
Skylark API to the C++ toolchain - API approval
Author: hlopko@google.com
Status: Submitted
Want LGTM: skylark-cabal@
Last Updated: 2018-06-15

Summary
As elaborated in the original design doc, I'm asking for feedback for the actual Skylark API. The
API proposed in this doc has been prototyped internally and I'm confident that it fulfils its goals.

Example use
cc_toolchain = find_cpp_toolchain(ctx)
feature_configuration = cc_common.configure_features(

cc_toolchain = cc_toolchain,
requested_features = ctx.features,
unsupported_features = ctx.disabled_features +
['thin_lto', 'module_maps', 'use_header_modules'])

variables = cc_common.create_compile_build_variables(
feature_configuration = feature_configuration,
cc_toolchain = cc_toolchain,
user_compile_flags = ctx.attr.copts)

args = cc_common.get_command_line(
feature_configuration = feature_configuration,
action_name = C_COMPILE_ACTION_NAME,
variables = variables)

API
RED marks fields that will be removed once there are no legacy fields in the CROSSTOOL
anymore.

cc_common.configure_features
Creates a feature configuration instance.

https://docs.google.com/document/d/1g91BWJITcYw_X-VxsDC0VgUn5E9g0kRBGoBSpoO41gA/edit#heading=h.lpocy537zjgc


feature_configuration cc_common.configure_features(
cc_toolchain,
requested_features=[],
unsupported_features=[])

cc_toolchain CcToolchainInfo

cc_toolchain for which we configure features

requested_features sequence

List of features to be enabled.

unsupported_features sequence

List of features that are unsupported by the current rule

cc_common.get_command_line

Returns Args instance with the command line generated using given feature configuration with given
variables, for given action.

Since some use cases require constructing the command line in the analysis phase (and
adding/moving/removing random flags), we will need to add a way to convert Args instance to a list,
or two c++ get_command_line methods, one that returns Args, one that returns list of strings.

Args cc_common.get_command_line(
feature_configuration,
action_name,
variables)

feature_configuration feature_configuration

https://docs.bazel.build/versions/master/skylark/lib/Args.html


Feature configuration to be queried.

action_name Name of the action for which we generate command line.

variables variables

Build variables to be used for feature expansion.

cc_common.get_environment_variables

Returns environment variables to be set for given action.

dict cc_common.get_environment_variables(
feature_configuration,
action_name,
variables)

feature_configuration feature_configuration

Feature configuration to be queried.

action_name Name of the action for which we fetch environment
variables.

variables variables

Build variables to be used for feature expansion.

cc_common.get_tool_for_action



Returns tool path for given action.

String cc_common.get_tool_for_action(
feature_configuration,
action_name)

feature_configuration feature_configuration

Feature configuration to be queried

action_name Name of the action

cc_common.is_enabled

Returns True if given feature is enabled

bool cc_common.is_enabled(feature_configuration, feature_name)

feature_configuration feature_configuration

Feature configuration to be queried

feature_name Name of the feature

cc_common.create_compile_variables

Returns compile build variables to be used with feature configuration.

variables cc_common.create_compile_build_variables(
cc_toolchain,
feature_configuration,



source_file=None,
output_file=None,
user_compile_flags=[],
include_directories=[],
quote_include_directories=[],
system_include_directories=[],
preprocessor_defines=[],
use_pic=False,
add_legacy_cxx_options=False)

cc_toolchain CcToolchainInfo

cc_toolchain for which we are creating build
variables.

feature_configuration feature_configuration

Feature configuration to be queried.

source_file Optional source file for the compilation. Please prefer
passing source_file here over appending it to the end
of the command line generated from
cc_common.get_command_line, as then it's in the
power of the toolchain author to properly specify
compiler flags.

output_file Optional output file of the compilation. Please prefer
passing output_file here over appending it to the end
of the command line generated from
cc_common.get_command_line, as then it's in the
power of the toolchain author to properly specify
compiler flags.

user_compile_flags depset

Collection of additional compilation flags.



include_directories depset

Collection of include directories.

quote_include_directories depset

Collection of quote include directories.

system_include_directories depset

Collection of system include directories.

preprocessor_defines depset

Collection of preprocessor defines.

use_pic When true the compilation will generate position
independent code.

add_legacy_cxx_options Add options coming from legacy cxx_flag crosstool
fields.

cc_common.create_link_variables

Returns link build variables to be used with feature configuration.

variables cc_common.create_link_build_variables(
cc_toolchain,
library_search_directories=[],
runtime_library_search_directories=[],
user_link_flags=[],
output_file=None,
param_file=None,



def_file=None,
is_using_linker=True,
is_linking_dynamic_library=False,
must_keep_debug=False,
use_test_only_flags=False,
is_static_linking_mode=True)

cc_toolchain CcToolchainInfo

cc_toolchain for which we are creating build
variables.

feature_configuration feature_configuration

Feature configuration to be queried.

user_link_flags depset

Collection of user provided link flags.

library_search_directories depset

Collection of include directories.

runtime_library_search_directories depset

Collection of runtime library directories.

output_file Optional output file path.

param_file Optional param file path.



def_file Optional .def file path.

is_using_linker True when using linker, False when archiver.

is_linking_dynamic_library True when creating dynamic library, False when
executable or static library.

must_keep_debug When set to True, bazel will expose
'strip_debug_symbols' variable, which is usually used
to use the linker to strip debug symbols from the
output file.

use_test_only_flags When set to True flags coming from
test_only_linker_flag crosstool fields will be included

is_static_linking_mode True when using static_linking_mode, False when
using dynamic_linking_mode.

Appendix: Feature Configuration

TLDR: Feature configuration is a black box instance of a simplified SAT solver initialized
from a list of features to be enabled and a list of features to be disabled. It is used to

generate command lines for C++ (and ObjC) actions.

Note: We are working with spomorski@ on the proper bazel documentation as we speak.

A feature is anything that requires special command line flags, actions, constraints on the

execution environment or changes to the dependencies in bazel, which are not enabled by



default. Features can be something as simple as allowing BUILD files to select

configurations of flags, like in the case of crosstool_annotalysis, or include new compile

actions and inputs to the compile, like in the case of header_modules or ThinLTO.

Feature selection

A feature will be enabled if and only if both Bazel/rules and the CROSSTOOL support the
feature. Bazel may have arbitrary signals for when a feature is enabled. Features can have

interdependencies, depend on command line flags, BUILD file settings, or similar.

Feature dependencies and relationships

Feature level constraints:

1. requires: [‘feature1’, ‘feature2’] Allows a feature to specify that it is only supported

if a set of different features is enabled. This is used for example when a feature is

only supported in certain build modes (features "opt", "dbg" or "fastbuild"). Multiple

requires will be met if any of the requires is met.

2. implies: ‘feature’ Provides the ability for one feature to imply another. An example is

that a module compile implies the need for module maps. This can be supported

very simply by a repeated "*implies*" string in the feature. Each of the strings must

name some other feature. Enabling a feature also implicitly enables all features, well,

implied by it, i.e., it functions recursively. This also provides the ability to factor

common subsets of functionality out of a set of features, for example the common

parts of the sanitizers.

3. provides: ‘feature’ The second useful specification is a constraint.We allow features

to indicate that they are one of several mutually exclusive alternative features with a

single optional string "provides". For example, all of the sanitizers could specify

‘provides: "sanitizer"’. The only benefit this provides is nicer errors: if a user asks for

two alternatives at the same time, Bazel can error, explain why, and even list the

alternatives available.

Note that all of these constraints can only be applied in a positive way. The absence of
features, e.g. requires: '-features', cannot be used as that would make the feature selection a

https://g3doc.corp.google.com/third_party/crosstool/g3doc/config.md?cl=head#


hard satisfiability problem, which is problematic to solve efficiently. In case you'd need this

behavior, a common solution is to add a complementary feature, e.g. no_feature.

Feature configuration
Feature configuration is a result of the feature selection. We assume that a single feature
configuration is used for all actions registered by a single target. For generating command lines
feature configuration needs a Variables instance that supplies data to be used to expand
templates defined in the CROSSTOOL file. It is often the case that we create a separate
Variables instance for every action registered by a target.

C++ actions expand their command lines only in the execution phase, therefore they have to
retain feature configuration instance and Variables instance. Memory pressure is a force
strongly influencing their design.


