Documentation

Racoon Rave Audio Visualizer

By Nicole Lee

This audio visualizer responds to microphone input, adjusting wave oscillation speed and width
based on loudness. A spinning raccoon GIF sits at the center, with particles appearing when the
loudness exceeds 100. A slider in the top left allows users to zoom into the oscillating waves for
better visibility (wave intensity).

Inspiration

I was inspired by the 2000s CD audio visualizers that I used to watch as a kid—those colorful,
hypnotic patterns that pulsed and warped in sync with the music. Back then, visualizers
transformed music into something alive, turning simple sounds into mesmerizing, ever-changing
animations. | wanted to recreate that feeling of nostalgia and wonder but in a way that felt more
interactive and playful.

Unlike traditional visualizers that simply react to music passively, my project encourages direct
engagement. The idea is to have the visual elements respond not just to music, but also to the
user’s voice—creating a personalized, dynamic experience. Every word or sound generates
ripples of color, echoing outward like waves, evolving over time. This interaction makes the
visualizer feel like a living organism, responding uniquely to each session.

I also wanted to add a touch of playfulness and charm, which is why I incorporated a whimsical
dancing raccoon GIF at the center. It brings a sense of humor and lightheartedness to the
experience, breaking away from the sleek, abstract designs of old-school visualizers. The
pastel-colored circles and fluid particle effects give the piece an almost dreamlike quality,
reminiscent of those classic music visualizers but with a modern, interactive twist.

Ultimately, this project is a mix of nostalgia, interactivity, and personal expression—a way to
visually connect with sound in a fun, engaging, and ever-changing way.

Process
Version # Description Photo
1 https://www.youtube.com/watch?v

=uk9607N1Yo0

This was a YouTube video that
inspired my project. In this video,
they upload a song (in the form of
mp3) as audio, and as the beat
drops in the song, the circle moves
and spits out particles.

https://www.youtube.com/watch?v=uk96O7N1Yo0
https://www.youtube.com/watch?v=uk96O7N1Yo0

https://openprocessing.org/sketch/
2580745

I then coded my own version
tweaking what it looks like. A very
simple white circle with white
particles. But this version uses
your computer mic rather than
plugging in your own audio.

https://openprocessing.org/sketch/
2582176

I decided to duplicate the circles to
see a cool wave/echo effect and
make it a rainbow. I took out the
particles and changed the
background to black.

https://openprocessing.org/sketch/2580745
https://openprocessing.org/sketch/2580745
https://openprocessing.org/sketch/2582176
https://openprocessing.org/sketch/2582176

https://openprocessing.org/sketch/
2580868

To make it fun, I added a raccoon
that spins in the middle.

Now when sound is generated, the
sound wave is echoed outward and
the particles move outward with it.

‘\“\H‘;‘m”‘w‘“

Loudness: 67.67°3

Final https://openprocessing.org/sketch/
2581071

In this final version, the particles
move a little faster.

I also added a slider displaying
wave intensity which zooms in or
out of the circle so that you can see
how much the waves
oscillate/fluctuate.

Loudness:
Wave Intensi

This project began as a simple audio visualizer that reacted to sound waves
using basic circular waveforms. Initially inspired by existing music visualizers, |
started with a minimal design—a white circle with particle effects responding to
microphone input. As I experimented, I added multiple wave layers to create a
dynamic echo effect and introduced color variation to enhance visual depth. I
incorporated a spinning raccoon GIF at the center to make the piece more
engaging, transforming it from a standard visualizer into a playful, interactive
experience. Further refinements included adjusting particle movement,
optimizing wave oscillations, and adding a slider to control wave intensity,
allowing users to customize the visual effect. Through this iterative process, the

https://openprocessing.org/sketch/2580868
https://openprocessing.org/sketch/2580868
https://openprocessing.org/sketch/2581071
https://openprocessing.org/sketch/2581071

project evolved from a technical audio analysis tool into a vibrant, interactive
artwork that blends generative design with elements of fun and creativity.

Problems and Issues:
Throughout the iterations, I attempted some experimental things:

e Instead of circle particles made them stars
e Tried to gamify it
o Move a character to collect the particles and then shoot them like
agar.io
e Change the picture in the middle

All of these didn’t work.

This visualizer was already very intense. My computer could not load it
consistently since there was so much movement. I tried making the circles stars
but it couldn’t load and the shape was too complicated as I had to manually
draw a star first as code (which had more than 1 component for each star) and
then spawn each of them individually which was too intensive.

Then I tried gamifying it, the character worked but the particles could not
register as an “object” meaning that it didn’t register as having a hitbox. That
means the whole concept fell apart because you could not “collect” anything and
I was left with just a moving image. This was really discouraging to figure out
as I took over an hour trying to fix it but couldn't

Lastly, I tried changing the picture in the middle. But it was hard to find a
similar GIF that was a circle that didn’t mess with the rest of the circular waves.
But after a lot of messing around,d I feel that it was already enough with the
wave visualizer. Making it too busy didn’t look to good so I decided to scratch it
off.

Conclusion / Reflection

What is the goal of this piece? Did that goal change over the course of your project? In
what ways do you feel successful about achieving that goal — and what did you learn for the
future?

The goal of this piece was to create an interactive audio visualizer that responds to sound in a
visually engaging way. Initially, I envisioned a simple waveform visualizer, but as the project
evolved, I incorporated additional elements like particle effects, wave history, and a spinning
raccoon GIF to make it more playful and immersive. I feel successful in achieving the goal
because the final piece is both aesthetically engaging and functionally responsive to sound.
Moving forward, I’ve learned the importance of iterative design, experimenting with new ideas,
and refining them based on what works best visually and interactively.

How do you feel about the way it turned out? Does it remind you of other artworks, media,
stories, or people? How have you changed through the process of creating this piece? How
do you hope pieces like this might impact others?

I’'m really happy with how it turned out. It has a unique blend of structured waveforms and
playful randomness with the particles and GIF. It reminds me of old-school music visualizers like
those in Winamp or iTunes, but with a modern, fun twist. Through this project, I’ve grown in my
ability to experiment with generative art, pushing myself to think beyond basic visual
representations. I hope that this piece brings joy and curiosity to viewers, encouraging them to
see sound in a new way and inspiring them to explore creative coding.

What’s the plan for this piece?

Right now, I see this as a completed experimental piece, but I’d love to refine it further or
incorporate it into a larger interactive project. One idea is to allow users to upload their own
music or add more interactivity, such as enabling user-controlled visual modifications.

What will you take into future projects? Any acknowledgments for folks who helped along
the way?

For future projects, I’ll take away the importance of iteration—starting with a basic concept and
letting it evolve naturally based on testing and feedback. I also learned a lot about balancing
aesthetics with real-time responsiveness in p5.js. I’d like to acknowledge this youtube
video/channel for inspiring this project https://www.youtube.com/watch?v=uk9607N1Yo00

Links and Sources

https://www.youtube.com/watch?v=uk96O7N1Yo0

Code

Google Drive:In open processing: :
https://openprocessing.org/sketch/2581071

Audio
Visualizer
starting code

https://www.youtube.com/watch?v=uk9607N1Yo0

Open Final sketch: https://openprocessing.org/sketch/2581071
Processing
CHATGPT https://chatgpt.com/?model=text-davinci-002-render

Final video

Google Drive: W Nicole Generative Art Project.mp4

https://drive.google.com/file/d/1AQZITq9lKxQLDcW6IT54_aUBhco_F_mI/view?usp=drive_link
https://openprocessing.org/sketch/2581071
https://www.youtube.com/watch?v=uk96O7N1Yo0
https://openprocessing.org/sketch/2581071
https://chatgpt.com/?model=text-davinci-002-render

FINAL CODE

// LED1

const int A_LEDPin =13;
const int B_LLEDPin = 12;
const int C_LEDPin =11;

// LED2

const int D_LEDPin =10;
constint E_LEDPin =9;
const int F_LEDPin = 8§;

// LED3

const int G_LEDPin = 7;
const int H_LEDPIin = 6;
const int I_LEDPin = 5;

// LED4

const int J_LEDPin = 4;
const int K_LEDPin = 3;
const int L_LEDPin = 2;

const int buttonPin = 1; // Button pin

// RGB values for 6 categories with 4 colors each
const int categories[6][4][3] = {

{// Reds
{255, 20, 60}, // Crimson
{255, 34, 34}, // Firebrick
{255, 99, 71}, // Tomato
{225,92,92} // Indian Red

2

{// Oranges
{255,128, 0}, // Orange
{255, 153, 51}, // Dark Orange
{255, 178, 102}, // Red Orange
{255,204, 153} // Gold

2

{// Yellows
{255, 255,0}, // Yellow
{255, 255, 51}, // Light Yellow
{255, 255, 102}, // Khaki
{255, 255, 153} // Papaya Whip

2

{// Greens

{0, 255,0}, // Green
{51, 255, 51}, // Forest Green
{102, 255, 102}, // Light Green
{153, 255,153} // Lime Green
2
{// Blues
{0, 0,255}, //Blue
{51, 51, 255}, // Dodger Blue
{102, 102, 255}, // Steel Blue
{153, 153,255} // Sky Blue
2
{// Purples
{127, 0, 255}, // Purple
{153, 51, 255}, // Blue Violet
{178,102, 255}, // Dark Violet
{204, 153, 255} // Medium Orchid

}
%

int currentCategory = 0; // Tracks the current category
bool buttonPressed = false;

void setup() {
// Initialize all LED pins as outputs
pinMode(A_LEDPin, OUTPUT);
pinMode(B_LEDPin, OUTPUT);
pinMode(C_LEDPin, OUTPUT);

pinMode(D_LEDPin, OUTPUT);
pinMode(E_LEDPin, OUTPUT);
pinMode(F_LEDPin, OUTPUT);

pinMode(G_LEDPin, OUTPUT);
pinMode(H_LEDPin, OUTPUT);
pinMode(I_LEDPin, OUTPUT);

pinMode(J_LEDPin, OUTPUT);
pinMode(K_LEDPin, OUTPUT);
pinMode(L_LEDPin, OUTPUT);

// Initialize button pin as input with pullup resistor
pinMode(buttonPin, INPUT_PULLUP);

// Turn off all LEDs initially
setAllLEDs(0, 0, 0);
}

void loop() {

// Check if the button is pressed

if (digitalRead(buttonPin) == LOW && !buttonPressed) { // Button pressed
delay(200); // Debounce delay
buttonPressed = true; // Prevent multiple triggers
displayCategory(currentCategory); / Display the current category
currentCategory = (currentCategory + 1) % 6; // Move to the next category
while (digitalRead(buttonPin) == LOW); // Wait until button is released
buttonPressed = false;

}
}

// Function to display the current category
void displayCategory(int category) {
setLEDColor(A_LEDPin, B_LEDPin, C_LEDPin, categories[category][0][0],
categories[category][0][1], categories[category][0][2]); // LED1
setLEDColor(D_LEDPin, E_LEDPin, F_LEDPin, categories[category][1][0],
categories[category][1][1], categories[category][1][2]); // LED2
setLEDColor(G_LEDPin, H_LEDPin, I_LEDPIn, categories[category][2][0],
categories[category][2][1], categories[category][2][2]); // LED3
setLEDColor(J_LEDPin, K_LEDPin, L_LEDPin, categories[category][3][0],
categories[category][3][1], categories[category][3][2]); // LED4

}

// Function to set the color of an LED
void setLEDColor(int redPin, int greenPin, int bluePin, int redValue, int greenValue, int blueValue)
{

analogWrite(redPin, redValue); // Set red pin

analogWrite(greenPin, greenValue); // Set green pin

analogWrite(bluePin, blueValue); // Set blue pin

}

// Function to set all LEDs to the same color

void setAlILEDs(int red, int green, int blue) {
analogWrite(A_LEDPin, red);
analogWrite(B_LEDPIn, green);
analogWrite(C_LEDPIn, blue);

analogWrite(D_LEDPin, red);

analogWrite(E_LEDPin, green);
analogWrite(F_LEDPin, blue);

analogWrite(G_LEDPIn, red);
analogWrite(H_LEDPIin, green);
analogWrite(I_LEDPin, blue);

analogWrite(J_LEDPIn, red);
analogWrite(K_LEDPin, green);
analogWrite(L_LEDPIn, blue);

Other Versions

VERSION 1— hooking up the lights

//LED1

const int A_LEDPin = 13;
const int B_LEDPin = 12;
const int C_LEDPin =11;

//LED2

const int D_LEDPin = 10;
const int E_LEDPin = 9;
constint F_LEDPin = 8;

//LED3

const int G_LEDPin =7;
constint H_LEDPin = 6;
const int I_LEDPin = 5;

//LED4

constint J_LEDPin = 4;
const int K_LEDPin = 3;
const int L_LEDPin =2;

// Set your desired color here

int redValue = 0; // Set to 255 for red intensity, or 0 if you don't want red

int greenValue = 0; // Set to 255 for green intensity, or 0 if you don't want green
int blueValue = 255; // Set to 255 for blue intensity, or 0 if you don't want blue

void setup() {
// Initialize all LED pins as outputs
pinMode(A_LEDPin, OUTPUT);
pinMode(B_LEDPin, OUTPUT);
pinMode(C_LEDPin, OUTPUT);

pinMode(D_LEDPin, OUTPUT);
pinMode(E_LEDPin, OUTPUT);
pinMode(F_LEDPin, OUTPUT);

pinMode(G_LEDPin, OUTPUT);

pinMode(H_LEDPin, OUTPUT);
pinMode(I_LEDPin, OUTPUT);

pinMode(J_LEDPin, OUTPUT);
pinMode(K_LEDPin, OUTPUT);
pinMode(L_LEDPin, OUTPUT);

// Turn all LEDs to the same color
setAlILEDs(redValue, greenValue, blueValue);

}

void loop() {
// No changes in loop since we want all LEDs to stay on in one color

}

// Function to set all LEDs to the same color
void setAllLEDs(int red, int green, int blue) {
// Set all red pins
analogWrite(A_LEDPIn, red);
analogWrite(D_LEDPIn, red);
analogWrite(G_LEDPIin, red);
analogWrite(J_LEDPIn, red);

A~ A~ A~ A~

// Set all green pins

analogWrite(B_LEDPin, green);
analogWrite(E_LEDPin, green);
analogWrite(H_LEDPIn, green);
analogWrite(K_LEDPin, green);

// Set all blue pins
analogWrite(C_LEDPIn, blue);
analogWrite(F_LEDPin, blue);
analogWrite(I_LEDPin, blue);
analogWrite(L_LEDPIn, blue);

VERSION 2 — turning all the lights on as blue

Assignment title Student name - 5
const int A_LEDPin =13;
const int B_LLEDPin = 12;
const int C_LEDPin =11;

const int D_LEDPin = 10;
const int E_LEDPin =9;
const int F_LEDPin = §;

const int G_LEDPin = 7;
const int H_LEDPIn = 6;
const int I_LEDPin = 5;

const int J_LEDPin = 4;
const int K_LEDPin = 3;
constint L_LEDPin = 2;

void setup() {
// Initialize all LED pins as outputs
pinMode(A_LEDPin, OUTPUT);
pinMode(B_LEDPin, OUTPUT);
pinMode(C_LEDPin, OUTPUT);

pinMode(D_LEDPin, OUTPUT);
pinMode(E_LEDPin, OUTPUT);
pinMode(F_LEDPin, OUTPUT);

pinMode(G_LEDPin, OUTPUT);
pinMode(H_LEDPin, OUTPUT);
pinMode(I_LEDPin, OUTPUT);

pinMode(J_LEDPin, OUTPUT);

pinMode(K_LEDPin, OUTPUT);

pinMode(L_LEDPin, OUTPUT);
}

void loop() {
// Fade each group of LEDs into blue one at a time
fadeGroupToBlue(A_LEDPin, B_LEDPin, C_LEDPIn); // First group

delay(1000); // Wait 1 second

fadeGroupToBlue(D_LEDPin, E_LEDPin, F_LEDPIn); // Second group
delay(1000); // Wait 1 second

fadeGroupToBlue(G_LEDPin, H_LEDPIin, I_LEDPin); // Third group
delay(1000); // Wait 1 second

fadeGroupToBlue(J_LEDPin, K_LEDPin, L_LEDPin); // Fourth group
delay(1000); // Wait 1 second

}

// Function to fade a group of LEDs into blue
void fadeGroupToBlue(int redPin, int greenPin, int bluePin) {
// Gradually turn off red and green while turning on blue
for (int brightness = 0; brightness <= 255; brightness += 5) {
analogWrite(redPin, 255 - brightness); // Fade out red
analogWrite(greenPin, 255 - brightness); // Fade out green
analogWrite(bluePin, brightness); // Fade in blue
delay(30); // Small delay for smooth fading

}

// Gradually turn off blue (fade out)

for (int brightness = 255; brightness >= 0; brightness -= 5) {
analogWrite(redPin, 0); // Keep red off
analogWrite(greenPin, 0); // Keep green off
analogWrite(bluePin, brightness); // Fade out blue
delay(30); // Small delay for smooth fading

}
}

VERSION 3 — turn all the LEDs blue from button

//LED1

const int A_LEDPin = 13;
const int B_LEDPin = 12;
const int C_LEDPin =11;

//LED2

const int D_LEDPin = 10;
constint E_LEDPin = 9;
const int F_LEDPin = 8;

//LED3

const int G_LEDPin = 7,
const int H_LEDPin = 6;
constint I_LEDPin = 5;

//LED4

const int J_LEDPIin = 4;
const int K_LEDPin = 3;
constint L_LEDPin = 2;

const int buttonPin = 1; // Button pin
bool ledsOn =true; // Tracks whether LEDs are on or off

void setup() {
// Initialize all LED pins as outputs
pinMode(A_LEDPin, OUTPUT);
pinMode(B_LEDPin, OUTPUT);
pinMode(C_LEDPin, OUTPUT);

pinMode(D_LEDPin, OUTPUT);
pinMode(E_LEDPin, OUTPUT);
pinMode(F_LEDPin, OUTPUT);

pinMode(G_LEDPin, OUTPUT);
pinMode(H_LEDPin, OUTPUT);
pinMode(I_LEDPin, OUTPUT);

pinMode(J_LEDPin, OUTPUT);
pinMode(K_LEDPin, OUTPUT);
pinMode(L_LEDPin, OUTPUT);

// Initialize button pin as input with pullup resistor
pinMode(buttonPin, INPUT_PULLUP);

// Set all LEDs initially to "on" (blue in this case)
setAlILEDs(0, 0, 255);

}

void loop() {
// Check if the button is pressed
if (digitalRead(buttonPin) == LOW) { // Button pressed
delay(200); // Debounce delay
toggleLEDs(); // Toggle LEDs on/off
while (digitalRead(buttonPin) == LOW); // Wait until button is released
}
}

// Function to toggle LEDs on or off
void toggleLEDs() {
if (ledsOn) {
setAllLEDs(O0, 0, 0); // Turn all LEDs off
} else {
setAllLEDs(0, 0, 255); // Turn all LEDs back to blue

}
ledsOn = !ledsOn; // Flip the state

}

// Function to set all LEDs to the same color
void setAllLEDs(int red, int green, int blue) {
// Set all red pins
analogWrite(A_LEDPIn, red);
analogWrite(D_LEDPIn, red);
analogWrite(G_LEDPIn, red);
analogWrite(J_LEDPIn, red);

A~ A~ A~ A~

// Set all green pins

analogWrite(B_LEDPIn, green);
analogWrite(E_LEDPin, green);
analogWrite(H_LEDPIn, green);
analogWrite(K_LEDPin, green);

// Set all blue pins
analogWrite(C_LEDPIn, blue);

analogWrite(F_LEDPIin, blue);

analogWrite(I_LEDPin, blue);

analogWrite(L_LEDPIn, blue);
}

Version 4 — old color categories

//LED1

const int A_LEDPin =13;
const int B_LLEDPin = 12;
const int C_LEDPin =11;

//LED2

const int D_LEDPin =10;
const int E_LEDPin = 9;
const int F_LEDPin = 8;

//LED3

const int G_LEDPin =7;
const int H_LEDPIin = 6;
constint I_LEDPin = 5;

//LED4

const int J_LEDPin = 4;
const int K_LEDPin = 3;
const int L_LEDPin = 2;

const int buttonPin = 1; // Button pin

// RGB values for 6 categories with 4 colors each
const int categories|[6][4][3] = {
{// Reds
{220, 20, 60}, // Crimson
{178, 34, 34}, // Firebrick
{255, 99, 71}, // Tomato
{205, 92,92} // Indian Red
2
{// Oranges
{255, 165, 0}, // Orange
{255, 140, 0}, // Dark Orange
{255, 69, 0}, // Red Orange

{255,215,0} // Gold
2
{// Yellows
{255, 255, 0}, // Yellow
{255, 255, 102}, // Light Yellow
{240, 230, 140}, // Khaki
{255, 239, 213} // Papaya Whip
2
{// Greens
{0,128,0}, // Green
{34,139, 34}, // Forest Green
{144, 238, 144}, // Light Green
{50, 205, 50} // Lime Green
2
{ // Blues
{0, 0, 255}, // Blue
{30, 144, 255}, // Dodger Blue
{70, 130, 180}, // Steel Blue
{135, 206, 250} // Sky Blue
2
{// Purples
{128, 0,128}, // Purple
{138, 43, 226}, // Blue Violet
{148, 0,211}, // Dark Violet
{186, 85,211} // Medium Orchid
}
%

int currentCategory = 0; // Tracks the current category
bool buttonPressed = false;

void setup() {
// Initialize all LED pins as outputs
pinMode(A_LEDPin, OUTPUT);
pinMode(B_LEDPin, OUTPUT);
pinMode(C_LEDPin, OUTPUT);

pinMode(D_LEDPin, OUTPUT);
pinMode(E_LEDPin, OUTPUT);
pinMode(F_LEDPin, OUTPUT);

pinMode(G_LEDPin, OUTPUT);
pinMode(H_LEDPin, OUTPUT);

pinMode(I_LEDPin, OUTPUT);

pinMode(J_LEDPin, OUTPUT);
pinMode(K_LEDPin, OUTPUT);
pinMode(L_LEDPin, OUTPUT);

// Initialize button pin as input with pullup resistor
pinMode(buttonPin, INPUT_PULLUP);

// Turn off all LEDs initially
setAlILEDs(0, 0, 0);

}

void loop() {

// Check if the button is pressed

if (digitalRead(buttonPin) == LOW && !buttonPressed) { // Button pressed
delay(200); // Debounce delay
buttonPressed = true; // Prevent multiple triggers
displayCategory(currentCategory); // Display the current category
currentCategory = (currentCategory + 1) % 6; // Move to the next category
while (digitalRead(buttonPin) == LOW); // Wait until button is released
buttonPressed = false;

}
}

// Function to display the current category
void displayCategory(int category) {

fadeLED(A_LEDPin, B_LEDPin, C_LEDPin, categories[category][0][0], categories[category][0][1],
categories[category][0][2]); // LED1

fadeLED(D_LEDPIn, E_LEDPin, F_LEDPIn, categories[category][1][0], categories[category][1][1],
categories[category][1][2]); // LED2

fadeLED(G_LEDPin, H_LEDPIn, I_LEDPiIn, categories[category][2][0], categories[category][2][1],
categories[category][2][2]); // LED3

fadeLED(J_LEDPin, K_LEDPIn, L_LEDPin, categories[category][3][0], categories[category][3][1],
categories[category][3][2]); // LED4

}

// Function to fade an LED to a specific RGB color
void fadeLED(int redPin, int greenPin, int bluePin, int redValue, int greenValue, int blueValue) {
for (int brightness = 0; brightness <= 255; brightness += 5) {
analogWrite(redPin, (redValue * brightness) / 255); // Red pin
analogWrite(greenPin, (greenValue * brightness) / 255); // Green pin
analogWrite(bluePin, (blueValue * brightness) / 255); // Blue pin

delay(30); // Small delay for smooth fading

}
}

// Function to set all LEDs to the same color

void setAlILEDs(int red, int green, int blue) {
analogWrite(A_LEDPin, red);
analogWrite(B_LEDPIn, green);
analogWrite(C_LEDPIn, blue);

analogWrite(D_LEDPin, red);
analogWrite(E_LEDPIn, green);
analogWrite(F_LEDPin, blue);

analogWrite(G_LEDPIn, red);
analogWrite(H_LEDPIin, green);
analogWrite(I_LEDPin, blue);

analogWrite(J_LEDPIn, red);
analogWrite(K_LEDPin, green);
analogWrite(L_LEDPin, blue);

Version 6 — user input colors!

// LED1

const int A_LEDPin =13;
const int B_LLEDPin = 12;
const int C_LEDPin =11;

// LED2

const int D_LEDPin =10;
const int E_LEDPin = 9;
const int F_LEDPin = 8§;

// LED3

const int G_LEDPin = 7;
const int H_LEDPIn = 6;
const int I_LEDPin = 5;

// LED4

const int J_LEDPin = 4;
const int K_LEDPin = 3;
constint L_LEDPin = 2;

// RGB values for 6 categories with 4 colors each
const int categories|[6][4][3] = {

{// Reds
{255, 20, 60}, // Crimson
{255, 34, 34}, // Firebrick
{255, 99, 71}, // Tomato
{225, 92,92} // Indian Red

2

{// Oranges
{255, 128, 0}, // Orange
{255, 153, 51}, // Dark Orange
{255, 178, 102}, // Red Orange
{255, 204, 153} // Gold

2

{// Yellows
{255,255,0}, // Yellow
{255, 255, 51}, // Light Yellow
{255, 255, 102}, // Khaki
{255, 255, 153} // Papaya Whip

2

{// Greens
{0, 255,0}, // Green
{51, 255, 51}, // Forest Green
{102, 255, 102}, // Light Green
{153, 255,153} // Lime Green

2

{// Blues
{0, 0,255}, //Blue
{51, 51, 255}, // Dodger Blue
{102, 102, 255}, // Steel Blue
{153, 153,255} // Sky Blue

2

{// Purples
{127, 0, 255}, // Purple
{153, 51, 255}, // Blue Violet
{178,102, 255}, // Dark Violet
{204, 153, 255} // Medium Orchid

}

%
int currentCategory = 0; // Tracks the current category

void setup() {
// Initialize all LED pins as outputs
pinMode(A_LEDPin, OUTPUT);
pinMode(B_LEDPin, OUTPUT);
pinMode(C_LEDPin, OUTPUT);

pinMode(D_LEDPin, OUTPUT);
pinMode(E_LEDPin, OUTPUT);
pinMode(F_LEDPin, OUTPUT);

pinMode(G_LEDPin, OUTPUT);
pinMode(H_LEDPin, OUTPUT);
pinMode(I_LEDPin, OUTPUT);

pinMode(J_LEDPin, OUTPUT);
pinMode(K_LEDPin, OUTPUT);
pinMode(L_LEDPin, OUTPUT);

// Start serial communication

Serial.begin(9600);

Serial.printin("What color group do you want the LEDs to show? (red, orange, yellow, green,
blue, purple)");

// Turn off all LEDs initially
setAlILEDs(0, 0, 0);

}

void loop() {
// Check if there is user input
if (Serial.available() > 0) {
String input = Serial.readStringUntil('\n’);
input.trim(); // Remove any whitespace or newline characters
int category = getCategory(input);

if (category !=-1) {
displayCategory(category);
Serial.printin("LEDs updated to: " + input);
} else {
Serial.printIn("Invalid input. Please enter red, orange, yellow, green, blue, or purple.");

}
}
}

// Function to get the category index from user input
int getCategory(String input) {

if (input.equalslignoreCase("red")) return 0;

if (input.equalsignoreCase("orange")) return 1;

if (input.equalslignoreCase("yellow")) return 2;

if (input.equalslgnoreCase("green")) return 3;

if (input.equalsignoreCase("blue")) return 4,

if (input.equalslgnoreCase("purple")) return 5;

return -1; // Invalid input

}

// Function to display the current category
void displayCategory(int category) {
setLEDColor(A_LEDPin, B_LEDPin, C_LEDPin, categories[category][0][0],
categories[category][0][1], categories[category][0][2]); // LED1
setLEDColor(D_LEDPin, E_LEDPin, F_LEDPIn, categories[category][1][0],
categories[category][1][1], categories[category][1][2]); // LED2
setLEDColor(G_LEDPin, H_LEDPIn, I_LEDPIn, categories[category][2][0],
categories[category][2][1], categories[category][2][2]); // LED3
setLEDColor(J_LEDPin, K_LEDPin, L_LEDPin, categories[category][3][0],
categories[category][3][1], categories[category][3][2]); // LED4
}

// Function to set the color of an LED
void setLEDColor(int redPin, int greenPin, int bluePin, int redValue, int greenValue, int blueValue)
{

analogWrite(redPin, redValue); // Set red pin

analogWrite(greenPin, greenValue); // Set green pin

analogWrite(bluePin, blueValue); // Set blue pin

}

// Function to set all LEDs to the same color

void setAlILEDs(int red, int green, int blue) {
analogWrite(A_LEDPin, red);
analogWrite(B_LEDPIin, green);
analogWrite(C_LEDPIn, blue);

analogWrite(D_LEDPIn, red);
analogWrite(E_LEDPin, green);

analogWrite(F_LEDPin, blue);

analogWrite(G_LEDPIn, red);
analogWrite(H_LEDPIin, green);
analogWrite(I_LEDPin, blue);

analogWrite(J_LEDPIn, red);
analogWrite(K_LEDPin, green);
analogWrite(L_LEDPin, blue);

Version 7: — different color on button press

// LED1

const int A_LEDPin =13;
const int B_LLEDPin = 12;
const int C_LEDPin=11;

// LED2

const int D_LEDPin = 10;
const int E_LEDPin =9;
const int F_LEDPin = §;

// LED3

const int G_LEDPin =7,
const int H_LEDPin = 6;
const int I_LEDPin = 5;

// LED4

const int J_LEDPin = 4;
const int K_LEDPin = 3;
constint L_LEDPin = 2;

const int buttonPin = 1; // Button pin

// RGB values for 6 categories with 4 colors each
const int categories[6][4][3] = {
{// Reds
{255, 0, 0}, // Crimson
{200, 0, 0}, // Firebrick
{140, 0, 0}, // Tomato

{140, 0, 0} //Indian Red

2

{// Oranges
{255,128, 0}, // Orange
{255, 153, 51}, // Dark Orange
{255, 178, 102}, // Red Orange
{255,204, 153} // Gold

2

{// Yellows
{255, 255,0}, // Yellow
{255, 255, 51}, // Light Yellow
{255, 255, 102}, // Khaki
{255, 255, 153} // Papaya Whip

2

{// Greens
{0, 255,0}, // Green
{51, 255, 51}, // Forest Green
{102, 255, 102}, // Light Green
{153, 255,153} // Lime Green

2

{ // Blues
{0, 0,255}, //Blue
{51, 51, 255}, // Dodger Blue
{102,102, 255}, // Steel Blue
{153,153, 255} // Sky Blue

2

{// Purples
{127, 0, 255}, // Purple
{153, 51, 255}, // Blue Violet
{178,102, 255}, // Dark Violet
{204, 153,255} // Medium Orchid

}

%

int currentCategory = 0; // Tracks the current category
bool buttonPressed = false;

void setup() {
// Initialize all LED pins as outputs
pinMode(A_LEDPin, OUTPUT);
pinMode(B_LEDPin, OUTPUT);
pinMode(C_LEDPin, OUTPUT);

pinMode(D_LEDPin, OUTPUT);
pinMode(E_LEDPin, OUTPUT);
pinMode(F_LEDPin, OUTPUT);

pinMode(G_LEDPin, OUTPUT);
pinMode(H_LEDPin, OUTPUT);
pinMode(I_LEDPin, OUTPUT);

pinMode(J_LEDPin, OUTPUT);
pinMode(K_LEDPin, OUTPUT);
pinMode(L_LEDPin, OUTPUT);

// Initialize button pin as input with pullup resistor
pinMode(buttonPin, INPUT_PULLUP);

// Turn off all LEDs initially
setAlILEDs(0, 0, 0);

}

void loop() {

// Check if the button is pressed

if (digitalRead(buttonPin) == LOW && !buttonPressed) { // Button pressed
delay(200); // Debounce delay
buttonPressed = true; // Prevent multiple triggers
displayCategory(currentCategory); // Display the current category
currentCategory = (currentCategory + 1) % 6; / Move to the next category
while (digitalRead(buttonPin) == LOW); // Wait until button is released
buttonPressed = false;

}
}

// Function to display the current category
void displayCategory(int category) {
setLEDColor(A_LEDPin, B_LEDPin, C_LEDPin, categories[category][0][0],
categories[category][0][1], categories[category][0][2]); // LED1
setLEDColor(D_LEDPin, E_LEDPin, F_LEDPIn, categories[category][1][0],
categories[category][1][1], categories[category][1][2]); // LED2
setLEDColor(G_LEDPin, H_LEDPIn, I_LEDPIn, categories[category][2][0],
categories[category][2][1], categories[category][2][2]); // LED3
setLEDColor(J_LEDPin, K_LEDPin, L_LEDPin, categories[category][3][0],
categories[category][3][1], categories[category][3][2]); // LED4

}

// Function to set the color of an LED
void setLEDColor(int redPin, int greenPin, int bluePin, int redValue, int greenValue, int blueValue)
{

analogWrite(redPin, redValue); // Set red pin

analogWrite(greenPin, greenValue); // Set green pin

analogWrite(bluePin, blueValue); // Set blue pin

}

// Function to set all LEDs to the same color

void setAlILEDs(int red, int green, int blue) {
analogWrite(A_LEDPin, red);
analogWrite(B_LEDPIn, green);
analogWrite(C_LEDPIn, blue);

analogWrite(D_LEDPin, red);
analogWrite(E_LEDPin, green);
analogWrite(F_LEDPin, blue);

analogWrite(G_LEDPIn, red);
analogWrite(H_LEDPIin, green);
analogWrite(I_LEDPin, blue);

analogWrite(J_LEDPIn, red);
analogWrite(K_LEDPIn, green);
analogWrite(L_LEDPin, blue);

	Documentation
	Racoon Rave Audio Visualizer
	
	
	Links and Sources
	

	FINAL CODE
	Other Versions
	VERSION 1→ hooking up the lights
	VERSION 2 → turning all the lights on as blue
	VERSION 3 → turn all the LEDs blue from button
	Version 4 → old color categories
	Version 6 → user input colors!
	Version 7: → different color on button press

