Vocabulary Sample and Binomial Distribution

Biased estimator If the mean of its sampling distribution is not equal to the true value of

the parameter being estimated

Central limit theorem

(CLT)

Says that when n is large, the sampling distribution of the sample mean

is approximately Normal

Parameter A number that describes some characteristic of the population

Population distribution Gives the values of the variable for all the individuals in the population

Sampling variability The value of a statistic varies in repeated random sampling

Sampling distribution The distribution of values taken by the statistic in all possible samples

of the same size from the same population

Simple Random Sample A sample chosen in such a way that every set of n individuals has the

same chance of being selected

Statistic A number that describes some characteristic of a sample

Binomial Coefficient The number of ways of arranging k successes among n observations

Binomial Distribution The probability distribution of X with parameters n and p

Binomial Random Variable The count X of successes in a binomial setting

Binomial Setting Consists of n independent trials of the same process, each resulting in success or

failure, with probability of success p on each trial

Continuous Random Variable Takes all values in an interval of numbers

Discrete Random Variable Takes a fixed set of possible values with gaps between

Geometric Distribution Let Y = the number of trials required to get the first success

Geometric Random Variable The number of trials Y that it takes to get a success in a geometric setting

Geometric Setting Perform several independent trials of the same chance process and record

number of trials until a particular outcome occurs

Independent Random Variables There is no association between values of one variable and values of the other

Linear Transformation Involves adding a constant, multiplying by a constant, or both

Mean of a Discrete Random Variable Multiply each possible value by its probability, then add all the products

Mean of a Geometric Random Variable Expected number of trials required to get the first success

Mean of a Random Variable Balance point of the probability distribution histogram; also known as expected

value

Probability Distribution Gives the possible values of a random variable and their probabilities

Random Variable Takes numerical values that describe the outcome of some chance process

Standard Deviation of a Random VariableMeasures the variability of the distribution about the mean

Variance The square of the standard deviation