GSOC proposal (RTEMS)

Contact Information:

Name: Vidushi Vashishth

IRC nickname: reachvidu

Email: reachvidu@gmail.com, vidushivashishth96@gmail.com
Github Handle: VidushiVashishth

Title:

Enhancement of RTEMS Runtime Tracing

Introduction

RTEMS Tracing is an on-target software based system which enables tracking of the
activities in user applications, 3rd party packages or the kernel in real time. The main
RTEMS Trace components are:

1)

2)

3)

RTEMS Trace Linker : It is a tool provided with the RTEMS tool set built using
RTEMS Source Builder (RSB). It is a post link tool which produces a trace
executable for the application to be tracked. RTEMS Trace Linker takes inputin a
compiled format (ELF) and instruments the application executable with additional
code to enable software tracing. It can be controlled using configuration files and
can be used to perform various tracing schemes.

Capture Engine : It is the performance monitoring and measurement framework.
It is used by the instrumented code to log the trace data. Capture engine inputs
trace records, filters data and provides concurrent buffering of data.

Common Trace Format (CTF) Integration : Common Trace Format (CTF) is a
binary trace format that is designed to be very fast to write and allows C/C++
applications and bare-metal components to generate trace natively. It brings a
range of features that will be beneficial for RTEMS. CTF files are generated using
trace conversion libraries like Babeltrace. Babeltrace takes capture engine’s
trace buffers and configuration file (which contains relevant tracing information
like triggers, enables and functions to be tracked) as input and converts it into
CTF output.


mailto:reachvidu@gmail.com
mailto:vidushivashishth96@gmail.com

Motivation

RTEMS trace linker should be able to generate appropriate configuration files and target
code which can later be linked to post processing tools of CTF.

The current CTF integration lacks: real time trace record data extraction from the
capture engine. Currently, the application to be traced is stopped to extract this data
which is then input to Babeltracte for conversion to CTF format.

The improvements sought for through this project are:

a viable transport mechanism which enables trace data transfer to the host in

real/optimised time.

- Wrapping of barectf in rtems-tld to generate CTF records, suitable for buffering

- Making barectf output compatible with the capture engine

- Live tracing functionality for user defined traces / add kernel level tracing
functionality (tracking thread switches and interrupt entry exit) to the tracing
framework

The outcomes will achieve: A better CTF integration which does not interrupt the
running application to be traced. Better debugging/tracing power for developers will be
attained.

Status-quo

Currently several schemes can be utilised to generate tracing output :
e Trace Buffering
e Trace using PrintK
e Trace using CTF (currently under development)

The current workflow of RTEMS tracing using CTF is explained below:

The Trace Linker uses the ELF file of the application to be traced and the user
configuration file as input. It wraps functions declared in the configuration files with trace
code that is used in generation of trace records for the capture engine. The linker
generates the compiled file (ELF) to be run on the target and the associated CTF
configuration file defining the trace records. The trace data and CTF configuration are
then fed into the Babeltrace tool which converts it into CTF format. This output can be
visualised using tools like Trace compass.



To understand the tracing framework better, | ran the trace buffering sample fileio
test-case. | have set up the sparc/erc32 as my architecture/bsp pair. The prefix used for
installing the rtems tools was “prefix = /development/rtems/5” .The following commands
were run in the following progression to configure BSP, link application executable and
trace. Finally the application is run on the sparc simulator :

1) ../rtems/configure --target=sparc-rtems5 --prefix=/development/rtems/5
--enable-networking --enable-tests --enable-rtemsbsp=erc32 --enable-cxx

Output:
i & [ ] Pl erc32 — -bash — B0x23

Last login: Sun Mar 25 2Z2:24:48 on ttys@EA
Vidushis-MacBook—-Alr:~ vidushi% cd development/rtems/kernel/erc32/
Vidushis-MacBook—-Air:erc32 vidushi% ls

Makefile fileio-trace.ini tools

config.log sparc-rtemss

| config.status testsultes

Vidushis-MacBook-Air:erc32 vidushi% .. /rtems/configure ——target=sparc-rtemsh ——p

refix=/development/rtems/5 —-—enable-networking --enable-tests —-enable-rtemshsp=
grci3?2 ——enable-cxx

checking for gmake... no

checking for make... make

checking for RTEMS Version... 5.8.8

| checking build system type... xBé_64-apple-darwinlé.7.@

checking host system type... xB6_ot4-apple-darwinls.7.8

checking target system Type... sparc-unknown-rtemss
| checking for a BSD-compatible install... fusr/binfinstall -c
| checking whether build environment is sane... Yes
| checking for a thread-safe mkdir -p... ../rtems/./install-sh -c -d
checking for gawk... no

checking for mawk... no

checking for nawk... no

checking for awk... awk

checking whether make sets S(MAKE)... ves

2) sparc-rtems5-gcc -B/Users/vidushi/development/rtems/5/sparc-rtems5/erc32/lib/
-specs bsp_specs -qrtems -mcpu=cypress -02 -g -ffunction-sections
-fdata-sections -Wall -Wmissing-prototypes -Wimplicit-function-declaration
-Wstrict-prototypes -Wnested-externs -WI,--gc-sections -mcpu=cypress -0
sparc-rtems5/c/erc32/testsuites/samples/fileio/fileio.exe
sparc-rtems5/c/erc32/testsuites/samples/fileio/init.o



[ NN B8 erc32 — -bash — BOx24

checking for a thread-safe mkdir -p... ../../../rtems/c/../install-sh -c -d
checking for gawk... no

checking for mawk... no

checking for nawk... no

checking for awk... awk

checking whether make sets S(MAKE)... yes

checking whether to enable maintainer-specific portions of Makefiles... no
checking that generated files are newer than configure... done

configure: creating ./config.status

config.status: creating Makefile

target architecture: sparc.

available BSPs: erc32.

'make all' will build the following BSPs: erc3Z.

other BSPs can be built with 'make RTEMS_BSP="bspl bspZ ..."'

config.status: creating Makefile

Vidushis-MacBook-Air:erc32 vidushi$% sparc-rtemsS-gcc -B/Users/vidushi/developmen
t/rtems/5/sparc-rtems5/erc32/1ib/ -specs bsp_specs -qrtems —-mcocpu=cypress —-02 —-g
-ffunction-sections -fdata-sections -Wall -Wmissing-prototypes -Wimplicit-functi
on-declaration -Wstrict-prototypes -Wnested-externs -Wl,--gc-sections -mcpuscypr
ess -0 sparc-rtems5/c/erc32/testsuites/samples/fileio/fileio.exe sparc-rtems5/c/
erc3?/testsuites/samples/fileiofinit.o

Vidushis-MacBook-Air:erc32 vidushi$

3) rtems-tld -C fileio-trace.ini -W fileio-wrapper --
-B/Users/vidushi/development/rtems/5/sparc-rtems5/erc32/lib/ -specs bsp_specs
-grtems -mcpu=cypress -02 -g -ffunction-sections -fdata-sections -Wall
-Wmissing-prototypes -Wimplicit-function-declaration -Wstrict-prototypes
-Wnested-externs -WI,--gc-sections -mcpu=cypress -0
sparc-rtems5/c/erc32/testsuites/samples/fileio/fileio.exe
sparc-rtems5/c/erc32/testsuites/samples/fileio/init.o

This command throws an “error: Invalid rtems path” because of the failure of check in

https://qgit.rtems.org/rtems-tools/tree/rtemstoolkit/rld-rtems.cpp#n52
| am currently familiarizing with the rld-rtems tools code base to identify the source of

the problem.
4) sparc-rtems5-run sparc-rtems5/c/erc32/testsuites/samples/fileio/fileio.exe

This command runs fine but without traces being generated because of error in last
step, there is no buffer to show.


https://git.rtems.org/rtems-tools/tree/rtemstoolkit/rld-rtems.cpp#n52

Vidushis—MacBook-Air:erc32? vidushi$ sparc-rtemsS-run sparc-rtems5/c/erc32/testsuites/samples/fileio/fileio.exe

##% BEGIN OF TEST FILE I/0 ##*

#%% TEST VERSION: 5.9.8.efa8@3%ce94416e986363e8228cA4blTath42c98-modified
44+ TEST STATE: USER_INPUT

4%+ TEST BUILD: RTEMS_NETWORKING RTEMS_POSIX_API

#4% TEST TOOLS: 7.3.8 20186125 (RTEMS 5, RSB 4b3eBfB8e3dé99B8bB4a2583dd2e1157898%9b1672b, Newlib 3.8.8)
Press any key to start file I/0 sample (28s remaining}
Press any key to start file I/0 sample (1%9s remaining)
Press any key tTo start file If0 sample (185 remaining)
Press any key to start file I/0 sample (17s remaining)
Press any key to start file I/0 sample (16= remaining)
Press any key to start file I/0 sample (15s remaining}
Press any key to start file I/0 sample (1l4s remaining}
Press any key to start file I/0 sample (13s remaining)
Press any key to start file If0 sample (1Zs remaining)
Press any key to start file I/0 sample (11s remaining)
Press any key to start file I/0 sample (18=s remaining)
Pre any key to start file I/0 sample (9s remaining)
Pre to start file I/0 sample (8s remaining}
Pre any key to start file I/0 sample (7s remaining)
Pre any key to start file I/0 sample (6z remaining)
Press any key tTo start file If0 sample (5= remaining)
I/0 sample (4s remaining)

WO oo o

W om oo
2
2
=
x
]
-

table_initialize
T all disks in fs_table
file
file
file
s —» start shell
Enter your selection ==>s
Creating fetc/passwd and group with four useable accounts:
root/pwd
test/pwd
rtems/NO PASSWORD
chroot/NO PASSWORD
Only the root user has access to all available commands.

starting shell

Welcome to rtems-5.8.8 (SPARC/w/FPU/erc32)
COPYRIGHT (c) 1989-2p@8.
On-Line Applications Research Corporation (DAR).

Login into RTEMS
/dev/foobar login: root
Password:

RTEMS Shell on /dev/foobar. Use 'help' to list commands.
SHLL [/] # rtrace status
Mo trace buffer generated code in the application; see rtems-tld

| am currently working on the error of the second last step.
Deliverables

1) Combine CTF with the functionality of the Trace Linker. The rtems-tld tool can be
programmed to internally invoke the CTF tools to generate relevant configuration files
and target code to integrate with the CTF post processing tools.

2) Transport mechanism of trace records over to the host.

3) Investigate and deliver live tracing functionality over TCP that can be added to the
tracing system / add kernel level tracing functionality (interrupt entry/exit and thread
switches)

4) A blog post with weekly progress.



First phase:

The objective of this phase will be to integrate CTF code generation with the RTEMS
trace linker. First | will understand how the current RTEMS trace system works. This will
involve running sample codes (fileio example) and going through the trace buffering and
trace linker wiki documentations [1]. | have partially accomplished this.

The next step will involve barectf [3] or LLTng [4]. barectf is a command-line generator
of C tracers which outputs CTF packets natively. barectf takes YAML configuration files
as its input. | will investigate how barectf works and its code generation. This will involve
going through documentations of both CTF [2] and barectf and trying their examples.
rtems-tld can build code generated by barectf for a target. This is because it already has
the knowledge of target compiler and required flags. barectf currently suffers from the
following limitations:

- Requires the stdin.h header file which is new in C99. | will have to check for this
support in our c library and if not present | will have to create a header file of new
datatypes (int8 _t, int16_t, int32_t etc)

- All barectf generated tracing functions cannot to be called from an interrupt
handler. | will have to come up with a synchronization mechanism to handle this.

- CTF compound data-types (arrays, structs) are not supported yet. Except in a
few specific metadata locations.

After making improvements to barectf | will create an rtems-tld generator to create C
code which binds to the barectf calls. Barectf output support will then be integrated with
the Capture Engine. This will require understanding the Capture Engine code base and
making adjustments and enhancements to it.

At accomplishment of each step | will define unit test-cases and evaluate my code. This
can easily be done using existing simulators and hardware testing will not be required.

Second phase:

In this phase | will have to ascertain a method of transporting buffers from capture
engine to the host machine. Keeping data gathering and data transportation on
different threads is required. Integration of transport mechanisms with the capture
engine is not a viable option. | will have to set up gemu for ARM machines as a working
environment, if | use gemu fat files and use file transfer as a method of transport. | will



also understand libdebugger’s abstraction of transport interfaces through the present
examples [5, 6].

This will require more research and discussions with contributors to come up with a
viable option. | intend to do this during Community Bonding period.

Third Phase:

In this phase | intend to implement one of the following two features post discussion
with mentors during community bonding period. The chosen feature will be the one
which offers higher value to the rtems community:

1) In this phase | intend to implement live tracing over TCP(as suggested on the
mailing list). This will involve investigating and understanding of libdebugger’s
implementation of remote interfaces. | will explore Linux Trace Toolkit’'s
functionality in Eclipse [7]. | will also research thoroughly about Capture Engine’s
capabilities for concurrent read and write support. If required | will make the
necessary enhancements. Buffers from the capture engine will have to be
transferred through the implemented interface over a chosen transport
mechanism(Ethernet, USB etc) to the application’s host. These will then be
visualised on the host using relevant tools.

2) Focus on basic functionality of the tracing system and implement kernel level
tracing. This would involve introducing tracing support for thread switching and
interrupt entry/exit.

Timeline:

https://developers.google.com/open-source/gsoc/timeline

March 27th - April 23rd : | will read up on relevant documentations and try to analyse
the strengths and weaknesses of current tracing system. | will prioritise the weaknesses
through discussions with the mentors and begin by charting out a plan for catering to
high priority and interrelated problems in an efficient order. | will familiarise myself with
RTEMS trace-linker and capture engine’s code bases. | will run and understand sample
examples. | will identify and fix any bugs encountered on the way. | will identify the
development environments required and set them up. | already have sparc-erc32. | will
install arm/gemu as well.

April 24th - May 13th (Community Bonding period) : | will chart out appropriate
requirement specifications, design plans and ascertain success criterias. | will provide



https://developers.google.com/open-source/gsoc/timeline

this in the form of relevant documentation. | will gain reaffirmation of my planned
approach from mentors and decide any relevant modifications. In a nutshell the
following should be complete before coding phase begins:
e Read documentations of barectf, CTF, LTTng, Trace linker
e Understand code bases of barectf, Capture Engine, Trace linker, transport
mechanisms, libdebugger’s implementation of tcp remote interfaces
Have relevant development environments ready (sparc/erc32 and arm/gemu)
Execute function tracing and trace linker samples (fileio) (almost done)

May 14 - June 11 (Phase 1) : | will create a bare-bones Proof Of Concept(PoC) of my
approach to accomplish the programming tasks aforementioned in Phase 1. This way |
will be able to identify any unforeseen challenges that | might have missed while
planning. | will then accordingly incorporate changes, build relevant test cases and
begin coding. By the end of this phase | must have :
e Identified the weaknesses in barectf and modified it to accommodate these

weaknesses.

Created a rtems-tld generator which binds it to the barectf calls.

Make capture engine enhancements for it to support barectf output.

June 12 - June 15 (Phase 1 evaluation) : | will be evaluated on delivering the
aforementioned three functionalities.

June 16 - July 9 (Phase 2) : | will begin work on transporting mechanisms to transfer
record data to the host and attain satisfactory results. By the end of this phase | must
have:
e Implemented file transfer mechanism using gemu fat files.
e Modified libedebugger’s transport interface implementation to suit my use case.
e Integrate the outcome of phase 1 and the transport mechanism and successfully
run the existing tracing sample (fileio) in this modified framework.

July 10 - July 13 (Phase 2 evaluation) : Will make improvements to my evaluation
submission and prepare for next phase. | will be evaluated on delivering the
aforementioned goals.

July 14 - August 5 : | will take my live tracing functionality to completion. By the end of
this phase | must have:

e Implemented a live trace with user defined traces.
e Set-up a visualization mechanism for live traces. (In eclipse or other IDEs)



August 6- August 14 (Final week): | will cross check and update documentations of my
work. Will make last minute improvements to mentor and self satisfaction. Will update
my blog and git repositories.

Post GSoC: | will remain an active contributor of the organisation. | would also explore
other transportation mechanisms for the live tracing functionality delivered. | am willing
to explore other projects for contribution (I have quite an inclination towards exploring
the rumps kernel project).

Conflict of Interest of Commitment

Apart from the one week of exams in May | have no other commitments during the
period of the internship.

Major Challenges foreseen

- Coming up with a viable method for transporting buffers to the host machine.

- Working with some transport mechanisms (like USB). | do not have experience in
using these.

- Ensuring the overheads incurred due to introduction of new functionality are as
optimised.

Personal Statement

| am a fourth year undergraduate student pursuing Bachelor’s in Engineering with major
in Information Technology from Netaji Subhas Institute of Technology, University of
Delhi. | will get over with my final exams by end of May 2018.

My programming languages of choice are C/C++/python. | have had experience in
working with large codebases as well as making something from scratch through
previous internships. Operating systems and Networking have been two of my favourite
subjects in college curriculum. | have finished several research projects in the field of
Networking and Cloud computing which have been published in International
conferences and Journals. | have a strong hold on Data Structures and Algorithms.

| believe | am the right choice for this project and will work on this full time over the
summer. | will give weekly updates about my progress and ensure | deliver according to



the timeline set. The project requires being efficient in C/C++ and Python, all of which |
have been using for about 4 years now.

Some of my other relevant achievements are:

- Offered full time employment at Adobe Systems pvt Imt. as a software developer
starting September, 2018.

- Worked as a software development intern at Samsung R&D Bangalore for two
months last summer (2017). Was offered a full time employment opportunity on
the basis of my work there.

- Sponsored by my college to present two research papers at the 51st IEEE
Conference on Information Sciences and Systems (CISS) 2017, held at Johns
Hopkins University in March 2017.

- Offered merit scholarship for excellence in academic performance awarded to top
5 scholars of the department.

References
1. https://devel.rtems.org/wiki/Developer/Tracing
2. http://diamon.org/ctf/
3. https://github.com/efficios/barectf
4. https://github.com/Ittng/lttng-tools/blob/master/doc/live-reading-protocol.txt
5. https://qgit.rtems.org/rtems/tree/cpukit/libdebugger/rtems-debugger-remote-tcp.h
6. https://qgit.tems.org/rtems/tree/cpukit/libdebugger/rtems-debugger-remote-tcp.c
7. https://github.com/Ittng/Ittng-tools/blob/master/doc/live-reading-protocol.txt


https://devel.rtems.org/wiki/Developer/Tracing
http://diamon.org/ctf/
https://github.com/efficios/barectf
https://github.com/lttng/lttng-tools/blob/master/doc/live-reading-protocol.txt
https://git.rtems.org/rtems/tree/cpukit/libdebugger/rtems-debugger-remote-tcp.h
https://git.rtems.org/rtems/tree/cpukit/libdebugger/rtems-debugger-remote-tcp.c
https://github.com/lttng/lttng-tools/blob/master/doc/live-reading-protocol.txt

