCP Server",

 "description": "MCP server that provides seamless
integration with GitHub APIs, enabling advanced automation and interaction
capabilities for developers and tools.",

 "schemaVersion": "2025-06-18",

 "transport": ["streamable-http", "stdio"],

 "language": "python",

 "authentication": [],

 "git": {

 "repository": repo.remote().url,

 "commitSHA": repo.head.object.hexsha,

 },

 "features": features,

 }

)

 return self._metadata

Example Output

An example /.well-known/mcp.json response for a GitHub MCP server:

{​
 "name": "GitHub MCP Server",​
 "description": " MCP server that provides seamless integration with
GitHub APIs, enabling advanced automation and interaction capabilities

for developers and tools.",

 "schemaVersion": "2025-06-18",

 "transport": ["streamable-http", "stdio"],

 "language": "go",

 "authentication": ["oauth2"],

 "git":

 {

 "repository": "https://github.com/github/github-mcp-server",​
 "commitSHA": "87a477037fa1b48016635d4447523c65918ef5fe"​
 },

 "features": [​
 {​
 "name": "get_issue",

 "title": null,​
 "description": "Gets the contents of an issue within a

repository.",

​
 "inputSchema": {

​ "properties": {

 ​ "issue_number": {

 ​ "title": "The number of the issue",

 ​ "type": "number"

 ​ },

 ​ "owner": {

 ​ "title": "The owner of the repository",

 ​ "type": "string"

 ​ },

 ​ "repo": {

 ​ "description": "The name of the repository",

 ​ "type": "string"

 ​ }

​ },

​ "required": [

 ​ "owner",

 ​ "repo",

 ​ "issue_number"

​]

 ​ },

​ "outputSchema": {

​ "properties": {

 ​ "result": {

 ​ "title": "Result",

 ​ "type": "string"

 ​ }

​ },

​ "required": [

 ​ "result"

​],

 ​ },

 ​ "annotations": {

​ "title": "Get issue details",

​ "readOnlyHint": true

 },

 ​ "meta": null,

 ​ "type": "tool"

 },

 {​
 "name": "get_me",​
 "description": "Get details of the authenticated GitHub user. Use

this when a request includes ‘me’, ‘my’. The output will not change

unless the user changes their profile, so only call this once.",

 "type": "tool",​
 "inputSchema": {

 "properties": {

 "reason": {

 ​ "description": "The reason for requesting the user

information",

 ​ "type": "string"

 ​ }

 }

​ },

​ "outputType": "object",

 ​ "annotations": {

​ "title": "Get my user profile",

​ "readOnlyHint": true

 }

 }

]

}

Schema Definition

Each metadata follows a structured schema that includes:

●​ name: Name of the MCP server
●​ description: Natural language summary of server’s purpose.
●​ schemaVersion: The version of Schema used
●​ transport: List of supported transport protocols (e.g., stdio, sse, streamable-http)
●​ language: Programming language used in the implementation
●​ authentication (optional): Supported authentication mechanisms (e.g., oauth2)
●​ git: Source code information

○​ repository: URL of the source repository
○​ commitSHA: Specific commit SHA of the running instance

●​ features: A list of supported features
○​ name: Canonical feature name
○​ description: Natural language explanation.
○​ type: Feature type (e. g., tool, prompt, resource)
○​ inputSchema (optional): JSON Schema describing accepted inputs
○​ outputSchema (optional): JSON Schema describing accepted outputs
○​ annotations (optional): Extra metadata or hints.

Next steps
Once finalized, this metadata schema should be registered with IANA to reserve the
/.well-known/mcp.json path. This formal registration will standardize usage across
implementations and promote consistent adoption.

Conclusion
This RFC proposes a standardized method for exposing MCP server metadata via a well-known
URI. The metadata provides a structured, machine-readable description of server capabilities,
authentication methods, transport protocols, and supported features.

By adopting this convention, the MCP ecosystem will benefit from:

●​ Easier tool integration
●​ Reduced implementation friction
●​ Stronger interoperability
●​ Increased visibility for MCP servers

We invite feedback and collaboration from the community to refine and adopt this proposal.

References

●​ GitHub discussions: https://github.com/orgs/modelcontextprotocol/discussions/84
●​ Well-Know URI Registration: https://github.com/protocol-registries/well-known-uris

https://github.com/orgs/modelcontextprotocol/discussions/84
https://github.com/protocol-registries/well-known-uris

	Tab 1

