
قوانین نیوتن – Les lois de Newton

1- متحهة الموضع

- حركة الأجسام تكون "نسبية"، أي أنها تتعلق بجسم مرجعي يتم اختياره ، لذلك عند در اسة جسم معين نختار معلما للفضاء $\Re(o,i,j,k)$ و آخر للزمن نربطهما بالجسم المرجعي . بما أن G متحركة فإن مجموعة المواضع المتتالية ل G خلال الزمن تكون "مسار" النقطة G.
- نقتصر في دراسة حركة جسم صلب ما في جسم مرجعي ما على حركة \mathbf{G} مركز قصوره والتي تمكننا من معرفة حركته الاجمالية
- نمعلم نقطة متحركة من جسم صلب بواسطة متجهة مشكلة بين مركز المعلم و و موضع المتحرك عند اللحظة t تسمى متجهة الموضع \overrightarrow{OG} تعبيرها

 $\overrightarrow{OG} = x(t).\overrightarrow{i} + y(t).\overrightarrow{j} + z(t).\overrightarrow{k}$ حيث (x(t); y(t); z(t)) تسمى احدثيات متجهة الموضع

2- متجهة السرعة اللحظية

في مرجع معين ، تساوي $\overset{\rightarrow}{v_G}$ متجهة السرعة اللحظية لـ \vec{G} مركز القصور لجسم صلب في لحظة t ، مشتقة متجهة الموضع $\overset{\rightarrow}{V_G}$ بالنسبة للزمن في نفس اللحظة فنكتب : $\overset{\rightarrow}{v_G}(t)=\frac{d\overset{\rightarrow}{og}}{dt}$ و حدتها في النظام العالمي للوحدات $\overset{\rightarrow}{v_G}(t)=\frac{d\overset{\rightarrow}{og}}{dt}$

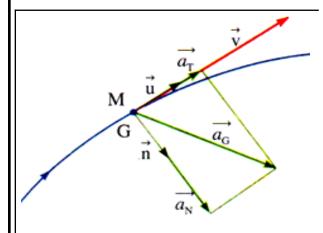
احدثيات متجهة السرعة اللحظية

$$\begin{split} v_{_{X}}(t).\,\vec{i} + v_{_{Y}}(t).\,\vec{j} + v_{_{Z}}(t).\,\vec{k} &= \frac{d}{dt} \Big(x(t).\,\vec{i} + y(t).\,\vec{j} + z(t).\,\vec{k} \Big) = \frac{dx(t)}{dt} \vec{i} + \frac{dy(t)}{dt} \vec{j} + \frac{dz(t)}{dt} \vec{k} &= \vec{v}_{_{G}} = \frac{dOG}{dt} \\ \vec{v}_{_{G}}(t) &= \vec{v}_{_{G}}(t) \quad \text{arrays} \quad \text{and} \quad \text{arrays} \quad \text{and} \quad \text{arrays} \quad \text{arrays}$$

3- متجهة التسارع اللحظى

تعريف

في مرجع معين ، تساوي متجهة التسارع اللحظي \vec{a}_{G} لمركز القصور G لجسم صلب في لحظة t ، مشتقة متجهة السرعة \vec{a}_{G} بالنسبة للزمن في


 $m m/s^2$ نفس اللحظة فنكتب : $m a_G^{
m c}(t)=rac{dec v_G^{
m c}}{dt}$: نفس اللحظة فنكتب

احدثيات متجهة التسارع اللحظي في معلم ديكارتي

 $\frac{d}{dt}\left(v_x(t).\overrightarrow{i}+v_y(t).\overrightarrow{j}+v_z(t).\overrightarrow{k}\right) = \frac{dv_x(t)}{dt}\overrightarrow{i} + \frac{dv_y(t)}{dt}\overrightarrow{j} + \frac{dv_z(t)}{dt}\overrightarrow{k} = a_x(t).\overrightarrow{i} + a_y(t).\overrightarrow{j} + a_z(t).\overrightarrow{k} = \overrightarrow{a}_G = \frac{dv_G(t)}{dt}$ $\overrightarrow{a}_G(t) \quad \overrightarrow{a}_G(t) \quad \overrightarrow{$

 $\| \overset{
ightarrow}{a_{\scriptscriptstyle G}}(t) \| = \sqrt{\left[a_{_{\scriptscriptstyle X}}(t)
ight]^2 + \left[a_{_{\scriptscriptstyle Y}}(t)
ight]^2 + \left[a_{_{\scriptscriptstyle Z}}(t)
ight]^2}$: منظم متجهة التسارع اللحظي في معلم ديكارتي

احدثيات متجهة التسارع اللحظي في معلم فريني

- معلم فريني $\overrightarrow{n}; uG(n)$ ، معلم متعامد و ممنظم ، يتطابق أصله في كل لحظة مع موضع المتحرك حبث :
 - مماسة للمسار في نفس منحى الحركة : " المتجهة المماسية الواحدية" : u
- ت متعامدة مع u و موجهة نحو مركز القوس : " المتجهة المنظمية الواحدية" : " : " المتجهة المنظمية الواحدية" : " u
 - $a_G = a_T + a_N \Rightarrow a_G = a_T \cdot u + a_N \cdot n$
 - $a_T = rac{dv_G}{dt}$: متجهة التسارع المماسي : $a_T = a_T. \overset{dots}{u}$ -
- مع $\frac{V_M^2}{\rho}$: متجهة التسارع المنظمي $a_n = \frac{V_M^2}{\rho}$ مع $a_N = a_N.\ddot{n}$ -

المسار في الموضع المعين . Www.AdrarPhysic.Com

في مرجع غاليلي ، إذا كان مجموع القوى الخارجية المطبقة على جسم صلب يساوى متجهة منعدمة ، $v_G=Cte$ لمركز القصور G للجسم الصلب تكون ثابتة و في المقابل ، إذا كانت متجهة السرعة لمركز قصور الجسم الصلب ثابتة $^{
u}$ فإن مجموع القوى الخارجية المطبقة على الجسم مجموعة منعدم.

القانون الثاني لنيوتن. القانون الأساسي للتحريك

في مرجع غاليلي ، يساوي مجموع القوى الخارجية المطبقة على جسم صلب جُداء كتلة هذا الجسم و متجهة التسارع لمركز قصوره G:

$$\sum_{m} F_{ex} = m.a_G$$

ملحوظة: لا يطبق القانون الثاني لنيوتن إلاً في مرجع غاليلي القانون الثالث لنيوتن: مبدأ التأثيرات البينية

العتبر جسمين A و B في تأثير بيني ، لتكن $\overline{F}_{A/B}$ القوة التي يطبقها $\overline{F}_{A/B}$ على $\overline{F}_{A/B}$ القوة التي يطبقها $\overline{F}_{A/B}$ القوة كان $F^{\text{VYV}}_A = -F^{\text{VYV}}_B$ الجسمان في حركة أو في سكون فإن القوتين F^{VYV}_A و F^{VYV}_A تحققان المتساوية:

4- الحركة المستقيمية المتغيرة بانتظام تعريف حركة المستقيمية المتغيرة بانتظام

یکون G مرکز قصور جسم صلب في حرکة مستقیمیة متغیرة بانتظام ، إذا کان :

مسار G مستقیمیا

ابتة خلال الحركة. G متجهة التسارع للنقطة a_G

. حركة $_{\mathrm{G}}$ مستقيمية متسار عة بانتظام $_{\mathrm{G}}$ عركة $_{\mathrm{G}}$ مستقيمية متسار ع مع: $a_G = \overline{Cte}$

او * و \tilde{a} حركة G مستقيمية متباطئة بانتظام . الرمنية للحركة حركة المستقيمية المتغيرة بانتظام

 $\Re\left(o,\stackrel{\sqcup}{i}
ight)$ معلم S معلم في معلم أن جسما S معلم في معلم أن عتبر أن جسما

 $a_{_G}=\mathit{Cte}\,\,$ نمعلم مركز قصوره G مي كل لحظة بi: بنمعلم مركز قصوره الميان كل لحظة ب

$$\vec{a}_G = \frac{dv_x(t)}{dt}\vec{i} = a_x(t).\vec{i}$$

$$v_{x}(t) = \int a_{x}dt$$

$$v_{x}(t) = a_{x}.t + C$$

 $v_{x}(t=0)=v_{0x}$ عند ونظلق بسرعة بدئية t=0 عند

$$v_{x}(t) = a_{x} \cdot t + v_{0x}$$

$$\vec{v_G} = \frac{d}{dt} (x(t).\vec{i}) = v_x(t).\vec{i}$$

$$x(t) = \int v_x(t) dt = \int (a_x.t + v_{0x}) dt$$

$$x(t) = \frac{1}{2}.a_x.t^2 + v_{0x}.t + C'$$

$$x(t = 0) = x_0$$
عند $t = 0$ انطلق الجسم من موضع $t = 0$ عند $t = 0$

العلاقة المستقلة عن الزمن

نعتبر أن جسما $_A$ في حركة مستقيمية متغيرة بانتظام ، عند لحظة $_A$ يمر بموضع A افصوله $_A$ بسرعة $_A$ ليصل موضعا $_B$ افصوله $_A$ بسرعة

بإقصاء الزمن t بين المعادلتين نحصل على علاقة تسمى العلاقة المستقلة عن الزمن و هي:

$$v_B^2 - v_A^2 = 2. a_x. (x_B - x_A)$$

مبرهنة الطاقة الحركية

في معلم غاليلي ، يساوي تغير الطاقة الحركية لجسم صلب غير قابل للتشويه في إزاحة ، بين لحظتين ، المجموع الجبري لأشغال كل القوى الخارجية المطبقة على الجسم بين هاتين اللحظتين .

$$\Delta E_C = \frac{1}{2}. \, m. \, v_B^2 - \frac{1}{2}. \, m. \, v_A^2 = \sum W(\vec{F}_{ext})$$

انتهي

Www.AdrarPhysic.Com