

Mathematics, Grade 9, Euclidean Geometry

LINE AND ANGLES

THEOREM STATEMENT	ACCEPTABLE REASON(S)	DIAGRAM
Two adjacent angles on a straight line are supplementary	∠s on a str line	\
The sum of two or more angles on a straight line is 180° $(x+y+z=180^{\circ})$	∠s on a str line	$\frac{x \sqrt{180^{\circ} - x}}{x \sqrt{y}}$
If the adjacent angles are	adj ∠s supp	1500
supplementary, the outer arms		60° 120°
of these angles form a straight line.		A B C
The angles in a revolution add	∠s round a pt	123
up to 360°.	OR	x
$(x+y+z=360^{\circ})$	∠s in a rev	y/z
Vertically opposite angles are equal.	vert opp ∠s =	
equii.	(a and b are vertically opp \angle s) (c and d are vertically opp \angle s)	c b d
If AB CD, then the alternate	alt ∠s; AB CD	
angles are equal.	(e and f are alternate \angle s)	A / B
If AB CD, then the corresponding angles are equal.	corresp ∠s; AB CD	e/h
corresponding angles are equal.	(e and g are corresponding \angle s)	$\frac{f}{g}$
If AB CD, then the co-interior angles are supplementary.	co-int ∠s; AB CD	1 / B
angles are supplementary. $(f+h=180^\circ)$	$(f \text{ and } h \text{ are co-interior } \angle s)$	
If the alternate angles between	alt ∠s =	P Q
two lines are equal, then the lines are parallel.	(You can prove that lines PQ and RT are parallel if you can show that the alternate angles are equal)	22° R T

If the corresponding angles between two lines are equal, then the lines are parallel.	corresp ∠s = (You can prove that lines RT and QP are parallel if you can show that the corresponding angles are equal)	Q Q Q Q Q P Q
If the cointerior angles between two lines are supplementary, then the lines are parallel.	coint ∠s sup (You can prove that lines RT and QP are parallel if you can show that the co-interior angles are supplementary)	R 72° T 108° P

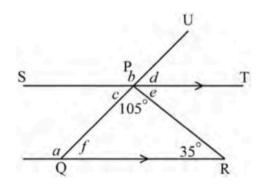
TRIANGLES

THEOREM STATEMENT	ACCEPTABLE REASON(S)	DIAGRAMS
The interior angles of a triangle are supplementary.	\angle sum in Δ OR sum of \angle s in Δ OR Int \angle s Δ	A Z Z C
The exterior angle of a triangle is equal to the sum of the interior opposite angles.	$\operatorname{ext} \angle \operatorname{of} \Delta$ $(w = x + y)$	A y Z C
The angles opposite the equal sides in an isosceles triangle are equal.	∠s opp equal sides (You can prove that $x = y$) (You may NOT say ISOSCOLES Δ as the reason)	B C
The sides opposite the equal angles in an isosceles triangle are equal.	sides opp equal \angle s (You can prove that AB = AC) (You may NOT say ISOSCOLES Δ as the reason)	B C

Study the examples below and answer the questions that follow:

Worked example:

In the figure below $\hat{QPR} = 105^{\circ}$ and $\hat{R} = 35^{\circ}$. Find, in order, the sizes of angles a to f.



$$a = 140^{\circ}$$
 exterior \angle of \triangle PQR

$$b = 140^{\circ}$$
 corresponding \angle s, ST || MR

$$c = 40^{\circ}$$
 <'s on straight line or co-interior \angle s, ST || MR

$$d = 40^{\circ}$$
 vertically opposite \angle s

$$e = 35^{\circ}$$
 alternate \angle s, ST || MR

$$f = 40^{\circ}$$
 <'s on straight line or alternate \angle s, ST || MR or sum <'s in \triangle PQR

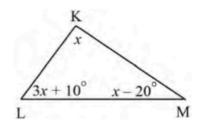
Solve for x by setting up an equation and then solving it. Give appropriate reasons.

Worked example

$$x + 3x + 10^{\circ} + x - 20^{\circ} = 180^{\circ}$$
 sum < 's in Δ KLM
 $5x = 180^{\circ} - 10^{\circ} + 20^{\circ}$

$$5x = 190^{\circ}$$

$$x = 38^{\circ}$$

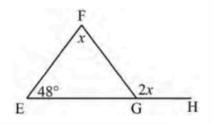


Worked example

$$2x = x + 48^{\circ}$$
 ext \angle of \triangle EFG

$$2x - x = 48^{\circ}$$

$$x = 48^{\circ}$$

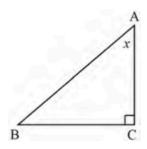


Writing angles in term of x and y

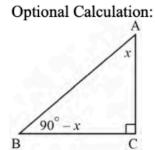
Fill in the size of each of the missing angles in terms of x or y.

(Although no working needs to be shown, you may still show your calculations if you find it helps you to find the values of the missing angles.)

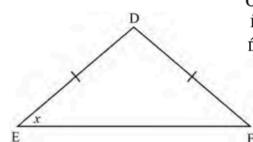
Worked example

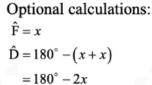


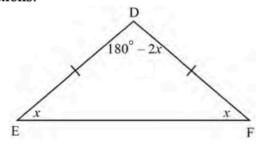
$$\hat{\mathbf{B}} = 180^{\circ} - (90^{\circ} + x)$$
$$= 90^{\circ} - x$$



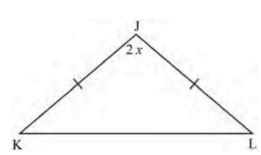
Worked example





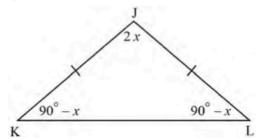


Worked example

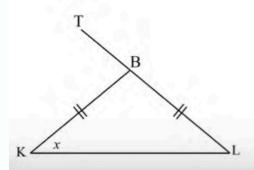


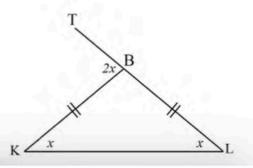
Optional calculations:

$$\hat{K} = \hat{L} = \frac{180^{\circ} - 2x}{2}$$
$$= 90^{\circ} - x$$



Worked example

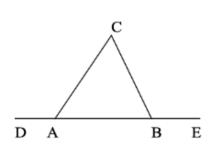


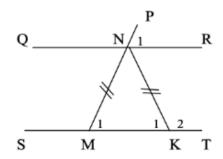


Geometric Proofs

This logic is used often in geometric proofs and is called deductive reasoning.

Worked Example:





If
$$\hat{CAB} = \hat{CBA}$$
,
prove that $\hat{CAD} = \hat{CBE}$

PROOF: Let
$$C\hat{A}B = x$$

$$\therefore \hat{CBA} = x \quad \text{(given)}$$

$$\hat{CAD} = 180^{\circ} - x \ (\angle \text{'s on str lineDE})$$

$$\hat{CBE} = 180^{\circ} - x \ (\angle \text{'s on str line DE})$$

$$\therefore$$
 CÂD = CBE

If
$$N_1 = K_1$$

Prove QR//ST

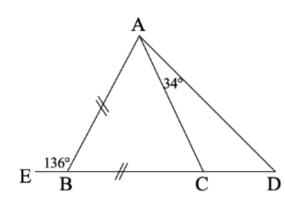
PROOF: Let $N_1 = K_1 = x$

 $M_1 = K_1 = x < s$ opp equal sides

$$\therefore \mathbf{N}_1 = \mathbf{M}_1 = x$$

$$\therefore$$
 QR//ST corres \angle 's =

Worked Example:



Prove : AC = CD

Proof:

 $\hat{BAC} = \hat{ACB} = 68^{\circ}$ exterior angle of $\hat{I} = \hat{I} = \hat{I}$

 $\hat{ADC} = 34^{\circ}$ exterior angle of isos Δ

 \therefore CÂD = ADC = 34°

 \therefore AC = CD sides opp = angles \therefore \triangle is isos

(mathguide)