
Skipping iterator protocol allocations 
 
Disclaimer: I have not touched V8 since before the introduction of Torque, so I have no idea if 
this is actually feasible. I haven’t touched the other engines at all. 
 
Currently all engines create `{ done, value }` pairs when consuming any iterator, even built-in 
iterators, except in a few cases where they have specific optimizations such as for the array 
iterator. This is wasteful, and that waste will be more acutely felt as iterator helpers are adopted. 
Here is a plan to avoid that: 
 

-​ For all built-in iterators, factor out an underlying implementation which returns `value | 
THE_HOLE` (or some other sentinel value). Have a wrapper which calls the underlying 
implementation, checks for THE_HOLE, and creates the appropriate `{ done, value }` 
pair. This should have no effect on anything. 

-​ On such wrapped iterators, add a private symbol or something which exposes the 
underlying implementation to engine code (but not userland). 

-​ It should be possible to do this for userland generators too. Those are just 
another kind of built-in iterator. 

-​ In places which are doing IteratorStep/IteratorValue, first check for that symbol. If 
present, call the underlying implementation and check for THE_HOLE directly, instead of 
calling IteratorStep/IteratorValue. 

-​ The number of places this would touch right now is large, so first refactor the 
current callers of IteratorStep/IteratorValue to call IteratorStepValue, as 
introduced in this PR. After that refactoring this step only needs to touch 
IteratorStepValue. (I am assuming an internal implementation of 
IteratorStepValue can return THE_HOLE or a Maybe or something.) 

-​ A followup optimization in callers which consume the iterator in a loop could be to 
check for the private symbol only once, outside the loop, and then go down a 
different path. This would avoid per-iteration lookups of the private symbol and 
per-iteration branches at the cost of having to duplicate the looping logic. No idea 
if this is worth it. Probably it is for some callees, like spread syntax. 

-​ An alternative optimization would to be move the check for the underlying 
implementation into the place which creates internal Iterator Records, and add an 
extra “fast iterator function” field to said records, and then have IteratorStepValue 
check for and call this value if present. This avoids the per-iteration private 
symbol lookups from the naive approach, although it does keep the per-iteration 
branch which would be eliminated by the optimization strategy in the previous 
bullet (but would not require touching sites which are doing iteration the way that 
one would). 

-​ Maybe expose the private symbol to embedders, so HTML/Node/etc can write their own 
iterators in the same way. 

https://github.com/tc39/ecma262/pull/3268

	Skipping iterator protocol allocations 

