Unit 3: Homeostasis Unit Resources: Vocabulary Rubrics Anchoring Investigation Folder Digital Interactive Notebook Paper Packet (under construction) Unit Tracker LT Scale ### ALT3: Explains how cells are organized into organisms Anchoring Phenomenon: The heart beats faster during exercise. **Unit Essential Question:** How do the cells, tissues, and organs of the body work together to control heart rate during exercise? #### NGSS Performance Expectations Academic Supporting Targets (ASTs) with links to evidence statements: HS-LS1-3 (AST 3.1): Plan and conduct an investigation to provide evidence that feedback mechanisms maintain homeostasis. HS-LS1-2 (AST 3.5): Develop and use a model to illustrate the hierarchical organization of interacting systems that provide specific functions within multicellular organisms. **Note:** the regular classroom version of this unit also covers <u>HS-LS1-4</u> on cell division and development, but that standard has been moved to the Distance Learning Unit 4: Genomics to save time. **Practices:** Developing and Using Models / Planning and Carrying Out an Investigation **Crosscutting Concepts:** Systems and System Models / Stability and Change / Structure and Function **Disciplinary Core Ideas:** Structure and Function / Growth and Development of Organisms | Task
Set #
(Days) | Essential Question & Activities | Practice &
Extension | SEPs
CCCs
DCIs | Evidence of Student
Learning/
Assessment | | |-------------------------|--|---|---|--|--| | Engage | | | | | | | 1
(30
min) | EQ: What do you know about heart rate? What parts of your body are involved in controlling it? Why does it go up? Go down? Phenomenon: Your heart rate increases when you exercise. Fill out H, K, and W part of a HKWL (template here) with the question "what do you know about heart rate and exercise?" and "what questions do you have?" Use these slides as a guide that have embedded video Career Connection: Cardiovascular Technologist (video embedded in slides) Fill out Unit Tracker TS1 boxes | | SEP: Asking questions CCC: Stability and Change DCI: Structure and Function | | | | Explore and Explain | | | | | | | 2
(90
min) | EQ: How do our cells work together to maintain homeostasis? Phenomenon: Your heart rate increases when you exercise. Use slideshow as a guide for this task set. Students pair share questions and look at example concept maps, learn about feedback loops, and homeostasis. (30 min) Introduce the student task with slides 12 & 13. Students read and annotate an article about the control of heart rate during exercise and then complete a partially filled out model of the feedback loop. Student template - Modeling HR Control: Article and Concept Map. This vocabulary list can be given to students as a guide while they read and create the map Alternates: : Students can do a similar activity as above but make the whole map themselves (longer - depending on student familiarity with concept maps and concept map drawing tools) - or create only one of the feedback loops (exercise / stressor or relaxation) - would be shorter. Key for Concept Map of Heart Rate Control Fill out Unit Tracker TS5 boxes | As another example of homeostasis, students can read this article on blood glucose. | SEP: Developing and using models CCC: Systems and System models DCI: Structure and function | Students read and annotate the article then complete the concept map of the feedback loop. | | | 3 | EQ: How does a given exercise affect heart rate? How can we use that information to make decisions about exercise programs? Phenomenon: Not all exercises are cardiovascular exercises. | Students can put their extension efforts into their | SEP: Planning
and Carrying Out
an Investigation | Lab Procedure
evaluated for AST 8.2
(MYP Criterion B) | | (150 • Use this slideshow throughout the lesson as a guide. background **CCC**: Stability and min) Heart Rate Inquiry Resource Packet research, lab Change, Structure Data Collection & • Each student gets a copy of Heart Rate Inquiry Student Template. design, data and Function Graph evaluated for • Student groups each select an exercise that they think will affect collection, and AST 8.3 (MYP Criterion **DCI**: Structure and heart rate, and make a wild guess as to the average heart rate of a conclusion Function group of test subjects after 65 seconds of this exercise. • Students write a step-by-step procedure describing how to collect Lab Conclusion data evaluated for AST 8.4 Videos for how to collect heart rate: (MYP Criterion C) With a device Without a device Data collection: individually or in a group if they can agree on an exercise and a procedure. • Desmos graphing: Measuring Effect of Exercise on Heart Rate Calculate standard deviation using Google Sheets IF IN A GROUP (template linked in inquiry doc). • Here is a link to a teacher desmos you can use as well where students can input their average data. Be sure to insert the link to your class code in the student template!! • Presentation for Data Discussion (Sample - make your own copies for your classes) • Board Discussion to classify and analyze graphs (Students can use Board Meeting Discussion Cards for their verbal participation) Return to Wild Guess: Students generate their data-informed prediction about the heart rate of a new test subject performing their exercise for 65 sec, and their level of confidence in this new prediction (use confidence chart). • Calculate maximum heart rate using the calculation table in the student template - compare this result to their maximum heart rate, determine whether this exercise is a recommended cardiovascular exercise. • Complete Lab Conclusion - Student Exemplar (please don't share widely) Fill out Unit Tracker TS6 boxes ### **Summative Assessment Summary** | Supporting Target & NGSS Performance Expectations | Possible Summative Assessments | |--|--------------------------------| | HS-LS1-3 (AST 3.1): Plan and conduct an investigation to provide evidence that feedback mechanisms maintain homeostasis. | Heart Rate Inquiry | | HS-LS1-2 (AST 3.5): Develop and use a model to illustrate the hierarchical organization of interacting systems that provide specific functions within multicellular organisms. | Concept Map | | ALT 8 Uses the inquiry process as a controlled and data-driven means to investigate scientific questions. | Heart Rate Inquiry | # **Science and Engineering Practice Look Fors:** | Practice | Grades 9-12 Science and Engineering Practice "Look Fors" | |--|---| | Practice 2: Developing and Using Models | Evaluate strengths and limitations of models looking at: process, mechanism, and design criteria. Design a test of a model to ascertain its reliability and be able to move between models base on merits and limitations. Use a model to predict the relationships between systems or components of a system. Develop and use multiple types of models to predict phenomena and provide detailed accounts | | Practice 3: Planning and Carrying Out Investigations | Work as an individual or a team to produce data as evidence to revise models, support explanations or test solutions to problems. Students should consider confounding variables and evaluate design to ensure controls. Critically analyze design of an experiment to decide the accuracy of data needed to produce reliable measurements and limitations of the data (number of trials, cost, risk, time etc.) Select appropriate tools to collect, record, analyze and evaluate data. Make directional hypotheses about dependent and independent variable relationships. | # **Other Unit Resources**