
Web Bluetooth Design Doc (2014)

Publicly visible document.
2014-07-22
jyasskin@chromium.org, scheib@chromium.org

Use Cases
Non-goals

Tentative Decisions
Bluetooth 4 Low Energy & GATT Initially
Central rather than Peripheral initially

Security and Privacy Risks
Device Selection / Pairing UI

Other APIs in this area
Chrome Apps
Mozilla
Android
Apple
Windows
Tizen
Bluez
GATT REST API

Proposed API
Outline

Chrome & Blink API Implementation
Mock Device Function Test Plan
Implementation and Design Notes

Android LE Scan only
navigator.bluetooth.requestDevice LE-only Scan

Device Selection User Interface Design
Development

On Linux with stubs
On Linux with real devices
On ChromeOS

Reference

Use Cases

●​ Allow web pages to communicate to a wide variety of devices:
○​ Let Fitbit write a website instead of a native app.
○​ Heart rate monitor
○​ Barcode scanner
○​ BT security tags
○​ BT plant sensors

https://webbluetoothcg.github.io/web-bluetooth/
mailto:jyasskin@chromium.org
mailto:scheib@chromium.org
http://www.fitbit.com/iphone
http://www.sportchalet.com/product/302090_3192991.do?utm_source=google&utm_medium=cpc&utm_content=302090_3192991&utm_campaign=product_listings
http://www.barcodegiant.com/unitech/part-ms840-subbgc-sg.htm?aw&kpid=196354&adtype=pla
http://www.bhphotovideo.com/bnh/controller/home?O=&sku=1024990&Q=&is=REG&A=details
http://www.mobilefun.com/44028-parrot-flower-power-bluetooth-indooroutdoor-plant-sensor-green.htm?utm_source=froogle&utm_medium=comparison&utm_campaign=froogle&referer=PLA

○​ BT lightbulbs
○​ Camera shutter remote (this is probably a HID device)
○​ BT weather station
○​ BT kitchen scale
○​ BT enabled dive logger
○​ Robotic car
○​ The Physical Web initiative

Non-goals

●​ "Beacons" are out of scope because of the pairing problem: for security, we want users
to explicitly pair individual devices with individual websites, but beacons need to pair a
whole class of devices. Similarly, other BLE devices that don't require pairing with a
computer may still require pairing with a website, to mitigate tracking/privacy concerns.

●​ Bluetooth speakers/microphones probably don't need this API because you pair them
with the OS and then use navigator.getMediaDevices to use them the same as
non-bluetooth devices.

Tentative Decisions

Bluetooth 4 Low Energy & GATT Initially

Bluetooth 4 protocols differ considerably from previous versions. Initial design will focus on the
low energy protocol for simplicity and to solve the use cases perceived to be most in demand.
The trade off is delaying support for many older devices. BTLE also appears more attractive
from a security standpoint because the values written tend to follow very simple formats, which
makes it more likely that their parsers will be secure. BT 2.1 uses a full socket/byte-stream
protocol, which implies parsers in the devices that may not have been secured against
malicious clients.

OS Minimum version supporting BTLE

Android Android 4.3 (Jellybean.3) (API Level 18) July 24, 2013

ChromeOS M37 Late summer 2014

Windows Windows 8; headers might not work until 8.1; 8.1 provides
extra libraries; Chrome-driven pairing might not work until
9?

Mac 10.9/iOS 6 for Peripheral; iOS 5/10.? for Central

Linux None yet

http://www.walmart.com/ip/37650811?wmlspartner=wlpa&adid=22222222227026018672&wl0=&wl1=g&wl2=c&wl3=46882973539&wl4=&wl5=pla&wl6=77918637379&veh=sem
http://www.bhphotovideo.com/bnh/controller/home?O=&sku=1014794&Q=&is=REG&A=details
http://www.weatherconnection.com/product.asp?itmky=148800&s=froogle
http://www.destinationxl.com/mens-big-and-tall-store/catalog/productDetail.jsp?prodId=X2401&cm_mmc=PaidSearch*DXL*Google*Shopping&CAWELAID=330009020000771845&CAGPSPN=pla&jsf=c59eb141-18ab-4084-ad83-d6d5ad65288d:32327
http://www.houseofscuba.com/computers/com113.html
https://theanimalrescuesite.greatergood.com/store/ars/item/57336/Smart-Car-Robotics-Experiment-Kit?origin=ARS_GPLA_90767
https://github.com/google/physical-web
http://dev.w3.org/2011/webrtc/editor/getusermedia.html#enumerating-devices
http://developer.android.com/guide/topics/connectivity/bluetooth-le.html
https://developer.chrome.com/apps/bluetoothLowEnergy
http://msdn.microsoft.com/en-us/library/windows/hardware/jj159880(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/dn133849(v=vs.85).aspx#WHAT_S_NEW_IN_WINDOWS_8.1_
http://msdn.microsoft.com/en-us/library/windows/hardware/dn133849(v=vs.85).aspx#WHAT_S_NEW_IN_WINDOWS_8.1_

Central rather than Peripheral initially

Central and Peripheral devices act as transmitters and receivers, in a master and slave
configuration respectively. Central is more useful for a general-purpose computer, although of
course Peripheral will be useful eventually. Of the platforms that support BLE at all, only recent
(as of 2014) versions of Mac/iOS and Android support peripheral.

Security and Privacy Risks

See the specification for updated analysis and mitigations, and security model post.

Device Selection / Pairing UI

Devices may already be paired, or may not yet have been paired. [Discuss needs for UI to pair
new devices, select devices]
See USB getUserSelectedDevices Chrome API Proposal’s proposal for a modal dialog to select
devices.

Other APIs in this area

Chrome Apps

The Chrome Bluetooth API (design doc) is an API of free functions and events, where each
function is passed enough IDs to recover the state it needs to operate.

bluetooth.startDiscovery() -> bluetooth.onDeviceAdded(function(Device){...}) event
bluetooth.getDevices() -> [Device]

bluetooth.Device {
dictionary Device {
 { address, name, deviceClass }
 { vendorIdSource, vendorId, productId, deviceId }
 type; // Summarizes deviceClass.
 { paired, connected }
 uuids; // All protocols, profiles, and services.
}
bLE = bluetoothLowEnergy;
bLE.connect(device.address, function(){...})
bLE.getServices(device.address, function([service]){...})
bLE.getCharacteristics(service.instanceId, function([characteristic]){...})
bLE.getDescriptors(characteristic.instanceId, function([descriptor]){...})

// Notifies when details of a Service changes on a connected device. This happens
asynchronously after the .connect() calls its callback.
bLE.onService{Added,Changed,Removed}(function(service){...})
bLE.readCharacteristicValue(characteristic.instanceId, function(characteristic){

https://webbluetoothcg.github.io/web-bluetooth/
https://medium.com/@jyasskin/the-web-bluetooth-security-model-666b4e7eed2
https://docs.google.com/a/chromium.org/document/d/1NtWARiV0JBavA-8bj0Q1pBJSua_2wzyz7php7o0OJ9w/edit#heading=h.w8inspeo32bj
https://developer.chrome.com/apps/app_bluetooth
https://docs.google.com/a/chromium.org/document/d/1W65AmSCxiMWYP5Vt1S9Boxf2R6sJyGqdOQzZm-1Dv1U/edit
https://developer.chrome.com/apps/bluetooth#type-Device
http://www.bluetooth.org/en-us/specification/assigned-numbers/baseband

 characteristic.value : ArrayBuffer;
})
bLE.writeCharacteristicValue(characteristic.instanceId, arraybuffer, function(){...})
bLE.readDescriptorValue(descriptor.instanceId, function(descriptor){...})
bLE.writeDescriptorValue(descriptor.instanceId, arraybuffer, function(){...})
bLE.startCharacteristicNotifications(characteristic.instanceId)
bLE.onCharacteristicValueChanged(function(characteristic){...})
bLE.stopCharacteristicNotifications(characteristic.instanceId)
bLE.onDescriptorValueChanged(function(descriptor){...}) // But no notifications.

There's IDL available at extensions/api/bluetooth.idl and
extensions/api/bluetooth_low_energy.idl.

Mozilla

BootToGecko has a WebBluetooth spec for classic, not LE, bluetooth. THIS SPEC DOES NOT
ALLOW COMMUNICATING WITH DEVICES, just administering them. Mozilla does appear
interested in publishing a spec to allow socket access, they just haven't done so yet.

"Addresses" are probably 48-bit bluetooth hardware IDs formatted like "00:11:22:AA:BB:CC".
"UUIDs" are probably 128-bit UUIDs.

navigator.bluetooth = {
 defaultAdapter : BluetoothAdapter
 getAdapters() -> sequence<BluetoothAdapter>
}

BluetoothAdapter {
 state ∈ { "disabled", "disabling", "enabled", "enabling" }
 { address, name, discoverable, discovering }
 enable();
 disable();
 setName(DOMString aName);
 setDiscoverable(boolean aDiscoverable);
 startDiscovery() -> ~Stream<BluetoothDevice>;
 stopDiscovery();
 pair(DOMString aAddress);
 unpair(DOMString aAddress);
 getPairedDevices() -> Promise<BluetoothDevice[]>;
 ondevicepaired -> BluetoothDevice
 ondeviceunpaired -> address
}
BluetoothDevice {
 { address, cod:BluetoothClassOfDevice, name, paired }

https://code.google.com/p/chromium/codesearch/#chromium/src/chrome/common/extensions/api/bluetooth.idl
https://code.google.com/p/chromium/codesearch/#chromium/src/chrome/common/extensions/api/bluetooth_low_energy.idl
https://wiki.mozilla.org/B2G/Bluetooth/WebBluetooth-v2
http://tools.ietf.org/html/rfc4122
https://wiki.mozilla.org/B2G/Bluetooth/WebBluetooth-v2/BluetoothDevice

 uuids : String[]; // Bluetooth services
 fetchUuids(); // Updates uuids.
}

Android

Android 4.3 added BTLE support. The L release adds Peripheral support and support for
filtering scans and setting their power level. (Reference download; not online yet)

Discovery:
((BluetoothManager)getSystemService(BLUETOOTH_SERVICE)).getAdapter() -> BluetoothAdapter
BluetoothAdapter.getBluetoothLeScanner().startScan(filters : [ScanFilter], settings, ScanCallback)

Settings:

●​ Mode: LOW_POWER, BALANCED, or LOW_LATENCY.
Filtering (android.bluetooth.le.ScanFilter.Builder):

●​ device mac address
●​ manufacturerData, possibly masked
●​ local name
●​ rssi range (min-max)
●​ service data, possibly masked
●​ service uuid, possibly masked

ScanCallback provides a stream of ScanResults {
 BluetoothDevice
 rssi
 scan record {
 int advertising flags indicating the discoverable mode and capability of the device.
 string local name of the BLE device.
 int manufacturer identifier, which is a non-negative number assigned by Bluetooth SIG.
 byte[] manufacturer specific data which is the content of manufacturer specific data field.
 byte[] service data.
 uuid of the service that the service data is associated with.
 uuid[] list of gatt services.
 int transmission power level of the packet in dBm
 }
 timestamp
}

BluetoothDevice {
 { address, name, BluetoothClass }
 pairing control
 BluetoothGatt connectGatt(Context context, boolean autoConnect, BluetoothGattCallback
callback)

http://developer.android.com/guide/topics/connectivity/bluetooth-le.html
http://developer.android.com/preview/api-overview.html#BluetoothBroadcasting
http://developer.android.com/preview/api-overview.html#BluetoothBroadcasting
http://developer.android.com/preview/reference.html

 // The BluetoothGatt object is used to control the connection, while `callback` is used to receive
results and completion notifications.
}

BluetoothGatt {
 connect(); disconnect(); close();

 discoverServices() -> onServicesDiscovered(BluetoothGatt, status) -> getServices() :
[BluetoothGattService]

 readCharacteristic(BluetoothGattCharacteristic) -> onCharacteristicRead(BluetoothGatt,
BluetoothGattCharacteristic, status) -> characteristic.getValue()
 readDescriptor(BluetoothGattDescriptor) -> onDescriptorRead(BluetoothGatt,
BluetoothGattDescriptor, status) -> descriptor.getValue()
 readRemoteRssi() -> onReadRemoteRssi(BluetoothGatt, rssi, status)
 setCharacteristicNotification(BluetoothGattCharacteristic, enable) -> onCharacteristicRead()
 writeCharacteristic(BluetoothGattCharacteristic) -> onCharacteristicWrite(BluetoothGatt,
BluetoothGattCharacteristic, status)
 writeDescriptor(BluetoothGattDescriptor) -> onDescriptorWrite(BluetoothGatt,
BluetoothGattDescriptor, status)

 // Transaction support. Batches writeCharacteristic() -> onCharacteristicWrite() calls to be applied
atomically.
 // Applications are responsible for checking that onCharacteristicWrite reports the expected value.
 beginReliableWrite() … executeReliableWrite() | abortReliableWrite()

}

BluetoothGattService {
 getIncludedServices() : [BluetoothGattService]
 getCharacteristics() : [BluetoothGattCharacteristic]
 getInstanceId() // Distinguishes multiple instances of the same service on one device.
 getUuid()
}

BluetoothGattCharacteristic {
 getDescriptors() : [BluetoothGattDescriptor]
 getService()
 getUuid()
 int getPermissions()
 getValue() : byte[]; setValue(byte[])

 // Several more convenience functions to decode/encode bytes at a particular offset in the
value with formats {float, float16, {u,s}int{8,16,32}
}

BluetoothGattDescriptor {
 getCharacteristic()
 int getPermissions()
 getUuid()
 getValue() : byte[]; setValue(byte[])
 // No convenience functions.
}

Apple

Core Bluetooth provides both Central and Peripheral support, including from background apps.

Key Classes:
CBCentralManager

local central communicated with CBPeripheral, CBService, CBCharacteristic
CBPeripheralManager

local peripheral communicating with remote CBCentral
​ creates services CBMutableService, CBMutableCharacteristic

[myCentralManager scanForPeripheralsWithServices:nil options:nil]; // can filter by service
->:didDiscoverPeripheral:advertisementData:RSSI: // called for each device
[myCentralManager stopScan];
[myCentralManager connectPeripheral:peripheral options:nil];
->:didConnectPeripheral: // called on connect

[peripheral discoverServices:nil];
->:didDiscoverServices:
[peripheral discoverCharacteristics:nil forService:interestingService];
->:didDiscoverCharacteristicsForService:error:

// Subscribing to characteristic’s values
[peripheral setNotifyValue:YES forCharacteristic:interestingCharacteristic];
->:didUpdateNotificationStateForCharacteristic:error: // handle errors
->:didUpdateValueForCharacteristic:error:

// Writing the Value of a Characteristic
[peripheral writeValue:dataToWrite forCharacteristic:interestingCharacteristic
 type:CBCharacteristicWriteWithResponse]; // or WithoutResponse
->:didWriteValueForCharacteristic:error:

https://developer.apple.com/library/ios/documentation/NetworkingInternetWeb/Conceptual/CoreBluetooth_concepts/AboutCoreBluetooth/Introduction.html
https://developer.apple.com/library/ios/documentation/CoreBluetooth/Reference/CBCentralManager_Class/translated_content/CBCentralManager.html#//apple_ref/occ/cl/CBCentralManager
https://developer.apple.com/library/ios/documentation/CoreBluetooth/Reference/CBPeripheral_Class/translated_content/CBPeripheral.html#//apple_ref/occ/cl/CBPeripheral
https://developer.apple.com/library/ios/documentation/CoreBluetooth/Reference/CBService_Class/translated_content/CBService.html#//apple_ref/occ/cl/CBService
https://developer.apple.com/library/ios/documentation/CoreBluetooth/Reference/CBCharacteristic_Class/translated_content/CBCharacteristic.html#//apple_ref/occ/cl/CBCharacteristic
https://developer.apple.com/library/ios/documentation/CoreBluetooth/Reference/CBPeripheralManager_Class/Reference/CBPeripheralManager.html#//apple_ref/occ/cl/CBPeripheralManager
https://developer.apple.com/library/ios/documentation/CoreBluetooth/Reference/CBCentral_Class/Reference/CBCentral.html#//apple_ref/occ/cl/CBCentral
https://developer.apple.com/library/ios/documentation/CoreBluetooth/Reference/CBMutableService_Class/CBMutableService/CBMutableService.html#//apple_ref/occ/cl/CBMutableService
https://developer.apple.com/library/ios/documentation/CoreBluetooth/Reference/CBMutableCharacteristic_Class/Reference/CBMutableCharacteristic.html#//apple_ref/occ/cl/CBMutableCharacteristic

to be continued, from Background Processing

Windows

Windows 8.1 provides a set of classes under
Windows.Devices.Bluetooth.GenericAttributeProfile. See Supporting Bluetooth Devices.
Regarding APIs

Kiran Pathakota <kipathak@microsoft.com>, Program Manager at Microsoft and from what I
understand we'll have to switch to WinRT APIs to support requestDevice and
requestLEScan for Windows 10+.

Here are some quotes from our conversation:

Unfortunately, those [Windows Driver APIs] APIs will not have support for discovery of unpaired
devices. An example of the WinRT APIs (that you can still call from a Win32 app) are shown here:
https://github.com/kpathakota/Build2016BluetoothCodeSamples/tree/master/BluetoothInAppGATT

These APIs were first delivered in Windows 10 so unfortunately there isn’t any downlevel support.

Discovery of unpaired devices has already been added to WinRT APIs (as of Windows 10 Build 10586
– shipped October last year). See this sample for more details (Scenario 8 and 9 show how to query
for unpaired Bluetooth
devices):https://github.com/Microsoft/Windows-universal-samples/tree/master/Samples/DeviceEnumer
ationAndPairing/cs

Also,
●​ https://github.com/Microsoft/Windows-universal-samples/tree/master/Samples/DeviceEn

umerationAndPairing
●​ https://github.com/urish/win-ble-cpp

Tizen

See here. Not BTLE.

var adapter = tizen.bluetooth.getDefaultAdapter();
adapter.createBonding("35:F4:59:D1:7A:03", function(device){...},
onErrorCallback);
device.connectToServiceByUUID(serviceUUID, function(socket){...},
 onSocketError);
var length = socket.writeData(sendtextmsg);
var data = socket.readData();

https://developer.apple.com/library/ios/documentation/NetworkingInternetWeb/Conceptual/CoreBluetooth_concepts/CoreBluetoothBackgroundProcessingForIOSApps/PerformingTasksWhileYourAppIsInTheBackground.html#//apple_ref/doc/uid/TP40013257-CH7-SW1
http://msdn.microsoft.com/en-us/library/windows/hardware/windows.devices.bluetooth.genericattributeprofile.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/dn264587.aspx
https://github.com/kpathakota/Build2016BluetoothCodeSamples/tree/master/BluetoothInAppGATT
https://github.com/Microsoft/Windows-universal-samples/tree/master/Samples/DeviceEnumerationAndPairing/cs
https://github.com/Microsoft/Windows-universal-samples/tree/master/Samples/DeviceEnumerationAndPairing/cs
https://github.com/Microsoft/Windows-universal-samples/tree/master/Samples/DeviceEnumerationAndPairing
https://github.com/Microsoft/Windows-universal-samples/tree/master/Samples/DeviceEnumerationAndPairing
https://github.com/urish/win-ble-cpp
https://developer.tizen.org/dev-guide/2.2.0/org.tizen.web.appprogramming/html/guide/communication_guide/bluetooth.htm

Bluez

A Linux stack I haven't investigated yet; appears to be controlled over DBus; probably not worth
investigating for the web.

GATT REST API

Published by Bluetooth's Internet WG in April 2014. Describes a JSON format for describing
nodes, characteristics, etc. Leaves pairing out of the spec, but provides full access to

Proposed API

https://github.com/WebBluetoothCG/web-bluetooth
●​ Use Cases and Security Requirements
●​ Explainer, showing how a site might use this API to satisfy the use cases
●​ Specification

Outline

Discovery still TBD.

Start from the chrome.bluetoothLowEnergy API to represent services, characteristics, and
descriptors. Switch everything to Promises. Where the Chrome API function takes an instanceID
to represent an object, make the function into a method on that object, to be more consistent
with the rest of the web. Figure out whether lookup methods should take UUIDs instead, or
whether we'll still need instanceIDs to distinguish the same characteristic on multiple services.

Chrome & Blink API Implementation

The Web Bluetooth API is implemented by bridging the Bluetooth classes in
src/device/bluetooth through Content and into a Blink module. Security is implemented in the
browser process of the Content module. Here is an overview of the code components:

●​ Bluetooth device implementation
○​ src/device/bluetooth
○​ Contains cross platform abstractions for interacting with bluetooth devices.

●​ Content Module
○​ src/content/browser/bluetooth

■​ WebBluetoothServiceImpl
○​ src/content/common/bluetooth
○​ Bridges between the Bluetooth device implementation and the Blink Platform

API, on the Browser and Renderer processes respectively.
○​ Validation of security concerns are made on the Browser side, e.g. validating

which services of a device may be accessed by a site.
○​ Testing is exposed to layout tests by testRunner.SetBluetoothMockDataSet

which configures different test data sets using the src/device/bluetooth/test
mocks.

https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=285910
https://github.com/WebBluetoothCG/web-bluetooth
https://webbluetoothcg.github.io/web-bluetooth/use-cases.html
https://github.com/WebBluetoothCG/web-bluetooth/blob/gh-pages/explainer.md
https://webbluetoothcg.github.io/web-bluetooth/
http://www.chromium.org/developers/content-module

●​ Blink Platform API
○​ src/third_party/WebKit/public/platform/modules/bluetooth
○​ Expose interfaces for blink to access bluetooth functionality

●​ Javascript API
○​ src/third_party/WebKit/Source/modules/bluetooth
○​ Exposes Javascript interface via IDL and C++ implementation.​

●​ LayoutTests
○​ src/third_party/WebKit/LayoutTests/bluetooth
○​ Functional tests, span the javascript bindings, blink public API, mojo IPCs,

finally to the src/device/bluetooth classes.
○​ Based on testharness, but many not portable to other browsers as they rely on

testRunner.SetBluetoothMockDataSet (injected in Content module)
■​ Current plan is to develop tests then formalize the testing dependencies

and add them to the Web Bluetooth specification.

UML for how layout tests control the bluetooth mock:

http://dev.chromium.org/blink/public-c-api

Mock Device Function Test Plan

The Web Bluetooth implementation is primarily ‘plumbing’ with only small amounts of logic at the
various layers. Testing will primarily focus on functional testing from the JavaScript layer down to
the src/device/bluetooth classes, which in turn have unit and browser tests.

Functional layout tests use testRunner.SetBluetoothMockDataSet() to specify a deterministic set
of mock devices, and then Web Bluetooth API calls will be made with expected results verified.

Mock devices are implemented in src/device/bluetooth, and configured in
content/shell/browser/layout_test/layout_test_bluetooth_adapter_provider.cc.

Mock Devices Design Doc

Implementation and Design Notes

Android LE Scan only

Cross platform BluetoothDiscoveryFilter supports TRANSPORT_DUAL =
(TRANSPORT_CLASSIC | TRANSPORT_LE), however Android system only supports scanning
for Classic or LE, but not both. Actual adapters have this limitation as well, but operating
systems, such as ChromeOS|BlueZ, manage timesharing internally. Our implementation of
Android Bluetooth will only perform LE scans. (scheib, armansito)

navigator.bluetooth.requestDevice LE-only scan

There isn't much support for GATT over BR/EDR from neither platforms nor devices so
performing a Dual scan will find devices that the API is not able to interact with. To avoid
wasting power and confusing users with devices they are not able to interact with,
navigator.bluetooth.requestDevice only performs an LE Scan.

https://docs.google.com/document/d/1_QsBzcc84SwF7oaBWbO8rBzn39MISQ3w-6QM9hk0L3E/edit#heading=h.fdh7tirbsdt3

Device Selection User Interface Design

An example user flow provisioning a device:
1.​ User purchases a new appliance Widget for the home that can be configured using

bluetooth. The device packaging invites the user to navigate to a site
example.com/setup.

2.​ example.com/setup displays a welcome message
○​ “It’s easy to setup your Widget using a phone, tablet, or computer with bluetooth.

Click Here to connect to your Widget!”
3.​ User clicks, and the browser presents a dialog with text and a list of devices that is

populated over the next few seconds as the browser scans for bluetooth devices.:​
(Strings are example and need to be refined:)

○​ example.com requests permission control a device, select one:
○​ [List of devices, showing as much information as we can about them, but filtered

to only devices offering the service that the website requests, in most situations
this will be a very short list that starts empty and then finds one item]

■​ Widget Thing
○​ [Connect][Connect And Remember][No]

4.​ [Presuming a device selected] Dialog is removed and website changes display to
configure the Widget.

Standardized bluetooth services exist. In the event that a site requests devices for only
standardized services we may choose to display that information directly. E.g. if a site asks for
“Heart rate” and “Cycling power” the message presented for requestDevices dialog may be
“example.com requests perfmission to access Heart rate and Cycling power from: [list of
devices]”

Website has already paired a device, and then needs to add an additional service.

●​ e.g. a website has been given access to a heart rate monitor service. Then, later it
determines that it needs access to an additonal service such as heart rate history.

Website is revisited after having previously been approved to access services on a device

●​ Would like user to be able to have device permissions persist for a website.

Website requests access for services that are not currently available on any device in proximity.
If a device comes into proximity later, a user is prompted that websites A, B, C are interested in
accessing that device.

●​

https://developer.bluetooth.org/gatt/services/Pages/ServicesHome.aspx

Development

On Linux with stubs

●​ GYP_DEFINE chromeos=1
●​ Use the stubs (enabled by default)
●​ Get a fake heart rate service there, which you can use for development

○​ Add more stubs, modify the fake_bluetooth_gatt_*_client.h|cc files

On Linux with real devices

●​ GYP_DEFINE chromeos=1
●​ --dbus-unstub-clients=bluetooth
●​ bluez from source

○​ apply Chrome OS patches 5.24
■​ git clone git://git.kernel.org/pub/scm/bluetooth/bluez.git
■​ git checkout 5.24
■​ README for

●​ ./configure && make
○​ probably don’t install on a desktop that has 4, it’ll break.
○​ stop the system, and run the built,

■​ stop bluetoothd
■​ run local version with -n (no deamon)

On ChromeOS

●​ building-chromium-browser for chromeos
○​ use a test image

Reference

●​ USB getUserSelectedDevices Chrome API Proposal
●​ W3C NFC proposal: this spec should try to support the "handover" mentioned in that

spec, without blocking on that spec's implementation.
●​ https://github.com/dontcallmedom/web-bluetooth <- Dominique Hazaël-Massieux's

research.

https://code.google.com/p/chromium/codesearch#chromium/src/chromeos/dbus/
https://chromium.googlesource.com/chromiumos/overlays/chromiumos-overlay/+/master/net-wireless/bluez/files/bluez-5.24-gatt_client_gattrib/
http://www.chromium.org/chromium-os/how-tos-and-troubleshooting/building-chromium-browser
https://docs.google.com/a/chromium.org/document/d/1NtWARiV0JBavA-8bj0Q1pBJSua_2wzyz7php7o0OJ9w/edit#heading=h.w8inspeo32bj
http://w3c.github.io/nfc/proposals/common/nfc.html
https://github.com/dontcallmedom/web-bluetooth

	Web Bluetooth Design Doc (2014)
	Use Cases
	Non-goals

	Tentative Decisions
	Bluetooth 4 Low Energy & GATT Initially
	Central rather than Peripheral initially

	Security and Privacy Risks
	Device Selection / Pairing UI

	Other APIs in this area
	Chrome Apps
	Mozilla
	Android
	Apple
	Windows
	Tizen
	Bluez
	GATT REST API

	Proposed API
	Outline

	Chrome & Blink API Implementation
	Mock Device Function Test Plan
	Implementation and Design Notes
	Android LE Scan only
	navigator.bluetooth.requestDevice LE-only scan

	Device Selection User Interface Design
	Development
	On Linux with stubs
	On Linux with real devices
	On ChromeOS

	Reference

