Scale and equatorial diameters 10.20.21

object	diameter (km)	circumference (km)	days @ 32 km/day	2 m = 200 cm = 2,000 mm diameter of sun	distance from the earth (miles)	Time (km/h)
Earth	12,756				0	
Moon	3,476				250,000	
Sun	1,390,000				93,000,000	
Mercury	4,850				57,000,000	
Venus	12,033				26,000,000	
Mars	6,754				49,000,000	
Jupiter	141,974				90,000,000	
Saturn	119,306				794,000,00 0	
Uranus	50,506				1.9 billion	
Neptune	49,318				2.7 billion	
Pluto	2,982				3.6 billion	
Sirius (nearest star after our sun)					25.2 trillion	

- Start by creating a table with 13 rows and 7 columns (each cell equal height and width!) hint, you will need a calculator and ruler (use metric)
- determine the circumference of each planet
- show your work for one, equation, knowns sub in
- determine how long it would take to walk around the equator of each object given that you will be walking at a speed of 32 km/day

- show work for one object
- Note this column is extra challenge: determine how large each object is if the sun is 2.0 meters (also provide in cm and mm this is optional extra challenge!) round to hundred thousandths
- show work for all calculations
- How is velocity determined V = distance/time
- in the last column determine how long it will take to travel to each object in you space shuttle
- make sure to note the unit in distance and time should be in km/h (conversion), you can show conversion from miles to km in column 6
- make sure space shuttle speed is in the proper unit
- speed of your space shuttle = 17,322 mph