InterPSS

Simple yet Powerful

Dev Tutorial www.interpss.org

InterPSS

Development Tutorial

In progress...

Version: <V0.50>
Date: <8/26/2021>

http://www.interpss.org

InterPSS

Simple yet Powerful

Dev Tutorial

www.interpss.org

Document Version History

Version No. Release Date Description Prepared by

V0.1 12/17/2013 start working on the first version, the outline of Tony
tutorial

V0.2 1/25/2014 completed ch2: intro to the three basic power Tony
system models:bus, branch and network

V0.3 03/02/2014 add the Appendix-B, intro to ODM Tony

V0.4 03/16/2014 add ch4 short circuit, update ch5 dstab Tony

V0.41 04/12/2014 add ch5 dstab monitoring and output Tony

V0.42 07/23/2014 add Appendix-A sparse matrix and solver Tony

V0.50 08/26/2021 Update the tutorial Mike

V0.60 08/09/2024 Update the tutorial chapters 1, 3 Tony

http://www.interpss.org

InterPSS

Simple yet Powerful

Dev Tutorial www.interpss.org

Table of Contents

Introduction
Chapter 1. Setting up the InterPSS Development Environment
1.1 Import InterPSS libr: roject
1.1.1 Library repository as a zip file

1.1.2 Clone Library project repository via Eqit

(1) GitHub Eclipse plugin
2) Clone the r itory to local PC and import the projects into work

1.2 Run sample load flow test case
Chapter 2. An introduction to the power system basic models in InterPSS
2.1. Overview of power system modeling in InterPSS
2.2. Inheritan nd cl hierarchy structur
2.3 Three basic types of power system models
2.3.1 Network object
2.3.2 Bus
2.3.3 Branch
2.4. Getting and setting the data of an object
2.4.1 Network
2.4.2 Bus
2.3.3 Branch

2.4 Example
Chapter 3. Power system load flow analysis

Introduction to power system load flow
A Datar ired for | flow analysi

3.1.1 System/network data
3.1.2 Bus data
3.1.3 Branch data
2. rt wer tem m I
3.3. Solution methods and internal sparse matrix data structure

3.3.1 Newton-Raphson

3.3.2 Fast Decoupled
DCI flow

3.4 Adjustment During load flow

3.5 Configuration of load flow algorithm

3.6 _Example
6.1 Runl flow an tput result

3.6.2 Customize NR load flow
Chapter 4. Short circuit analysis

Introduction to short circuit analysis
4.1 Power tem n t

4.2 Bus based simple short circuit

4.3 Branch based simple short circuit
4.4 Short circuit analysis in InterPSS

http://www.interpss.org

InterPSS

Simple yet Powerful

Dev Tutorial

www.interpss.org

4.4.1 Create A network
4.4.2 Define a fault
4.4.3 Calculate short circuit
4.4.4 Obtain results
4.5 Example
4.5.1 Build a system for short circuit analysis
4.5.2 Short circuit analysis with load flow and sequence data

Chapter 5. Transient stability simulation
1 Intr tion to transient stability simulation

5.2 Dynamic models
5.2.1 Machine model

(1) Machine model in a DStabBus

2) Machine models of different levels of m lin tail
(3) Modeling the effects of saturation

5.2.2 Excitor

5.2.3 Turbine and governor

5.2.5 Load model

5.2.7 Bus Frequency Measurement
5.3 Numerical Solution
5.4 Simulation procedure
4.1 Simulation data preparation
5.4.2 Simulation setting

5.4.3 Event setting

(1) Fault setting
Bus fault

(b) Branch Fault

5.4.4 Monitoring and output
(1) State Variable Recorder
(2)State Monitor

5.4.5 Load flow and system initialization
5.4.6 Simulation
5.6 Data check and auto correction
.7_Development of new dynami Vi

5.8 Example

Chapter 6. Power system optimization through integrating InterPSS with GAMS

6.1 GAMS V24
2. Il GAMS from Jav
6.3 Economic dispatch Sample

Chapter 7. Sensitivity Analysis and DCLF-based contingency analysis

Chapter 8. New controller model development with Controller Modeling Language

hapter 9. Graph wer tem lication
Appendix-A Sparse Matrix and Solver

A-1. SparseEqgn classes
(1) Overview
(2) Basic operation
A-2. Sparse Linear equation solver

(1) Solver Interface

A-3 Customize the solver

http://www.interpss.org

InterPSS

Simple yet Powerful

Dev Tutorial www.interpss.org

Appendix-B _Open Data Model for data import/output
1. Prerequisite
1.1 Basic understanding of XML: schema, data binding and JAXB

1.2 Basic knowledge of data for power system simulation
2. ODM in a nutshell

2.1 ODM as a data-format free intermediary for data exchange
2.2 XML Schema for power system simulation data modeling
2.2.1 Basic Schema
Namin nvention
Name Space
Version Number
PU System
Extension
Schema Root Element
Base Record
ID Record
2.2.2 Base Case
2.2.3 Bus Record
2.2.3.1 Bus Record for AC Load flow
Bus Generation Data -- BusGenDataXmlIType
Bus L Dat
2.2.3.2 Bus Record for AC short circuit
2.2.3.3 Bus Record for transient stability
2.2.4 Branch Record
Base Branch Data
Loadflow Line Data
Loadflow Transformer Data
Transformer Data
Transformer Tap Adjustment
Transformer Tap Adjustment for Bus Voltage
Transformer Tap Adjustment for MVar Flow
Loadflow PhaseShift Transformer Data
Ph Angle Adjustment
Branch Rating Limit
3-Winding transformer
Modification
Contingency
Study Scenario
2.3 Data binding with JAXB

2.4 Data import to ODM/XML
241 M | dat: rser and m r

2.4.1.1 Input Line String Parser

Parse input line String
2.4.2 Implement a specific data parser and mapper
2.4.2 1 Implement input line string parser
2.4.2.2 Implement input line string mapper

2.4.3 Data Adapter
2.5 ODM -> InterPSS

http://www.interpss.org

InterPSS

Simple yet Powerful
Dev Tutorial www.interpss.org
A ndix- ful Plugin Tool

http://www.interpss.org

InterPSS

Simple yet Powerful

Dev Tutorial www.interpss.org

Introduction

This development tutorial is intended to help users of InterPSS to learn InterPSS and how to use it better
and faster. Background knowledge of basic Java programming and some knowledge of power system
modeling and simulation is required. For those who are not that familiar with Java programming and
Eclipse IDE, It is suggested that you spend one or two weeks on those things first and then come back to
this tutorial. There are many on-line learning materials for you when you google “Java tutorial” or “Eclipse
tutorial”. For example:

- Java learning: http://www.learnjavaonline.org/

- Eclipse:http://eclipsetutorial.sourceforge.net/totalbeginner.htmi

If you have some background in Java and are interested in learning InterPSS, then it is right for you. This
tutorial will first guide you through setting up the development environment in Chapter 1. In Chapter 2,
introduction to the basic power system models in InterPSS is presented. In the following Chapter 3 to 5,
the modeling and simulation algorithm in InterPSS for typical applications are discussed , including power
flow, short circuit and transient stability. In Chapter 6, integration of InterPSS with the GAMS (a high-level
modeling system for mathematical programming and optimization) will be presented, along with a simple
SCED example. For each chapter, simple application examples are created to help users to have better
understanding of the material in the chapter. You are encouraged to create your own study case by
following those examples.

e Tutorial example and code
This tutorial is accompanied by simple examples for each chapter. The code for all examples is available

on GitHub: https://github.com/InterPSS-Project/ipss-common/tree/master/ipss.tutorial .

http://www.interpss.org
http://www.learnjavaonline.org/
http://eclipsetutorial.sourceforge.net/totalbeginner.html
https://github.com/InterPSS-Project/ipss-common/tree/master/ipss.tutorial

InterPSS

Simple yet Powerful

Dev Tutorial www.interpss.org

Chapter 1. Setting up the InterPSS Development
Environment

InterPSS project has been trying to create a new open platform, to support the next generation power
system simulation and analysis. The foundation of this platform is InterPSS core engine, which includes
but is not limited to power system network object model and power system analysis functions, e.g., power
flow, short circuit and transient stability.

InterPSS now supports two versions, i.e., cloud edition and development edition. Both editions run on the
same core simulation engine. InterPSS cloud edition runs on the Google cloud platform and provides
power system analysis as a service, 24/7, anywhere in the world with Internet access. For more
information, please visit www.interpss.org . The cloud edition provides basic analysis functions and it is
simple to use. However, flexibility and capability of the InterPSS core engine is still not fully exploited. For
those who want to have a better control of InterPSS, or customize it for their applications, InterPSS
development edition is recommended. The development edition is based on the Eclipse IDE and
InterPSS core libraries.

Those familiar with Java programming know that basic and core java functions are provided in Java
system libraries. Each java project should have a reference to these JRE System libraries. Similarly, for
power system simulation and analysis with InterPSS, InterPSS core libraries and their dependent third
party libraries are required.

Prerequisite of InterPSS development environment is as follows:

Java Environment Setup
Make sure you have Java SDK installed on your computer. You can check your Java installation by
launching a CMD window from Start/run/cmd. Type the following command

java -version

to make sure that your Java version is 1.8 or above.

Eclipse IDE Setup

InterPSS is written in Java. InterPSS development team uses Eclipse as the main Java IDE. You can
download from www.eclipse.org . You can use the "Eclipse IDE for Java Developers" version.

1.1 Import InterPSS library projects

InterPSS core libraries and all dependent libraries (*.Jar) are stored in the following GitHub repository
https://github.com/InterPSS-Project/ipss-common

The library projects can be downloaded fully as a ZIP file (about 60 MB), or clone to the desktop through
Git clone as indicated by the two operation buttons on the right bottom.

8

http://www.interpss.org
http://www.interpss.org/
http://www.eclipse.org/
https://github.com/InterPSS-Project/ipss-common
https://github.com/InterPSS-Project/ipss-common
https://github.com/InterPSS-Project/ipss-common

InterPSS

Simple yet Powerful
Dev Tutorial www.interpss.org
" 1 1 1 !

L ¢ master = Ipss-common /=

-

m

=

HTTFE
= README.m«d

A Clons in Deskiop

¢ Downlosd 2P

Ipss-common

sPSS common for i, Jnd-party I

Some test cases are also available within the ipss.sample project stored in the ipss-plugin repository
Jqithut InterPSS-Proiect/ipss- .

Follow the following steps to import the InterPSS core lib projects and ipss.tutorial project into your
working workspace

1.1.1 Clone Library project repository via Egit

Clone the repository to local PC and import the projects into workspace
1) Get the project HTTPS clone URL by copying the URL to clipboard
Bl » mostar = ipss-plugin / & -

remcved cbsolefe Network afinbutes

HTTRE

InterPSS lib projects:
https://qithub.com/InterPSS-Project/ipss-common.qit

2) Open the Git repositories perspective through Eclipse->Window-> Open perspective-> Others-> Git
Repository Exploring

http://www.interpss.org
https://github.com/InterPSS-Project/ipss-plugin
https://github.com/InterPSS-Project/ipss-common.git
https://github.com/InterPSS-Project/ipss-plugin.git

InterPSS

Simple yet Powerful

Dev Tutorial www.interpss.org

3) Select “Clone a Git repository” from the Git repository perspective

B Gi epository Explocing - e I

Ele Edt Maigate Segrch Breject Bun Window Help
':'3':“ IB"'I‘rm‘FIbE -}-\"'I'E_ - - " - -rl &
{1 Gt Repositosies) 52 AR, R T 0

Select one of the following to sdd & repositody to this vies:

Add an saghng o<l Of iepaidcr
ﬂf Clone § Gf ieposRory

N Lf nes | Gt r aiticary
Clone the ipss-common repository to your local storage.

Open the ipss.tutorial project, and run the examples under the <<ch2_intro>> and make sure there is no
error.

10

http://www.interpss.org

InterPSS

Simple yet Powerful

Dev Tutorial www.interpss.org

Chapter 2. An introduction to the power
system basic models in InterPSS

As Java language is the programming language adopted by InterPSS, the object oriented programming
(OOP) technique is widely used in the design and development of InterPSS. As is known to all, one of the
most basic concept in OOP is the object. To understand InterPSS, and subsequently extend InterPSS for
your own purpose, it is important to be familiar with the three basic types of power system models within
the core of InterPSS, and they are network, bus and branch. For more information of OOP and InterPSS,
please read this IEEE Transaction paper_"Object-oriented Programming, C++ and Power System
Simulation", IEEE Transactions on Power Systems. Vol.11. No.1. pp. 206-215, 1996

2.1. Overview of power system modeling in InterPSS

A network is to store all the information required for power system simulation in InterPSS. At the center of
the network object is two linked lists, which are used to store the bus objects and branch objects,
respectively, as shown in Fig.2.1.

InterPSS follows the bus-oriented convention to represent the network. Accordingly, Bus is defined to
store all information (defined as attributes of the bus class) related to a bus, for example, bus Id and bus
voltage, as well as all components connected to a bus, e.g., a generator or a capacitor. The other basic
model is branch. It is used to represent overhead line, transformer (conventional two-winding transformer,
phase shift transformer). Special type branches, currently including three-winding transformer and HVDC
transmission lines, and series FACTs devices in the future, are stored in another list named
specialBranchList. Within InterPSS, a three-winding transformer is automatically converted to three
two-winding transformers.

In Fig.2.1, The bus and branch mutual reference help to define the topology of the network as a graph:
the fromBusld and toBusld of a branch are the two attributes to relate two buses to a two-terminal branch,
while the branchList of a bus store the branch objects connected to the bus at the “from-end” and “to-end”
of the branch, respectively.

Metwiork
Esbaselkya = 100000

el branchList
uslis
1.n
1..n
= Branch
%hase\/oll-‘ltsage — branchlist [@scircuitMumber= 1
g 0.n

Fig. 2.1 InterPSS network model

11

http://www.interpss.org
http://commondatastorage.googleapis.com/mikezhou/paper/OOP_CPP_and_PSS.pdf
http://commondatastorage.googleapis.com/mikezhou/paper/OOP_CPP_and_PSS.pdf

InterPSS

Simple yet Powerful

Dev Tutorial www.interpss.org

Let’s first look at the two-bus system example defined in the sampleL oadflow.java within the
ipss.sample project under ipss.plugin, as this example give you some idea of these three types of
objects and they together forms a power system network object for load flow analysis.

public static void simplelLoadflow (IPSSMsgHub msg) {
// Create an AclfNetwork object
AclfNetwork net = CoreObjectFactory.createAclfNetwork();

double baseKva = 100000.0;

// set system basekva for loadflow calculation

net.setBaseKva (baseKva) ;

// create a AclfBus object
AclfBus busl = CoreObjectFactory.createAclfBus ("Busl", net);

// set bus name and description attributes
busl.setAttributes ("Bus 1", "");
// set bus base voltage
busl.setBaseVoltage (4000.0) ;

// set bus to be a swing bus
busl.setGenCode (AclfGenCode.SWING) ;

// adapt the bus object to a swing bus object
AclfSwingBus swingBus = busl.toSwingBus() ;

// set swing bus attributes
swingBus.setVoltMag (1.0, UnitType.PU);
swingBus.setVoltAng (0.0, UnitType.Deg);

AclfBus bus2 = CoreObjectFactory.createAclfBus ("Bus2", net);
bus?2.setAttributes ("Bus 2", "");
bus2.setBaseVoltage (4000.0) ;

// set the bus to a non-generator bus
bus2.setGenCode (AclfGenCode.NON GEN) ;

// set the bus to a constant power load bus
bus2.setLoadCode (AclfLoadCode.CONST P);

// adapt the bus object to a Load bus object
AclfLoadBus loadBus = bus2.toLoadBus();

// set load of the bus: Load = P + jQ = 1.0 + j*0.8 pu
loadBus.setLoad (new Complex (1.0, 0.8), UnitType.PU);

// create an AclfBranch object
AclfBranch branch = CoreObjectFactory.createAclfBranch();

12

http://www.interpss.org
https://github.com/InterPSS-Project/ipss-plugin/blob/master/ipss.sample/src/org/interpss/sample/aclf/SampleLoadflow.java

InterPSS

Simple yet Powerful

Dev Tutorial www.interpss.org

net.addBranch (branch, "Busl", "Bus2");

// set branch name, description and circuit number
branch.setAttributes ("Branch 1", "", "1");

// set branch to a Line branch

branch.setBranchCode (AclfBranchCode.LINE) ;

// adapte the branch object to a line branch object
AclflLine lineBranch = branch.toLine();

// set branch parameters
lineBranch.setZ (new Complex(0.05, 0.1), UnitType.PU, 4000.0);

// create the default loadflow algorithm
LoadflowAlgorithm algo = CoreObjectFactory.createloadflowAlgorithm(net) ;

// use the loadflow algorithm to perform loadflow calculation
algo.loadflow() ;

// output loadflow calculation results
System.out.println (AclfOutFunc.loadFlowSummary (net));

There are several key points for the example above.

Network object can be regarded as a container, which stores all buses and branches of a power
system in InterPSS. Thus, it should be created at the very beginning.

Bus are created latter and then branch. Such sequence is important as a branch needs to refer to
the bus objects connected at the terminals in order to properly set up the bus-branch connection
relations, hence the bus objects must be created before a branch tries to refer or connect to it.
Both Bus and Branch objects are accessed and referred to by their IDs, for example,

AclfBus busl = CoreObjectFactory.createAclfBus ("Busl", net);
net.addBranch (branch, "Busl'", "Bus2").

Where “Bus1” and “Bus2” are the IDs of bus1 and bus2, for identification purpose.

Object attributes and/or information is set to the object through the setter methods
(network/bus/branch.setX(value))

NOTE: This example may give some of you a wrong impression that it needs to write thousands of lines
of code to create a network for large power systems. Actually There is another open project called Open
Model for Exchanging Power System Simulation Data that InterPSS has been devoting to. InterPSS
has developed ODM-based adapters and mapper to import available network data defined in commonly
used data format, such IEEE CDF, PSS/E, PowerWorld, PSD-BPA format to create a network object in
InterPSS, For more information, please refer to Appendix B--Introduction to ODM.

13

http://www.interpss.org

InterPSS

Simple yet Powerful

Dev Tutorial www.interpss.org

2.2. Inheritance and class hierarchy structure

e Why inheritance?

Inheritance is an important concept for objects in OOP. A sub-class, or “child” class, can be derived from
the base, or “parent”, class through inheritance, such that the child class will inherit all the attributes and
method defined the base class. With inheritance, we don’'t have to rewrite all the common or similar parts
of code again and again. That is commonly known as “code reuse” in computer science.

e How is the class inheritance designed in InterPSS

Based on the nature of power system analysis, we know that the most basic information for representing
a power system is the network topology, as well as basic bus and branch identification attributes. The
information is required for all power system analysis. Therefore, it is reasonable to abstract these basic,
common information and behavior into base network, bus and branch classes.

Secondly, let’s look at the characteristics of the three basic power system analysis functions, i.e., load
flow, short circuit calculation or fault analysis, transient stability simulation. Load flow is the most basic
function, and both short circuit analysis and transient stability simulation rely on load flow data and
results. Thus, load flow related objects should be on the second level of the hierarchy structure, from
which the short circuit and transient stability related objects are derived.

Short circuit (SC) analysis usually requires load flow results to determine the operating point. Further,
positive sequence network data for short circuit analysis is generally the same as that used in load flow
study. Short circuit related objects can and should reuse load flow data and methods by inheriting the load
flow objects. Moreover, the negative and zero sequence data, if available, will be included in the bus and
branch objects for short circuit analysis.

Dynamic stability (DStab) simulation relies on the load flow data for constructing the network admittance
as well as the equation YV=I and load flow results for determining the pre-fault system condition. During
the fault period, also it needs to form the sequence network and calculate the positive sequence
equivalent fault impedance at the fault point for unsymmetrical faults. Considering that such function is
available in short circuit analysis. Thus both load flow and short circuit analysis should be reused for
dynamic stability. For the bus objects for stability analysis (DStabBus), detailed generator (machine)
model, with the controllers (exciter, governor, stabilizer) for the generator being a part of the generator
model, will be included as a component in the bus object. Branch class for stability analysis
(DstabBranch) extends from the branch class for short circuit and adds attributes and methods for relay
and protection setting.

The network class structure in InterPSS is shown as follows:

14

http://www.interpss.org

InterPSS

Simple yet Powerful

Dev Tutorial www.interpss.org

1 TBus extends Bus
! TBraextends Branch

+busList: TBus
+branchlist: TBra

_________ i

ETBus extends AdfBus
.\ TBra extends AdfBranch :

BaseAclietwork

+formBMatrix ()

=

ETBus extends AcscBus
. TBra extends AcscBranch | DistNetwork

BaseAcschetwork

|

DstabilityNetwork

Note for the naming in the figure above:
Aclf -- AC load flow
Acsc -- AC short circuit
Dstab -- Dynamic stability or Transient stability
Dist -- Distribution

The bus and branch class have a similar hierarchy structure, as follows:

e Bus<--AclfBus<--AcscBus<--DStabBus
e Branch<--AclfBranch<--AcscBranch<--DstabBranch

where the “<--" indicates that the latter extends the former.

InterPSS employs the “separating interface from implementation class” concept internally when
implementing the the core network objects mentioned before. For example, a bus is first defined as an
interface, which defines all the public operations or APIs accessible from outside, then it is implemented
in a separate class, i.e., Buslmpl.

2.3 Three basic types of power system models

Network, bus and branch are the three basic types of power system objects in InterPSS, other
commonly-used models for simulations are generator, load, HVDC, area, zone, machines. In the
following, only the three basic types will be discussed.

15

http://www.interpss.org

InterPSS

Simple yet Powerful

Dev Tutorial www.interpss.org

2.3.1 Network object

Network is the container for all the information required for power system analysis in InterPSS. As each
type of power system analysis requires different information from network, bus and branch, it is
reasonable to define a different network object for each type. In addition, it should be noted that the
network topology information is the most basic for all analyses, thus a basic network object is employed in
InterPSS. Further, there is some information exchange among these analysis. In the past, such data
exchange is done by file input and output. Now the same process is perfectly solved through object
inheritance, as discussed in Section 2.2. Considering that there are mainly three typical types of
applications, namely, load flow, short circuit and transient stability, AclfNetwork, AcscNetwork and
DStabNetwork are defined accordingly.

e Basic Network
The Network class and the corresponding implementation Networklmpl class is to form the network
topology with busList, the connection relationship among buses through branches.

e Load flow Network
The major difference between Network and AclfNetwork is that all the buses and branches objects
contained in AclfNetwork object must be of type AclfBus/AclfBranch class or its sub-class, which
means they contain all the information required for load flow analysis.

Also, the admittance matrix, or Ymatrix, and Jacobian matrix,as the basic underlying data structure for
load flow analysis, are formed in the AclfNetwork.

e Short Circuit Network
BaseAcscNetwork and AcscNetwork class is for short circuit analysis. BaseAcscNetwork is extended
from the BaseAclfNework, the major difference is that sequence network admittance matrix can be
formed and accessed in AcscNetwork, besides all the AclfNetwork operations. Buses and branches in
the AcscNetwork are of AcscBus and AcscBranch type. The sequence network data, including
sequence impedance of generators, equivalent impedance or admittance of load and sequence
impedance of branches, should be provided.

e Transient stability Network
DStabilityNetwork class is for transient stability analysis. all the buses and branches objects contained in
this object must be of type DStabBus/DStabBranch. The main functions of this class include network
initialization and solving network dynamic equation during simulation.

2.3.2 Bus

Recall the class structure, Bus<--AclfBus<--AcscBus<--DStabBus. Bus interface (and Buslmpl class) is
the basic class for a bus, and busld, baseVoltage.

The bus model for load flow, short circuit and transient stability is shown in Fig.2.3. A bus object contains
a genlList and loadList to store the generation/load information, which means multiple generators and
loads are allowed to connect to the same bus, with different ID for each generator/load. In addition, there
is at most one fixed shunt and one switched shunt. A bus is connected to other buses through line or
transformer. The BranchList of a bus stores all the branches connected to it.

16

http://www.interpss.org

InterPSS

Simple yet Powerful

Dev Tutorial www.interpss.org

For short circuit analysis, sequence network data for generator and load connected to the bus is required.
For transient stability, detailed dynamic model data of the generators, if any, is required, dynamic load
model data will also be necessary if dynamics of the loads are to be included in the simulation.

Line 2 Line 1
Busld: busl
BazeVoltage: 220KV
Voltagehag: 1,03 pu
VoltageAng: 20 deg
GenList LoadList)
. - Fixed
shunt
,/-"1-\ Switched Transtromer |

shunt

@ Lt | Load-n -

Fig.2.3 Bus model in InterPSS

2.3.3 Branch

Overhead line and underground cable, transformers are treated as an abstract Branch in a network,
which connects two or more buses. So Branch is the basic class for all these connection type
components in the power systems. The basic attributes for a branch are the fromBus, toBus (tertBus if it
is a three-winding transformer).

Overhead lines and underground cables are modeled by the Line class in InterPSS. Transformers in
power systems include two-winding transformer and three-winding transformer, and they are modeled
separately. Internally one three-winding transformer is modeled by three two-winding transformer through
Y-Delta transformation.

From bus
To Bus

| Z=R+jX |

ﬁ;r gk o o [ﬁ: ’

- L

FromShunty Hall of line Half of line ToShunty

fotal shunt'y total shunty

17

http://www.interpss.org

InterPSS

Simple yet Powerful

Dev Tutorial

www.interpss.org

Fig 2.4 Line model in InterPSS

From Bus To Bus
I R+jx 3: I
1
e ——
Ratio(from) - 1 1: Ratloito)

Fig 2.5 Two winding transformer model in InterPSS

From hus th:FromTurnRatio)
12; ToTumR atio T'o bus
£3: TertTurnBRatio

Tertiary
bus

Fig 2.6 Three-winding transformer model in InterPSS
e Line

AclfBranch<--AcscBranch<-- DStabBranch

| | |
AclfLine <-- - AcscLine <--- DStabLine

The objects on the second row are object adapters of the corresponding object on the first row. The first
row is the general. For more info about such implementation, please refer to the adapter pattern.

In the example below, there is such a line related to this adapter pattern:

// adapt the ‘abstract’ branch object to a ‘specific’ line branch object

AclflLine lineBranch = branch.tolLine();

e Transformer
o two winding

AclfBranch<--AcscBranch<-- DStabBranch

AclfXformer <-- - AcscXformer <--- DStabXformer
o three winding
Aclf3WBranch<--Acsc3WBranch<--DStab3WBranch

18

http://www.interpss.org
http://en.wikipedia.org/wiki/Adapter_pattern

InterPSS

Simple yet Powerful

Dev Tutorial

www.interpss.org

2.4. Getting and setting the data of an object

2.4.1 Network

e basic info: baseKva

net.setBaseKva(baseKva);

set network base KVA, unit in kVA

net.getBaseKva();

get network base KVA, unit in kVA

e Bus related

getNoBus()

get the total number of buses

getNoActiveBus()

get the total number of active buses

getBus(String busld)

get a specific bus by its id

addBus(AclfBus bus)

add a new bus to the network

getBusList()

Return a list of bus objects

e Branch related

getNoBranch()

get the total number of branches

getNoActiveBranch()

get the total number of active branches, i.e., those
out-of-service branches are not included.

getBranch(String branchld)

get a specific branch by its id

addBranch(AclfBranch branch)

add a new branch to the network

getBranchList()

Return a list of branch objects which have two
terminals

NOTE: accessing a bus/branch object from a network object is used quite often, and the method via the

bus/branch Id is recommended to use.

2.4.2 Bus

e Get and set bus voltages

getVoltage()

getVoltage(UnitType)
setVoltage(Complex volt)
setVoltage(Complex volt, UnitType type)

get and set voltage as a complex, voltage
unitType can also be used

19

http://www.interpss.org

InterPSS

Simple yet Powerful

Dev Tutorial

www.interpss.org

getVoltageMag()
getVoltageMag(UnitType)
setVoltageMag(double volt)
setVoltageMag(double volt,UnitType type)

get and set voltage magnitude as a double,
voltage unitType can also be used

getVoltageAng()
getVoltageAng(UnitType)
setVoltageAng(double volt)
setVoltageAng(double volt,UnitType type)

get and set voltage angle as a double, voltage
unitType (e.g., V, kV, pu) can also be used

e Get and set bus generation data

getGenCode()
setGenCode(AclfGenCode genCode)

fours types of GenCode: Swing, PV, PQ and
NoneGen

getGenerator(String genld)

isGen() check the bus type, based on the generation
isSwing() code.

isGenPV()

isGenPQ()

getGenlList() Multiple generator connectin to the same bus is

supported.

The first method gets all the generator connected
to the bus and return as a list;

The second one get a specific generator by its id

get/setGen() 1)For Swing bus, genP used to store VoltMag,

get/setGenP() genQ used to store VoltAng

get/setGenQ() 2) For PV bus,genP used to store genP, genQ
used to store VoltMag
3) For PQ bus, genP used to store genP, genQ
used to store genQ

getGenResult() get the effective power generation at the bus.

e Get and set bus load data

getLoadCode()
setLoadCode(AclfLoadCode LoadCode)

tours types of LoadCode: Swing, PV, PQ and
NonelLoad

isLoad()

check if there is any load at the bus

getLoadList()
getLoad(String loadld)

get all the load connected to the bus and return as
a list;
get a specific load by its id

get/setLoad()
get/setLoadP()

get the total in-service load of the bus in complex
form, or real and reactive power of the load.

20

http://www.interpss.org

InterPSS

Simple yet Powerful

Dev Tutorial

www.interpss.org

get/setLoadQ()

getLoadResult()

get the actual load at the bus considering the load
type and bus voltage at the moment.

e Get connected branches of a bus

getBranchList()
getFromBranchList()
getToBranchList()

return all the connected branches as a list, or the
branches which are connected to this bus at the
from end or the to end (put it another way, the
branches whose trom-end /to-end terminal is this
processing bus). NOTE: Three winding
transformer is also considered in this
operation.

nNonGroundBranchConnected(boolean
inclActiveOnly)

The number of the total connected branches
which are NOT ground branch, or connected to
the ground, for example, shunt capacitor branch.

nBranchConnected

the number of the total connected branches

noConnectedBranch(AclfBranchCode type)

The number of the total connected branches of a
certain type.

e Sort Number

Certain type of sorting algorithm (including Tinney 1, 2 and 3, and Tinney-2 is the default) is usually
applied to arrange the internal sequence of the buses for load flow and short circuit analysis, and then a
sortNumber is assigned to each bus after applying the sorting algorithm, both active and inactive
(out-of-service). This sortNumber helps get access to the internal storage of Admittance matrix, Jacobian

matrix and the network equation solution results.

Syntax:

bus.setSortNumber (int num)

bus.getSortNumber ()

e Admittance

get/setShuntY()

get and set the bus shunt admittance Y= G+j*B

get/setYii()

get and set the bus self admittance

2.3.3 Branch

e From bus and to bus

set/getFromBus

set/get the from or to bus object or its bus Id.

21

http://www.interpss.org

InterPSS

Simple yet Powerful

Dev Tutorial

www.interpss.org

set/getToBus

set/getFromBusld
set/getToBusld

set/get the from or tobus Id.

e Branch impedance and admittance

set/getZ() branch impedance Z = r+ j*x

getY() admittance Y =1/Z

get/setFromShuntY/() shunt admittance at the from side and to side of
get/setToShuntY() the branch

get/setHShuntY() half of the total branch shunt admittance

Tap ratio and phase shift angle for transformer

get/setFromTurnRatio()
get/setToTurnRatio()
get/setTertTurnRatio() [for three winding
transformer only]

InterPSS support to define the tap ratio at both
sides

get/setFromPSXfrAngle()
get/setToPSXfrAngle()

phase shift angle at the from side and to side

2.4 Example

The example introNetworkObjectSample.java unde
to help users and developers to learn how the models

r the ch2_intro folder of the tutorial package serves
introduced before are used in network creation and

bus data extraction. Within the sample, you will go through creating a simple 2-bus network and to output
the bus data following specific txt format, with the InterPSS Core API.

The network creation part in this example is the same

as that provided in this chapter before, so it is not

replicated here. The following busOrientedOutPut() method is to output the bus voltage, generation and

load and the power flow to connected buses.

private static String busOrientedOutPut (AclfNetwork net, AclfBus bus) {

StringBuffer str

new StringBuffer ("");

str.append ("--—-—-—--- - - - - - -
—— \n");

str.append (" Bus ID Bus Voltage Generation Load

To Branch P+jQ Xfr Ratio PS-Xfr Ang\n");

str.append (" baseKV Mag/pu Ang/deg (mW) (mVar) (mW) (mVar)
Bus ID (mw) (mVar) (kA) (From) (To) (from) (to)\n") ;

22

http://www.interpss.org

InterPSS

Simple yet Powerful

Dev Tutorial

www.interpss.org

double baseKVA

net.getBaseKva () ;

AclfGenBusAdapter genBus

bus.toGenBus () ;

//get the generation and load

Complex busGen genBus.getGenResults (UnitType.mVA) ;

Complex busLoad genBus.getLoadResults (UnitType.mVA) ;

String id

bus.getId();

//output the bus data with specific format

"

str.append (Number2String.toStr (=12, id) + ") ;

str.append (String.format (" %s ", FormatKVStr.f (bus.getBaseVoltage()*0.001)));
str.append (Number2String.toStr ("0.0000", bus.getVoltageMag (UnitType.PU)) + "
str.append (Number2String.toStr ("##0.00", bus.getVoltageAng (UnitType.Deg)) + "

str.append (Number2String.toStr ("####0.00", busGen.getReal()) +
str.append (Number2String.toStr ("####0.00", busGen.getImaginary())
str.append (Number2String.toStr ("####0.00", busLoad.getReal()) +
str.append (Number2String.toStr ("####0.00", buslLoad.getImaginary()) + "

//output the data of branches connected to the bus
//
int cnt = 0;
//iterate over all the branches connected to the bus,

")
i

" "),.
" "),.

") ;

both in-service and

off-line
for (Branch br bus.getBranchList ()) {
if (br.isActive () && br instanceof AclfBranch) {
AclfBranch bra = (AclfBranch) br;
Complex pg = new Complex (0.0, 0.0);
double amp = 0.0, fromRatio = 1.0, toRatio = 1.0, fromAng =
0.0, toAng = 0.0;
AclfBus toBus = null;
if (bra.isActive()) {
// to determine whether the bus is at the from- or to-end of the
branch.
if (bus.getId() .equals(bra.getFromAclfBus () .getId())) {
toBus = bra.getToAclfBus /() ;
// power transfer from from-end to to-end of the
branch

23

http://www.interpss.org

InterPSS

Simple yet Powerful

www.interpss.org

Dev Tutorial

P9 = bra.powerFrom2To (UnitType.mVA) ;

//brnach current measured at Ampere.

amp = UnitHelper.iConversion (bra.current (UnitType.PU),

bra.getFromAclfBus () .getBaseVoltage (),baseKVA, UnitType.PU, UnitType.Amp) ;
//if the branch is a transformer, then output the tap ratio and
//phase-shifting angle, if any
if (bra.isXfr() || bra.isPSXfr()) {
fromRatio = bra.getFromTurnRatio () ;
toRatio = bra.getToTurnRatio();
if (bra.isPSXfr()) {
AclfPSXformer psXfr = bra.toPSXfr();
fromAng = psXfr.getFromAngle (UnitType.Deq) ;
toAng = psXfr.getToAngle (UnitType.Deqg) ;

}
} else {
toBus = bra.getFromAclfBus();
pg = bra.powerTo2From(UnitType.mVA) ;
amp = UnitHelper.iConversion (bra.current (UnitType.PU),
bra.getToAclfBus () .getBaseVoltage () ,baseKVA, UnitType.PU, UnitType.Amp) ;
if (bra.isXfr() || bra.isPSXfr()) {
toRatio = bra.getFromTurnRatio();

fromRatio = bra.getToTurnRatio();

if (bra.isPSXfr()) {
AclfPSXformer psXfr = bra.toPSXfr();
toAng = psXfr.getFromAngle (UnitType.Deqg) ;
fromAng = psXfr.getToAngle (UnitType.Deq) ;

}

// 1if more than one branch connected to the bus, output the branch

//information in a new line
if (cnt++ > 0)
str.append (Number2String.toStr (67,
id = toBus.getId();
str.append (" " + Number2String.toStr(-12, id) + " ");
str.append (Number2String.toStr ("####0.00", pg.getReal()) + " ");
str.append (Number2String.toStr ("####0.00",

n u) + " n);

pg.getImaginary()) + "

1] u);

str.append (Number2String.toStr ("##0.0##", 0.001 * amp) +

if (bra.isXfr() || bra.isPSXfr()) {
if (fromRatio != 1.0)

str.append (Number2String.toStr ("0.0###", fromRatio) + " ");

else
str.append (" ")

24

http://www.interpss.org

InterPSS

Simple yet Powerful
Dev Tutorial www.interpss.org
if (toRatio != 1.0)
str.append (Number2String.toStr ("0.0###", toRatio));
else
str.append (" ")
if (bra.isPSXfr()) {
if (fromAng != 0.0)
str.append (" " + Number2String .toStr ("##0.0",
fromAng)) ;
else
str.append (" ")
if (toAng != 0.0)
str.append (" " + Number2String.toStr ("##0.0",
toAng));
else
str.append (" ")
}
str.append ("\n") ;
} else {

str.append ("\n") ;

return str.toString();

As you have learnt the basic and core models of InterPSS, you can roll up sleeves and start to
play with InterPSS!

25

http://www.interpss.org

InterPSS

Simple yet Powerful

Dev Tutorial www.interpss.org

Chapter 3. Power system load flow
analysis

Introduction to power system load flow

The goal of a power-flow study is to obtain complete voltage angle and magnitude information for each
bus in a power system for specified load and generator real power and voltage conditions. For the
generator buses, the exact voltage angles are not provided and are to be determined. Generally
speaking, the voltage magnitude and the active power generation output are assumed to be known and
kept constant during the solution. Considering the nonlinear relationship between voltage and power,
load flow problem is a nonlinear problem by nature, numerical methods are employed to obtain a solution
that is within an acceptable tolerance. Once the bus voltage magnitudes and angles are known, real and
reactive power flow on each branch as well as generator reactive power output can be determined.

e Bus type
Based on the characteristics of the buses in the power system, they are usually categorized into three
types, namely, Swing or slack bus, PQ bus and PV bus. They will be explained with a 5-bus system
shown in Fig.3.1.

Swing/slack bus: Within one interconnected power system, a reference bus angle is required to
determine the angle of the rest of buses, analogous to a reference zero-voltage point in an electric circuit.
Also, as the total generation = total load + total loss in the system. The loss can not be exactly determined
before the load flow, thus generation output of at least one bus need to be determined by the load flow to
cover the system loss. This bus is called slack bus. For the sake of convenience, both swing and slack
bus are combined and modeled by one bus with (large) generator connected to it. The bus voltage
magnitude and voltage must be pre-defined (usually the angle is set to be zero degree). In the 5-bus
system, there are two buses that has generator, thus either one can be chosen to be the swing bus.
Suppose the Bus5 is selected as the swing bus.

2#

1.6+j0.8

Fig.3.1 One-line diagram of a 5-bus power system

PQ bus: PQ means the bus net power injection into the network is constant, or as a static function of the
voltage. This is usually used to model the substation serving local loads or a connection point in the
system without any generation or load. Thus, Bus1 , Bus2 and Bus3 are PQ type bus.

26

http://www.interpss.org

InterPSS

Simple yet Powerful
Dev Tutorial www.interpss.org

PV bus: the real power P and voltage magnitude V are known for this kind of bus. This is usually used to
model the bus with generator connected to it. Sometime a bus whose voltage is controlled by a local or
remote reactive source can also modeled as a PV bus. Bus4 is a PV type bus.

3.1 Data required for load flow analysis

Network data

Bus data, including load data and generation data.

Branch data, usually including both lines and transformers
Other optional: HVDC, switched shunt

3.1.1 System/network data
e BaseMVA - All the per unit in the system for load flow study is based on the system baseMVA,
which is usually set to be 100 MVA
e Area data, optional: For a large power system with multiple areas, area power interchange data
should be provided.
e Zone data, optional

3.1.2 Bus data

Basic data: bus Id, base voltage, bus type
Load data (if the bus serves load (s)) : Load can be modeled as constant P, constant current ,
constant admittance or a combination of the three, which is called ZIP type load.
e Generation data (if the bus has generator(s))
o PV bus: real power (P) and desired/scheduled voltage magnitude (V) must be provided,
while the reactive power generation limit is usually required.
o PQ bus: generation output (GenP + GenQ) must be defined and it is assumed to be

constant.
Line 2 Line |
Busld: bus|
BaseVolrage: 220KV
VoltageM 103 pu
Voltage Ang: 20 deg
GenList LoadList .
. | . Fixed
shunt
/—w\ Switched Transtromer 1

shunt

Load-1 Load-n -

Fig.3.2 AclfBus model in InterPSS

27

http://www.interpss.org

InterPSS

Simple yet Powerful

Dev Tutorial www.interpss.org

e Fixed shunt data: It can be a fixed rector or shunt capacitor. The Var can be specified in PU (on
system MVA rating) or MVAR = VA2*Bsh, Bsh is the bus fixed shunt.
e Switched shunt: the initial shunt, and the available var banks data is needed.

3.1.3 Branch data

e Basic branch data: fromBus, toBus, impedance Z, branch type
e Transmission line/cable: modeled as equivalent Pl model. Shunt admittance is required besides
the basic branch data
e Transformer
o Two-winding transformer: tap ratio is required, for phase-shifting transformer, the
phase-shifting angle is needed.
o Three winding transformer: tap ratio on each winding is required, winding equivalent
impedance Z12, Z23, Z13 should also be provided.

For further reading, please refer to the [IEEE Common data format document, and find out how these data
are documented and provided.

Please note that InterPSS itself does not have or limit to a specific data format for defining the data
required for load flow analysis. Instead, it supports those widely used in the industry, e.g., IEEE CDF,
PSS/E, PowerWorld, UCTE and BPA, through the adapters developed under the Open Data Model
(ODM) project.

28

http://www.interpss.org
http://www.ons.com.br/publicacao/ASC/Real-Time%20Stability%20Assessment/QuickStab_Theoretical_Foundation/IEEE_Common_Format_Spec.pdf

InterPSS

Simple yet Powerful

Dev Tutorial www.interpss.org

3.2. Supported power system models

Model Details

Generation one generator or multiple generators are allowed to connected to a bus.
When there are more than one generators, they will be merged to an
equivalent generator, whose genP is the total real power output of all

generators.

Load one load, or multiple loads are allowed to connected to a bus. constant
power, constant current, constant impedance and ZIP type of loads are
supported

Branch line, two-winding transformer and phase shift transformer, 3 winding
transformer.

Switched Shunt supported switched shunt upto 8 Var banks, with three control modes:

Fixed, Discrete and Continuous

Transformer correction compatible to the PSS/E model

table

HVDC can be modeled in core engine, but not supported in the load flow algorithm
yet

FACTs can be modeled in core engine, but not supported in the load flow algorithm
yet

3.3. Solution methods and internal sparse matrix data
structure

AC load flow is the core algorithm for power system analysis, with no exception to InterPSS. The following
three AC load flow solution methods are supported in InterPSS: Newton-Raphson, Fast Decoupled and
Gauss. Moreover, the function of one-step load flow solution is also provided in InterPSS, such that users
can run one-step solution and then check the result or apply adjustment or changes to the system, then
run the next step solution. At the center of power network solution is the solution of sparse matrix
equation

[Al x [x] = [B]

3.3.1 Newton-Raphson

Newton-Raphson (NR) is the default solution method in InterPSS. The NR implementation uses polar
coordinates. Jacobian matrix can be formed by calling aclfNetwork.formJMaxtrix(). The matrix is
represented by the SparseEqnMatrix2X2 class in InterPSS. For more information of the sparse matrix
used in InterPSS, please refer to the Appendix-A. The structure of the Jacobian-matrix is shown as

29

http://www.interpss.org

InterPSS

Simple yet Powerful

Dev Tutorial

www.interpss.org

follows:

i
58

28

i
o,

%
M

A8 [AER
AR | AG

e Power into the network is defined as the positive direction when calculating the power mismatch

(dP, dQ)

e Foreach bus, its elements in the Jacobian matrix is always represented by a 2X2 block matrix

[dP_dang dP_dV]
[dQ_dang dQ_dV]

This 2X2 block matrix is represented as Matrix_xy class in InterPSS, which has the following

structure
[xx xy]

[yx yy]

Thus, for a certain bus, if the corresponding Matrix_xy is obtained, then dP_dAng = Matrix_xy.xx ,

dP_dV = Matrix_xy.xy

Bus arrangement is optimized before forming the Jacobian matrix
The position of the vector [dPi, dQi] on the right hand side of the equation must be consistent with
the 2X2 submatrix with the Jacobian-matrix. In addition, both are arranged according to the bus

internal sortNumber.

For the purpose of customization, it is desirable to augment the original jacobian matrix in order to include
extra equations for a new model or control strategy. For such requirement, extra dimensions can be
added at the end of the J-matrix when calling the formJMatrix(n, msg) method, as shown in the following
equation. When n =1, two rows and two columns (fo be consistent with the internal 2X2 block storage
scheme) will be added on the right and bottom of the original Jacobian matrix. The extra columns and
rows could be used to implement new model, for example, SVC.

-

2

2

L)

-

&

(=¥
=

=¥

[>¥]
[

(=¥
1[om =
! s

AB AR
[|AF 1 |AG
AX | AF
LAY | [AF]

To implement a custom NR method, first step is to create a custom NR solver class, extending the
DefaultNrSolver class and overriding the three methods. The DefaultNrSolver has methods to build the [J]

30

http://www.interpss.org

InterPSS

Simple yet Powerful
Dev Tutorial www.interpss.org

part and associated items in the right-hand side of eqn(1) (APi, AQi), which should be inherited.

The DefaultNrSolver class defines the framework for customization. There are three methods to
override.

class CustomNrSolver extends DefaultNrSolver {
public CustomNrSolver (AclfNetwork net) {
//Reuse the constructor of the DefaultNrSolver class

super (net) ;

/**
* formJMatrix method is called at the beginning of each NR iteration
*/
@Override
public SparseEqnMatrix2x2 formJMatrix (IPSSMsgHub msg) {
// create network J-matrix with n extra-dimension
int n = 1;
SparseEgqnMatrix2x2 1fEgn = getAclfNet ().formJMatrix(n, msg);

// at this point the original power network J-matrix is already stored
// in the 1fEgn. You can add extra elements here
return 1fEqgn;

}
[**

* setPowerMismatch method is called at the beginning of each NR
iteration to calculate the power mismatch to update the vector on the
right hand side of the equation
*/
@Override
public void setPowerMismatch (SparseEgqnMatrix2x2 1fEqn) {
// calculate bus power mismatch. The mismatch stored on
// the right-hand side of the sparse eqgn

super.setPowerMismatch (1fEqgn) ;

// at this point, bus power mismatch already stored in B[1l, n]. You
// add extra data to the right-hand side of the egn

/**
* updateBusVoltage method is called at at the end of each NR iteration,
* after the sparse eqn has been solved. The results of the sparse eqn
* solution is stored in the sparse eqn.
*/

@Override

public void updateBusVoltage (SparseEgnMatrix2x2 1fEqn) {
// update the bus voltage using the solution results store in the

// sparse edqn
super.updateBusVoltage (1fEqgn) ;

// the solution result of the extra variable defined is stored at //B[n+l

31

http://www.interpss.org

InterPSS

Simple yet Powerful

Dev Tutorial www.interpss.org

As for the part of newly added columns and rows, which is corresponding the derivation of existing bus
and the newly added variables, if any, elements are of type Matrix_xy and are associated with bus object.
You need to use bus.sortNumber to decide the element position in the matrix, since the bus number has
been optimized to minimize the non-zero fill-ins in the LU decomposition. The following are some sample
code:

Matrix xy m = new Matrix xy();

m.xx = .. // define the element values

m.xy = ..

String id = ...; // get bus id associated with the element
Bus bus = aclfNet () .getBus(id);

int i = bus.getSortNumber(); // get bus sortNumber

n = aclfNet.getNoBus () ; // J-matrix dimension
1fEgn.setAij (m, i, n+l); // n+l point to the last column.

Then the custom NR solver class can be used to override the default NR solver in the LoadflowAlgorithm
object.

AclfNetwork aclfNet = ... // assume we have an AclfNetwork object

// create a Loadflow algo object
LoadflowAlgorithm algo = CoreObjectFactory.createloadflowAlgorithm (msg) ;

// set algo NR solver to the CustomNrSolver
algo.setNrSolver (new CustomNrSolver (aclfNet));

// apply the algo to the aclfNet object to run Loadflow analysis.
aclfNet.accept (algo) ;

3.3.2 Fast Decoupled
The mathematical expression of the Fast Decoupled model is as follows:

AP/V = [B1]A®
AQ/V = [B11]AV

where B1 and B11 matrix can be form by aclfNetwork.formB1Matrix() and aclfNetwork.formB11Matrix(),
respectively.

This solution algorithm can be used by setting the method of load flow algorithm:

LoadflowAlgorithm algo = CoreObjectFactory.createloadflowAlgorithm(net) ;
algo.setLfMethod (AclfMethod.PQ) ;

32

http://www.interpss.org

InterPSS

Simple yet Powerful

Dev Tutorial

www.interpss.org

3.3.3 DC load flow
(AP = BA®)

Note: The application of B matrix in DCLF to sensitivity analysis and contingency analysis is provided in

later chapter.

3.4 Adjustment During load flow

[Todo]
local adjustment: LfAdjustAlgorithm
system adjustment: NetAdjustAlgorithm

3.5 Configuration of load flow algorithm

setMaxlterations()

maximum iteration number

setTolerance()

tolerance in pu.

setInitBusVoltage()

This concerns whether flat start (bus voltage
magnitude 1.0, angle 0 degree) is enabled.

If the initBusVoltage set to be true, then flat start
will be used.

setLfMethod()

NR, PQ (Fast decoupled) are recommended.

setNonDivergent(boolean)

set true to use the non-divergent solution method
by solving the load flow with optimal acceleration
factor F as follows:x(k + 1) = x(k) + F * Ax

3.6 Example

3.6.1 Run load flow and output result

package org.interpss.tutorial.loadflow;

import
import
import
import
import
import
import

import

public

org.interpss.CorePluginObjFactory;
org.interpss.IpssCorePlugin;
org.interpss.display.AclfOutFunc;
org.interpss.fadapter.IpssFileAdapter;
com.interpss.CoreObjectFactory;
com.interpss.common.exp.InterpssException;
com.interpss.core.aclf.AclfNetwork;
com.interpss.core.algo.LoadflowAlgorithm;

class IEEE9BusLoadFlow {

33

http://www.interpss.org
http://www.vogella.com/tutorials/SpringDependencyInjection/article.html

InterPSS

Simple yet Powerful

Dev Tutorial www.interpss.org

public static void main(String[] args) throws InterpssException {
//Initialize logger and Spring config
IpssCorePlugin.init () ;

// import IEEE CDF format data to create a network object
AclfNetwork net = CorePluginObjFactory
.getFileAdapter (IpssFileAdapter.FileFormat.IEEECDF)
.load("testData/ieee/009ieee.dat")
.getAclfNet () ;

//create a load flow algorithm object

LoadflowAlgorithm algo = CoreObjectFactory.createlLoadflowAlgorithm(net) ;
//run load flow using default setting, which uses the NR method
algo.loadflow () ;

//output load flow result
System.out.println (AclfOutFunc.loadFlowSummary (net));

3.6.2 Customize NR load flow

package org.interpss.tutorial.loadflow;

import org.apache.commons.math3.complex.Complex;

import org.interpss.IpssCorePlugin;

import org.interpss.display.AclfOutFunc;

import org.interpss.numeric.datatype.Matrix xy;

import org.interpss.numeric.sparse.ISparseEqnMatrix2x2;

import com.interpss.CoreObjectFactory;

import com.interpss.core.aclf.AclfNetwork;

import com.interpss.core.algo.LoadflowAlgorithm;
import com.interpss.core.algo.impl.DefaultNrSolver;
import com.interpss.simu.util.sample.SampleCases;

public class CustomLoadFlowExample {

/**
* Define a custom NR solver

*
*/
static class CustomNrSolver extends DefaultNrSolver
public CustomNrSolver (AclfNetwork net) {

super (net) ;

/**

34

http://www.interpss.org

InterPSS

Simple yet Powerful
Dev Tutorial www.interpss.org
* formJMatrix method is called at the beginning of each NR iteration
*/
@Override
public ISparseEgnMatrix2x2 formJMatrix () {
// create network J-matrix with one extra-dimension
// such that upto two addtional equations can be considered
// and included in the augmented Jacobian equations.
ISparseEgnMatrix2x2 1fEqn = aclfNet.formdJMatrix (1) ;
// create a 2x2 matrix element
Matrix xy m = new Matrix xy();
m.xx = 2.0;
m.xy = 0.0;
m.yx = 0.0;
m.yy = 2.0;
// set the matrix element to J-matrix
int n = aclfNet.getNoBus/();
// index is O-based, which means the index originally is
//0,1...n-1, now the last element index is n
l1fEgn.setA(m, n, n);
return 1fEqgn;
}
// this is dummy variable for setting the extra mismatch field
private double mis = 1.0;
/ * %
* setPowerMismatch method is called at the beginning of each NR
* iteration
*/
@Override
public void setPowerMismatch (ISparseEgnMatrix2x2 1fEqn) {
// calculate bus power mismatch. The mismatch stored on
// the right-hand side of the sparse eqgn
super.setPowerMismatch (1fEqgn) ;
// define a 2x1 vector
Complex b = new Complex (1.0, 1.0);
// set the vector to the right-hand side of the sparse eqgn
int n = aclfNet.getNoBus();
//Again, index is O-based, which means the index originally is
0,1...n-1, and now the last element index is n

1fEgn.setB (b, n);

35

http://www.interpss.org

InterPSS

Simple yet Powerful

Dev Tutorial www.interpss.org

/**

* updateBusVoltage method is called at at the end of each NR
iteration, after the sparse egn has been solved. The results
of the sparse eqn solution is stored in the sparse eqgn.

*/

@Override

public void updateBusVoltage (ISparseEgnMatrix2x2 1fEqn) {
// update the bus voltage using the solution results
// store in the sparse eqn
super.updateBusVoltage (1fEqgn) ;

// the solution result of the extra variable defined is

//stored at B(n)

int n = aclfNet.getNoBus() ;

System.out.println("mis: " + this.mis + " ---> " +
1fEgn.getX(n));

// reduce the dummy variable so that the loadflow can converge
this.mis *= 0.1;

public static void main(String args([]) {
//Initialize logger and Spring configuration
IpssCorePlugin.init () ;

// create a sample 5-bus system for Loadflow
AclfNetwork net = CoreObjectFactory.createAclfNetwork();
SampleCases.load LF 5BusSystem(net);
//System.out.println (net.net2String());

// create a Loadflow algo object
LoadflowAlgorithm algo =
CoreObjectFactory.createloadflowAlgorithm() ;

// set algo NR solver to the CustomNrSolver
algo.setNrSolver (new CustomNrSolver (net));

// run Loadflow, the custom NR Load flow algorithm is regarded
//as a visitor

net.accept (algo);

// output loadflow calculation results
System.out.println (AclfOutFunc.loadFlowSummary (net)) ;

36

http://www.interpss.org

InterPSS

Simple yet Powerful

Dev Tutorial www.interpss.org

3.7 N-1 Contingency Analysis

37

http://www.interpss.org

InterPSS

Simple yet Powerful

Dev Tutorial www.interpss.org

Chapter 4. Short circuit analysis

Introduction to short circuit analysis

e Superposition method
The basic assumption of short circuit is that, during the very short period of interest (right after the fault),
the fault current contributing sources, mainly generators and induction motors, can be regarded as
constant voltage sources behind their corresponding impedances (usually either transient or subtransient
impedance will be used). The voltage source are known, either based on the load flow solution or
regarded as flat (vmag =1.0 pu). Further, the loads are all converted to the constant impedances. With
these assumption and simplification, the network is a basically a linear circuit. From the electric circuit
course, we learnt that the superposition theorem is valid for linear circuit and it is a powerful “tool” to
analysis this kind of circuit.

Based on the superposition method, the total effect of network under the fault could be separated into two
parts: 1) the effect of normal operation and 2) the effect of the fault current, which is illustrated in Fig.4.1.

() Q) | |

System with fault

O

fault

1

(Vactual)

fault

O

System without +

(Vnormal)

System without
source

(Vfault)

Fault
current

O

-

Fig.4.1 Superposition method for short circuit analysis
With this method, bus voltage is calculated by
Vactual = Vnormal + Vfault

where Vnormal is the pre-fault, normal operation voltage, Vfault is the bus voltage with the only source in
the system is the fault current injection a the fault point.

Regarding the calculation of the fault current, it can be directly calculated through network solution for
balanced faults. For unsymmectrical fault it is based on the symmetrical component and the positive
sequence equivalent method, which will be discussed in the following.

e Symmetrical component method
In the paper[1], Fortescue found that a system of three unbalanced phasors can be transformed into two
sets of balanced phasors and an addltional set of phasors, which are identical. These three sets of
phasors are known as positive-, negative- and zero- sequence components. Under the condition of three
phase symmetric impedance, the three components of the network are decoupled, which means they
can be analyzed separately. Most of the actual power systems satisfy such condition, thus, the
three-component methods is widely used. Based on the fault point boundary condition, the three

38

http://www.interpss.org

InterPSS

Simple yet Powerful

Dev Tutorial

www.interpss.org

sequence networks are built and connected. Furthermore, the voltage sources only exist in positive
sequence network, while there is no voltage source in negative- and zero- sequence network, thus both
are passive circuit networks, and can be treated as equivalent impedance viewed at the fault point of the
positive sequence network. This is the so-called positive sequence equivalent method.

For more information of the sequence impedance of each model and building of sequence network,
please refer to the following references for short circuit analysis :

e English: P.M.Anderson, “Analysis of fault power systems”
e Chinese: I, BARKREDHHT(F2/3MR)

4.1 Power system sequence data

Model

Positive sequence

Negative sequence

Zero sequence

Generator

positive sequence
impedance

Generator sub-transient
or transient impedance
can be used here

Same as the positive
sequence unless
otherwise specified

Same as the positive
sequence unless
otherwise specified.
However, usually it is
less than positive
sequence.

Load

All the loads are
converted to constant
impedance based on
the bus voltage.

Same as the positive
sequence unless
otherwise specified

zero by default (due to
the Delta-Wye
connection of
distribution
transformer), unless
otherwise specified

Non-transformer

same as the load flow
data

Same as the positive
sequence unless
otherwise specified

zero impedance is
2.5-3.5 times of the
positive impedance

* zero sequence mutual
impedance between
two parallel lines is not
supported yet

Transformer

same as defined in the
load flow data

Impedance is Same as
the positive sequence
unless specified;
Phase shift angle
become opposite

Attention must be paid
to the transformer
winding connection.
The connection and
grounding info must be
provided.

if zero sequence path
available, zero
impedance is same as
the positive impedance

39

http://www.interpss.org

InterPSS

Simple yet Powerful

Dev Tutorial

www.interpss.org

Switch shunt

same as defined in the
load flow data

Same as the positive
sequence unless
otherwise specified

zero by default, unless
otherwise specified

HVDC

regarded as open or
convert to equivalent

zero by default, unless
otherwise specified

load at terminals

Note: Currently, InterPSS supports the sequence data input with PSS/E V30 format, which is used in the
second example in Section 4.5. A sample sequence data of IEEE 9 Bus is provided in the
org.interpss.tutorial/testdata/psse/IEEE9Bus (download)

4.2 Bus based simple short circuit

Simple bus fault, symmetric and un-symmetric, is shown below:

3-Phase L-G Fault LL-G Fault L-L Fault
—t————— - - - fo———————— = Fom
|t —— —- [—=4=—=—— = | ————- I e | —————- e
e e e e b el | -—==- += -=|-—-=-- | -===—- +-
| | | Lo \ | \ \ | \
| | | | z11/2 711/2 z11/2 711/2 |
Z1lg Zlg Zlg Z1lg \ \ \ |
| | | | ===+ Fo—m——- +
fo—— | -——+ | z1lg
| | |
Positive sequence equivalent
e 3-Pfault
zeq = zlg
e L-Gfault
zeq = zdd0 + zdd2, i1=i2=i0
zdd0 = zddO(net) + 3*ZIg
zdd2 = zdd2(net)
e L-L fault
zeq = ZIl/2 + zdd2, i2 =-i1,i0=0
zdd2 = zdd2(net) + ZIl/2
e LL-Gfault
zeq = zll/2 + zdd0 || zdd2;
zdd2 = zdd2(net) + ZIl/2
zdd0 = zddO(net) + ZIl/2 + 3*ZIg
Note:

Zlg : Phase to ground impedance

ZIl : Total phase to phase impedance for Line to Line fault.

zddO: The zero sequence equivalent impedance viewed at the fault point
zdd2: The negative sequence equivalent impedance viewed at the fault point

Negative- and zero- sequence current i2 and i0 are calculated based on positive sequence voltage v1 on

40

http://www.interpss.org
https://github.com/InterPSS-Project/ipss-common/blob/master/ipss.tutorial/testData/psse/IEEE9Bus/ieee9.seq

InterPSS

Simple yet Powerful

Dev Tutorial www.interpss.org

the fault point.

4.3 Branch based simple short circuit
[Todo]

4.4 Short circuit analysis in InterPSS
4.4.1 Create ACSC network

There is two ways to create an ACSC network object, one is through the input util provided by InterPSS,
the other is by importing the industry standard data (currently only accept PSS/E v30 sequence data)

e Method 1: AcsclnputUtilFunc and API

//create an acsc Bus
AcscInputUtilFunc.addScNonContributeBusTo (net, IdPrefix+"1", "Bus-1", 13800, 1,
1)

//create an acsc Branch

AcscBranch bra = CoreObjectFactory.createAcscBranch();
bra.setBranchCode (AclfBranchCode.LINE) ;

bra.setZ(new Complex(0.0, 0.25));

bra.setZ0(new Complex(0.0,0.7));

net.addBranch (bra, IdPrefix+"1", IdPrefix+"2");

For a complete example, please refer to the load_SC_5BusSystem (AcscNetwork net) method in
Acscb5BusExample.Java

Note: As all the data is set by coding, This method, if directly used, is suitable for defining a small system.
However, you may use the APIs and develop your customized data importer, to load data from csv, excel
or any other format data file to create an Acsc network.

e Method 2:PSSEAdapter
An example of using the PSSEAdapter to import and create an ACSC network object is provided below:

PSSEAdapter adapter = new PSSEAdapter (PsseVersion.PSSE 30);
assertTrue (adapter.parselnputFile (NetType.AcscNet, new Stringl[]{
"testData/psse/IEEE9Bus/ieee9.raw",
"testData/psse/IEEE9Bus/ieee9.seq"
1))

AcscModelParser acscParser =(AcscModelParser) adapter.getModel () ;

AcscNetwork net = new
ODMAcscParserMapper () .map2Model (acscParser) .getAcscNet () ;

41

http://www.interpss.org
https://github.com/InterPSS-Project/ipss-common/blob/master/ipss.tutorial/src/org/interpss/tutorial/ch4_shortCircuit/Acsc5BusExample.java

InterPSS

Simple yet Powerful

Dev Tutorial www.interpss.org

4.4.2 Define a fault

Information needs to define a fault:
e fault point, bus or branch
e fault type
e fault impedance, including zlg and zl|

Here is an example of defining a 3-phase bus fault:

AcscBusFault fault = CoreObjectFactory.createAcscBusFault ("Bus4", acscAlgo);
fault.setFaultCode (SimpleFaultCode.GROUND 3P); // fault type
fault.setZLGFault (new Complex (0.0, 0.0)); // fault impedance zlg
fault.setZLLFault (new Complex (0.0, 0.0)); // fault impedance zll

4.4.3 Calculate short circuit

The setting of the pre fault bus voltage profile--is required. It can be based on the solved power flow
(ScBusVoltageType.LOADFLOW_VOLT) or Flat voltage (ScBusVoltageType.UNIT_VOLT)

Example:
//pre fault profile : solved power flow
acscAlgo.setScBusVoltage (ScBusVoltageType.LOADFLOW VOLT) ;
acscAlgo.calculateBusFault (fault);

4.4.4 Obtain results
e Fault current: either abc or 012 coordinate
fault.getFaultResult () .getSCCurrent 012();
e Bus voltage: either abc or 012 coordinate

fault.getFaultResult () .getBusVoltage 012 (Bus);

4.5 Example

The corresponding code of the examples is provided in the ch4_shortcircuit package of the tutorial
project

4.5.1 Build a system for short circuit analysis
See the example of Acsc5BusExample.java

4.5.2 Single Short circuit analysis with load flow and sequence data
See the example of IEEE9Bus_Acsc_test.java

42

http://www.interpss.org
https://github.com/InterPSS-Project/ipss-common/blob/master/ipss.tutorial/src/org/interpss/tutorial/ch4_shortCircuit/Acsc5BusExample.java
https://github.com/InterPSS-Project/ipss-common/blob/master/ipss.tutorial/src/org/interpss/tutorial/ch4_shortCircuit/IEEE9Bus_Acsc_test.java

InterPSS

Simple yet Powerful
Dev Tutorial www.interpss.org

4.5.3 Parallel short circuit screening analysis
See the example of

Reference:
[1] Fortescue, Charles L. "Method of symmetrical co-ordinates applied to the solution of polyphase
networks." American Institute of Electrical Engineers, Transactions of the 37.2 (1918): 1027-1140.

43

http://www.interpss.org

InterPSS

Simple yet Powerful

Dev Tutorial www.interpss.org

Chapter 5. Transient stability simulation

5.1 Introduction to transient stability simulation

e Electromechanical transient stability
Transient stability is the ability of the power system to maintain synchronism when subjected to a severe
transient disturbance such as a fault on the transmission line, loss of large generation or loss of large
load. The synchronism is mainly measured by the largest generator angle difference among all the
generators, thus it is heavily related to the dynamic response of the generators to the fault, which is
governed by both their mechanical input and electrical output. Thus the stability of concern is also known
as electromechanical transient stability.

e Stability studies with positive sequence network
Power systems are usually operated under balanced conditions, and such three-phase systems can be
represented by an equivalent single-phase network, with all voltage and currents represented in phasor
form. When unsymmetrical faults are considered, the three-phase system can be modeled as three
symmetrical systems ,i.e., positive-, negative- and zero- sequence systems, using the symmetrical
component method. Considering that the motion of the generators is mainly affected by the positive
sequence, and that the negative- and zero-sequence voltage and currents are not of interest in stability
studies, stability studies can concentrate on positive sequence network, with the overall effects of the
negative and zero sequence network on the positive sequence represented by effective equivalent
impedance viewed at the fault point, which is shown as follows:

L. Fault type Z,
{Id * F Line-to-ground Z,+Z,
Vi | Pos. seq. netwlé)rk Line-to-line Z,
I -
. 2,2,
Double line-to-ground
Loy Z,*Z,
Three-phase 0

Fig.5.1 Positive sequence equivalent method [1]

Diagram below shows the key models of interest (generation, load and the network) and the interactions
of them

44

http://www.interpss.org

InterPSS

Simple yet Powerful
Dev Tutorial www.interpss.org
- — TTx - Tk
i | Stator equations and Ep, E; _
i axes transformation | [, [; Transmission L } Other generators
L - network
== i equations
! * % H
i wx 1 including } Motors
| || Generator itati | || static loads
1 - .
i |l rotor circuit Excitation | .
; ti system ! Other dynamic
| || cavations : "} devices, e
| Il , €.8.,
i || Acceleration or Prime mover f i HVDC, SVC
| . 1=
| || swing equation governor ';
[- - L R
Individual machine Common reference
reference frame: d-g frame: R-1

* Algebraic equations
** Differential equations

Fig.5.2 Structure of the complete power system model for transient stability simulation[1]

With the network modeled by nodal admittance, the network loading components (load, generator, SVC,
HVDC, etc) are converted into Norton equivalents of injected currents in parallel with admittance. For
constant impedance load, the current injection is zero. The equivalent admittances are added into the
network to form a modified admittance matrix. The the network equation becomes:

(11 =[YIIv]
Solution process is summarized as follows:

(1) For each loading component, calculate the current injections by solving its differential and
algebraic equations.
(2) Determine network voltages from the injection currents

As the bus voltages affect the loading components, an iterative process is required for the above two
steps.

5.2 Dynamic models

5.2.1 Machine model
1) Machi tol [n 2 DStabE

Recall the bus model depicted in Fig.2.3, the generator for load flow study is modeled by a AclfGen,
which is an entry in the GenList of a bus. For dynamic study, DStabGen model is used, and it is extended

from the AclfGen with the following hierarchy structure:
AclfGen — AcscGen «— DStabGen

45

http://www.interpss.org

InterPSS

Simple yet Powerful
Dev Tutorial www.interpss.org

Machine is not directly connecting to a bus, instead, it is contained within a DStabGen object. The
relationships among the bus, dstabGen, machine, and other machine controllers (turbine-governor,
exciter and pss) can be illustrated by the following Fig.5.3. Thus, a dstabGen must be created and added
to the genList before the creation and modeling of a machine. This requirement is also applied to a
machine controller as to a machine.

Bus

GenList

' 'y

‘ J ‘ b

Fig.5.3 Relationships of controller, machine, dstabGen and bus

2) Machine models of different levels of modeling details

InterPSS machine model implementation is based on IEEE Std 1110™-2002: IEEE Guide for Synchronous
Generator Modeling Practices and Applications in Power System Stability Analysis. Currently the
following models are implemented.

Tab.5.1 Machine models

InterPSS Machine IEEE Std Modeling consideration Note
Model 1110-2002 axis windings
Model
EConstant N/A N/A e classical model or

constant voltage behind
reactance model
e 2 order

InfinitBus N/A N/A e To model the infinite
bus, similar to classical
modell with very large
machine MVA, e.g.,
999999 MVA

46

http://www.interpss.org

InterPSS

Simple yet Powerful

Dev Tutorial

www.interpss.org

e 2 order

damper winding D
e Q-axis: damper
winding Q and G

Eq1 Model IEEE 1.0 Only field winding f e Salient pole model
e 3 order
Eq1 Ed1 Model IEEE 1.1 e d-axis: field winding f e Two-axis model
e (-axis: Q damper e 4 order
winding
E11 Round Rotor IEEE 2.2 e d-axis: field winding f, e detailed model for round

rotor machines,
e 6 order

E11 Salient Pole IEEE 2.1 e d-axis: field winding f,
damper winding D

e (-axis: damper
winding Q

e detailed model for
salient pole machines,
e 5order

Tab.5.2 Machine modeling parameters and unit

Parameter Unit
Machine rating—Rating MVA
Machine rated voltage—Rated Volt V
Shaft Mechanical Damping Factor—D %MW/Hz
Armature Leakage Reactance—XI pu
Armature Resistance—Ra pu
Synchronous-Direct Axis Reactance—Xd pu
Synchronous-Quadrature Axis Reactance—Xq pu
Transient-Direct Axis Reactance—Xd1 pu
Transient-Quadrature Axis Reactance—Xq1 pu
Open Circuit Transient-Direct Axis Time S
Constant—Td01
Open Circuit Transient-Quadrature Axis Time s
Constant—Tq01
Subtransient-Direct Axis Reactance—Xd11 pu
Subtransient-Quadrature Axis Reactance—Xq11 pu

47

http://www.interpss.org

InterPSS

Simple yet Powerful
Dev Tutorial www.interpss.org

Open Circuit Subtransient-Direct Axis Time s
Constant—Td011

Open Circuit Subtransient-Quadrature Axis Time s
Constant—Tq011

Saturation Factor at 100% Terminal Voltage—Sg o %
Saturation Factor at 120% Terminal Voltage—Sg 5o %
Poles optional, for information only

Please Note :

e Per Unit system - All machine parameters, you entered into InterPSS are, assumed based on the
machine rating and machine rated voltage. Internally, these machines are transferred to the
system Kva base and the bus base voltage, to which the machine is connected to, when
necessary.

Machine output - All machine output, such as Pm, Pe are based on machine rating.
Round rotor model:

% - ?T}:D[Efq — kel + Gy — DEY] |
e (B — B — (X4 = X"
% _ ’I}qo[_ EE G+ (b, — 1DE"]
di'd _ ?'}fqo[E"’ — E"+ (X', — X")1,]
b Xa Xy o X =X
X=X 0 Xy~ XY,

e Salient rotor model:
It is almost the same as above, except there is only one damper winding in g axis, therefore this is no
modeling of E’d , with xX'q = x"q and T'q0 = 0.

(3) Modeling the effects of saturation

e Default method: Quadratic function:

E is the input and A and B are determined by fitting the two points input as generator parameters, i.e.
(1.0, 81.0) and (1.2, S1.2)

e Other available methods:
o Exponential function

48

http://www.interpss.org

InterPSS

Simple yet Powerful

Dev Tutorial www.interpss.org

c - X
S =8 ,xE

where:

where X = m and E is the input.
o Three section method

Saturation data input
Sliner - Voltage at the End Point of Liner Area on Generator OCC Curve. 0.8-0.9 pu is recommended

When |E|<V, X=X +X;
When 13z|E|>F, =X ok,
When |E,[>1.3 X, (t)=X %K 5
Where,

V., . Sgmw .« Sgyp are parameters defined by user.

Spioo . Sgpp arelessthan 100% and Sz = Spp -

E,=Vss+I+X, air-gapvoltage, ¥, I are machine terminal bus volitage and machine current.
Xoa=X ;=X

K =104 AEB) [E-:-vn]fli.EJ

K.p=10+4e"" 2V E]

Voltage or
flux linkage
Slope = L,
111
Y2
=13 pu
I
Yy g
1
ifg or MMF

5.2.2 Excitor

[Todo] Add more description

5.2.3 Turbine and governor
[Todo] Add more description

5.2.4 PSS

[Todo] Add more description

49

http://www.interpss.org

InterPSS

Simple yet Powerful

Dev Tutorial www.interpss.org

5.2.5 Load model

Now the loads can be represented as constant current, constant impedance and constant power types of
load for transient stability simulation. Constant power load is converted to constant impedance load based
on the load flow result, by default, within the DStabNetwork initialization process.

[Todo] Add more description

5.2.7 Bus Frequency Measurement

Bus frequency is measured by the change rate of bus voltage angle. The transfer function for the
measurement is shown in the following diagram:

= Horky | S5

{1} s
T’ 1417 "
Hu T.o‘ﬂ

Fig.5.4 Bus frequency measurement block diagram

The following values are set:

Tf=0.01 sec
Tw =0.01 sec

You can modify the properties/coreLibContext.xml to change their values:

<bean id="busFreqgMeasurementImpl"
class="org.interpss.dstab.measure.BusFregMeasurementImpl"
scope="prototype">
<constructor-arg index="0"><value>0.01l</value></constructor-arg>
<constructor-arg index="1"><value>0.01</value></constructor-arg>
</bean>

InterPSS bus frequency implementation Java source code can be found Here.

5.3 Numerical Solution

As shown by the diagram in section 5.1, the dynamic components in power system, for example, the
generators and controllers, are modeled by ordinary differential equations, while the transmission network
and the static loads are represented by algebraic equations. Thus, in general, the power system for
transient stability simulation can be modeled as Differential Algebraic equations (DAESs):

~

X = FX,V) (56.1)
IX,V) = YV (5.2)

50

http://www.interpss.org
http://interpss.googlecode.com/svn/trunk/ipss.plugin/src/org/interpss/dstab/measure/BusFreqMeasurementImpl.java

InterPSS

Simple yet Powerful

Dev Tutorial www.interpss.org

There is generally two solution methods for the DAEs above, one is iterative method and there other is to
solve both simultaneously using implicit solution, e.g. Trapezoidal method. InterPSS choose the former
method. For each step, differential equations for the dynamic models (Eqn. 5.1) are solved first using the
Modified Euler method, then the dynamic models interface with the network as Norton Equivalent (i.e.,
current sources in parallel with equivalent admittance).

As the interface error exists for the iterative method, iteration between network equation and dynamic
model solution is often required to eliminate such errors. During the period when the system experiences
considerable changes in the state variables, the iteration is conducted for 6 times, while maximum
iteration is set to be 4 for the rest of the simulation.

5.4 Simulation procedure

Simulation setting

Simulation data:

Power flow + Dynamic event Perform Output
Dynamic data setting (contingency simulation results
+ Sequence data

or set-point change)
(optional}

Output/monitoring
setting

Fig.5.5 Flow diagram of InterPSS transient stability simulation procedure

5.4.1 Simulation data preparation

For transient stability simulation, load flow data and the dynamic model data is the minimum required data
to conduct transient stability simulation for symmetrical fault. The sequence network data must also be
included when any unsymmetrical fault is considered.

Now InterPSS supports load flow data defined in a variety of formats, for example, IEEE CDF,
PSS/E(V29-V33), PowerWorld (v16), GE PSLF. However, for the dynamic model and sequence network
data, the ODM adapter now supports the PSS/E and PSD-BPA format data as well as data in ODM/XML
format. Dynamic models defined in other formats might be supported in the near future.

5.4.2 Simulation setting

Simulation time DynamicSimuAlgorithm total simulation time in
.setTotalSimuTimeSec() seconds
Simulation time step DynamicSimuAlgorithm should be less than half of the
.setSimuStepSec() smallest time constant in the
system
Simulation method DynamicSimuAlgorithm.setSimuMethod(now ONLY the modified euler

DynamicSimuMethod.MODIFIED EULER) is supported.

Reference machine DynamicSimuAlgorithm..setRefMachine(Machineld is formed as:
dsNet.getMachine(Machineld)); Busld_Generatorld

51

http://www.interpss.org

InterPSS

Simple yet Powerful
Dev Tutorial www.interpss.org
Network solution dsNet.setNetEgnlterationWithEvent(int); The default values are 6 (with
iteration (optional) dsNet.setNetEgnlterationNoEvent(int); any change) and 4 (no
event), respectively

5.4.3 Event setting

The event concept in InterPSS includes both the faults or device setPoint changes.

Event type Note
Bus_Fault all kinds of bus faults, LG, LL, LL-G, 3P
Branch_Fault
Branch_Outage
Branch_Reclose
Load_Change
SetPoint_Change Control reference set point change, e.g., Vref

(1) Fault setting

(a) Bus fault

Bus fault needs to specify the 1) fault bus, 2) fault type and 3) fault impedance (ZLG and ZLL).
Simple bus fault, symmetric and un-symmetric, is shown below:

3-Phase L-G Fault LL-G Fault L-L Fault
——tm— = fom— == fomm - Fomm -
==t == [==F= == | —=——= tommm—— == [—===== Fommmm
===t == l==l==t-- === | —==—= +- === | ====== +-
| | | [| | | | \ |
| | | | z11/2 211/2 711/2 711/2 |
Zlg Zlg Zlg Zlg | | | \
I I | | Fe— -t Fommm - +
e + Zlg

Note: Any kind of network topology and/or parameter setting change, e.g., fault or reference point setting
change, is modeled as an Event in InterPSS.

An example for creating a three phase solid ground fault is given below:

52

http://www.interpss.org

InterPSS

Simple yet Powerful

Dev Tutorial www.interpss.org

// define an event, set the event id and event type.

DynamicEvent eventl = DStabObjectFactory.createDEvent ("BusFault3P@"+faultBusId,
"Bus Fault 3P@"+faultBusId, DynamicEventType.BUS FAULT, net);

eventl.setStartTimeSec (startTime) ;

eventl.setDurationSec (durationTime) ;

// define a bus fault

DStabBus faultBus = net.getDStabBus (faultBusId);

AcscBusFault fault = CoreObjectFactory.createAcscBusFault ("Bus Fault
3P@"+faultBusId, net);

fault.setAcscBus (faultBus) ;

fault.setFaultCode (SimpleFaultCode.GROUND 3P) ;

fault.setZLGFault (NumericConstant.SmallSc?Z) ;

// add this fault to the event, must be consist with event type

// definition before.
eventl.setBusFault (fault);

The event can be added to the DStabilityNetwork before running the dynamic simulation as follows:
DStabilityNetwork.addDynamicEvent (eventl)

(b) Branch Fault

distance

|
I 5

k1

Shart Circuit Outage

There are two types of branch fault: short circuit and outage, as shown in the above diagram.

e Branch Short Circuit : Branch short circuit is simulated by creating an equivalent fault bus some
distance from a terminal bus.

e Branch outage : Branch outage is modelled by inserting an equivalent Z between the two
terminal buses.
[TODO] Add more sample for other types of events

5.4.4 Monitoring and output
(1) State Variable Recorder

The usage of state variable recorder can be found in the IEEE 9 Bus example

DStab_|IEEE9Bus_Test.java under the ch5_dstab of the tutorial.

StateVariableRecorder ssRecorder
= new StateVariableRecorder (0.0001); // time tolerance
ssRecorder.addCacheRecords ("Bus2-machl", // mach id
MachineState, // record type

53

http://www.interpss.org
https://github.com/InterPSS-Project/ipss-common/blob/master/ipss.tutorial/src/org/interpss/tutorial/ch5_dstab/DStab_IEEE9Bus_Test.java

InterPSS

Simple yet Powerful
Dev Tutorial www.interpss.org

DStabOutSymbol.OUT SYMBOL MACH ANG, // state variable name
0.005, // time steps for recording
1000) ; // total points to record

// set the output handler
dstabAlgo.setSimuOutputHandler (ssRecorder) ;

//Note: Here the dstab simulation part is skipped.

// output recorded simulation results after the simulation.
List<StateRecord> list = ssRecorder.getMachineRecords (
"Bus2-machl", MachineState,
DStabOutSymbol.OUT SYMBOL MACH ANG) ;

System.out.println ("\n\n Bus2 Machine Anagle");

for (StateRecord rec : list) {
System.out.println (Number2String.toStr (rec.t) + ", " +
Number2String.toStr (rec.variablevalue)) ;

Per the setting above, the state variables recorder will keep a record of the machine angle of the Machine
with Id “Bus2-mach1”, for every 0.005 seconds. We recommend users setting the time step to be one or
multiple times the simulation time step. After the simulation

(2)State Monitor

Different from the stateVariableRecorder, which is time-stamped, and variables have to defined one by
one. StaeMonitor is designed to help user easily monitor multiple important variables, e.g., machine
angle, pe, pm, efd, bus voltage and angles, with easy setting and output. It is simulation step based.

The usage of the stateMonitor is demonstrated as follows:

StateMonitor sm = new StateMonitor();

//sm.addGeneratorStdMonitor (machId)
sm.addGeneratorStdMonitor (new String[] {"Busl4931-machl"});

//sm.addBusStdMonitor (busId)
sm.addBusStdMonitor (new String[]{"Bus24151","Busl5021","Bus24085"});

// set the output handler of DStabAlgorithm
dstabAlgo.setSimuOutputHandler (sm) ;

// set output frequency, measured by steps
dstabAlgo.setOutPutPerSteps (1) ;

54

http://www.interpss.org

InterPSS

Simple yet Powerful

Dev Tutorial www.interpss.org

// after the simulation, output the monitored variables or parameters:

System.out.println (sm.toCSVString (sm.getMachAngleTable()));
System.out.println (sm.toCSVString (sm.getBusAngleTable()));
System.out.println (sm.toCSVString (sm.getBusVoltTable()));

//or save it to a csv file
FileUtil.writeText2File ("E:/mach angle.csv",
sm.toCSVString (sm.getMachAngleTable()))

Output sample: Bus voltage

time,Bus30000, Bus14931, Bus24801, Bus24085, Bus47216, Bus15021, Bus24151
0.000, 1.030, 1.000, 1.036, 1.007, 1.020, 1.060, 1.049,

0.004, 1.030, 1.000, 1.036, 1.007, 1.020, 1.060, 1.049,

0.008, 1.030, 1.000, 1.036, 1.007, 1.020, 1.060, 1.049,

0.013, 1.030, 1.000, 1.036, 1.007, 1.020, 1.060, 1.049,

5.4.5 Load flow and system initialization

Load flow result is always required to determine the operating point of the system before any fault is
considered.

DynamicSimuAlgorithm dstabAlgo =....

LoadflowAlgorithm aclfAlgo = dstabAlgo.getAclfAlgorithm() ;
aclfAlgo.loadflow() ;

// make sure load flow is converged before dstab initialization

System initialization is then performed based on a converged load flow result, and it mainly includes four
parts:
e Generator initialization:

o Map generator sequence network data to the bus which it connects to, to form the
equivalent admittance (Recall that the generators are converted and represented as
current source in parallel with equivalent admittance, Yeq = 1/ Zsource)

o Initialize variable states of generators and their controllers

e Load conversion
Constant power load is usually to constant admittance load: YLoad = (PL-j*QL)/V*2 and added to the bus
shunt admittance.

e Device initialization
For other dynamic devices except generators, for example, induction motors, initialization process is also
required to determine the states under pre-fault conditions.
° Form the positive sequence admittance matrix, which will be used in the network equation
solution I= YV during simulation.

- Syntax: DynamicSimuAlgorithm.initialization ()

55

http://www.interpss.org

InterPSS

Simple yet Powerful

Dev Tutorial www.interpss.org

5.4.6 Simulation

e Normal (successive) simulation
.Syntax: DynamicSimuAlgorithm.performSimulation ()

e One-step simulation
For customization or extension purpose, one might what to stop after each or certain step, then make
some changes or control to the system and continue to the next step simulation. In this regard, a so-call
"one step simulation” function is provided

(1) perform One-step Simulation
Syntax: DynamicSimuAlgorithm.solveDEgnStep (boolean updateTime)

(2) get current time in sec during simulation
Syntax: DynamicSimuAlgorithm.getSimuTime ()

5.6 Data check and auto correction

Model data check is performed as part of the initialization process, while limited data correction have
been considered so far.

5.7 Development of nhew dynamic device
[Todo]

5.8 Example

e |EEE 9 Bus system
This example within the tutorial under the ch5_dstab package includes all the steps of running dynamic
simulation in InterPSS.

e |EEE 39 Bus system

e Development of SVC as a new dynamic device

Reference
[1] Kundur, Prabha. Power system stability and control. New York: McGraw-hill, 1994.

56

http://www.interpss.org

InterPSS

Simple yet Powerful

Dev Tutorial www.interpss.org

Chapter 6. Power system optimization
through integrating InterPSS with GAMS

The purpose of this document is to provide instruction, including sample code, for InterPSS and
GAMS integration.

6.1 GAMS V24

(1) Overview of GAMS new API

The object-oriented GAMS API allows the seamless integration of GAMS into an application by
providing appropriate classes for the interaction with GAMS. The GAMSDatabase class for in-memory
representation of data can be used for convenient exchange of input data and model results. Models
written in GAMS can be run with the GAMSJob class and by using the GAMSModelinstance class a
sequence of closely related model instances can be solved in the most efficient way. There are three
versions of the object-oriented GAMS API: Java, Python and.NET. These APIs work with Java SE 5 and
up, Python 2.7, and .NET framework 4 (Visual Studio 2010) and up. For details: see

http://www.gams.com/dd/docs/api/

It is recommended to read through the GAMS Java API doc and the tutorial to learn more specific

information regarding the Java APIs and usage.

http://www.gams.com/dd/docs/api/GAMS java.pdf

http://www.gams.com/dd/docs/api/GAMS java Tutorial.pdf

(2) Installation
1. Download from GAMS download webside, V24.0.2 or newer version should be consistent with
this document.

NOTE: Attention should be paid to choosing the 64-bit or 32-bit version GAMS. It was found that GAMS
must be consistent with the JRE. That is, if the JRE installed in your machine is 64-bit, the 64-bit version
GAMS should be your choice, otherwise the 32-bit version.

Error occurs when inconsistent version of GAMS and JRE are used:

Exception in thread "main" com.gams.api. GAMSException: expect 64-bit GAMS system in [C:\Program
Files (x86)\GAMS24.0], but found 32-bit instead!

2. When installing the GAMS, make sure choose "add the install dir to the system
environment".

57

http://www.interpss.org
http://www.gams.com/dd/docs/api/
http://www.gams.com/dd/docs/api/GAMS_java.pdf
http://www.gams.com/dd/docs/api/GAMS_java_Tutorial.pdf
http://www.gams.com/download/

InterPSS

Simple yet Powerful

Dev Tutorial www.interpss.org

6.2. Call GAMS from Java

Since v24.0, new GAMS Java APIs introduce the following concepts/classes, allowing better
integration with Java-based projects.

e GAMSWorkspace : Workspace in Java environment which has most of the functions in the

native GAMS workspace. To Integrate GAMS in any Java project, first we need to create an
GAMSWork space, as follows:
GAMSWorkspace ws = new GAMSWorkspace();
Then we can use ws to create database
GAMSDatabase db = ws.addDatabase();
and create GAMSJob:

GAMSJob ieee14ED = ws.addJobFromString(modelStr)

GAMSDatabase: storing and processing the modeling data in in-momory database

GAMSSet and GAMSParameter: Base data set for storing the indices and modeling data,
respectively.

Example:

GAMSSet loadBus = db.addSet ("j", 1, "load buses");,
GAMSParameter genPLow = db.addParameter ("genPLow'", 1,"lower bound of
each generating unit")

e GAMSVariableRecord: Get the optimization results directly from the database

Example:

for (GAMSVariableRecord rec : ieeeldED.OutDB() .getVariable ("genp")) {

System.out.println("genP @ Bus-" + rec.getKeys() [0]+"
+ rec.getlevel ());

}

e GAMSJob: Now we can create GAMSJob from modeling String, no independent “*.gms”
modeling file is needed.

: Level="

Example:
GAMSJob ieeeldED = ws.addJobFromString (modelStr) ;

The GAMS Java Library GAMSJavaAPIl.jar can be found under the folder:
<Path to GAMS>\apifiles\Java\lapi

(Corresponding DLLs can also be found under this folder). This has been add to the
ipss.lib.3rdPty/gams

Note: GAMS Related class run configuration setting within Eclipse
Run the class by run->run configuration...->setting the VM arguments as follows:

58

http://www.interpss.org

InterPSS

Simple yet Powerful

Dev Tutorial www.interpss.org

(@ Main &4 Arguments . =4 JRE| Clnsspath: & Source | B Erwvirenment | (5] Commen

Program grguments:

.'l.-’ar!ables... |

W arguments:
-Djava.library.path="C\\Program Files (xB86)\\GAMS24.04\apifiles\\Javal\api”

Vanables...]
Working directory:
@ Default: Mworkspace_loc:ipss.gams. test
[: 1 D‘tﬂﬁf‘i
¥ &

Which guarantees that the required DLLs are accessible/visible from the class.

6.3 Economic dispatch Sample

Sampe testcase—EconomicDispatchGAMS.java

Result:

genP @ Bus-Busl level=1.91 , marginal=0.0

genP @ Bus-Bus2 level=0.5 , marginal=-20.033200000000004
genP @ Bus-Bus3 level=0.05 , marginal=39.96479999999998
genP @ Bus-Bus4 level=0.0 , marginal=-30.038200000000003
genP @ Bus-Busb level=0.0 , marginal=-30.038200000000003
genP @ Bus-Bus6 level=0.06 , marginal=19.968999999999994
genP @ Bus-Bus7 level=0.0 , marginal=-30.038200000000003
genP @ Bus-BusS8 level=0.07 , marginal=9.974400000000003
genP @ Bus-Bus9 level=0.0 , marginal=-30.038200000000003
genP @ Bus-BuslO level=0.0 , marginal=-30.038200000000003
genP @ Bus-Busll level=0.0 , marginal=-30.038200000000003
genP @ Bus-Busl2 level=0.0 , marginal=-30.038200000000003
genP @ Bus-Busl3 level=0.0 , marginal=-30.038200000000003
genP @ Bus-Busl4 level=0.0 , marginal=-30.038200000000003

DC Loadflow Results

Bud Id VoltAng (deqg) Gen Load ShuntG

Busl .00 191.00 0.00 0.00

59

http://www.interpss.org

InterPSS

Simple yet Powerful

Dev Tutorial

www.interpss.org

Bus?2 -4.32 50.00 21.70 0.00
Bus3 -11.80 5.00 94.20 0.00
Bus4 -9.52 0.00 47.80 0.00
Busb -8.13 0.00 7.60 0.00
Bus6 -13.41 6.00 11.20 0.00
Bus7 -12.32 0.00 0.00 0.00
Bus8 -11.61 7.00 0.00 0.00
Bus?9 -14.23 0.00 29.50 0.00
Busl0 -14.51 0.00 9.00 0.00
Busll -14.17 0.00 3.50 0.00
Busl2 -14.53 0.00 6.10 0.00
Busl13 -14.70 0.00 13.50 0.00
Busl4 -15.73 0.00 14.90 0.00
FromId->ToId Power Flow (Mw) MWLimit Loading%
Busl->Bus2 (1 127.39 0.00
Busl->Bus5 (1 63.61 0.00
Bus2->Bus3 (1 65.95 0.00
Bus2->Bus4 (1 51.49 0.00
Bus2->Bus5 (1 38.25 0.00
Bus3->Bus4 (1 -23.25 0.00
Bus4->Busb5 (1 -57.66 0.00
Bus4->Bus7 (1 23.33 0.00
Bus4->Bus9 (1 14.77 0.00
Bus5->Buso6 (1 36.60 0.00
Bus6->Busll (1 6.62 0.00
Bus6->Busl2 (1 7.59 0.00
Bus6->Busl3 (1 17.19 0.00
Bus7->Bus8 (1 -7.00 0.00
Bus7->Bus9 (1 30.33 0.00
Bus9->Busl0 (1 5.88 0.00
Bus9->Busl4 (1 9.71 0.00
Busl10->Busll (1 -3.12 0.00
Busl2->Bus13 (1 1.49 0.00
Busl3->Busl4 (1 5.19 0.00

60

Violation

http://www.interpss.org

InterPSS

Simple yet Powerful

Dev Tutorial www.interpss.org

Chapter 7. Sensitivity Analysis and
DCLF-based contingency analysis

61

http://www.interpss.org

InterPSS

Simple yet Powerful

Dev Tutorial www.interpss.org

Chapter 8. New dynamic model
development with Controller Modeling
Language

62

http://www.interpss.org

InterPSS

Simple yet Powerful

Dev Tutorial www.interpss.org

Chapter 9. Graph based power system
applications

9.1 Network Topology processing

63

http://www.interpss.org

InterPSS

Simple yet Powerful

Dev Tutorial www.interpss.org

Chapter 10. InterPSS Extension example

Chapter 6 presents a good example of functional extension by integrating InterPSS and GAMS. In this
chapter, two more examples will be given in this chapter to help users better realize that InterPSS is
designed for extension, and that it can be applied to a broad range of power system applications through
model and/or algorithm extension.

10.1 A DCOPF module by integrating QuadProgJ
10.2 Network topology visualization by integrating JGraphX

64

http://www.interpss.org

InterPSS

Simple yet Powerful

Dev Tutorial www.interpss.org

Appendix-A Sparse Matrix and Solver

A-1. SparseEqn classes

(1) Overview

Sparse Matrix is the most basic and commonly-used data structure in power system simulations. For
example, the Admittance matrix, Jacobian matrix for AC load flow, B’ abd B” matrix for DC load flow are
sparse due to the inherent topology structure of power systems. In addition, we observe that power flow,
short circuit and transient stability simulation all need solving the sparse Linear Equations involving these
sparse matrix, like [Y] [V] = [l], [J][dX] = [dPQ]. Thesefore, we combine the concept of sparse matrix and
linear equations together and create the SparseEqn class.

SparseEqgn

using
——————— -»= SparseEqnSolver

SparseMatrix A SparseVector B
(Left-hand side) (Right-hand side)

Two main attributes of a SparseEqn is the sparseMatrix A and sparseVector B, which is corresponding to
the left hand side and right hand side of linear equation set AX= b.SparseEqn also refers to, or uses, a
SparseEqnSolver object, which actually performs matrix manipulation, for example, LU decomposition,
and caches the factorization table.

e <« Interfivoe==>
ISparseEgn
[~
=] (53
==[nterfice=> == Interfice= ==Interfices=> <« Interface==>
ISparseEqnDouble [SparseEqninteger [Sparse EqnComplex ISparseEqnMatrixZX2

7
|
|

AbstractSpurseEquation

=

™ AbstructSparseEquationDouble
_ Apache.commons.
_ math3.linear
using__ -~ ¥ matrix, vector and
SparseEquatiomDoubleCommon | _ — 7 LUCO“]pORitiO“
MathImpl '
———+ extends — —b implements

65

http://www.interpss.org

InterPSS

Simple yet Powerful

Dev Tutorial www.interpss.org

The class hierarchy structure is shown above. ISparseEqn is the basic interface, then for each numeric
type, there is a corresponding interface. In particular, for the Jacobian matrix using 2 X 2 block matrix
stroing structure, the interface ISparseEqnMatrix2X2 is defined. AbstractSparseEqn is an abstract class
for sparseEqn, all implementation should extends it. In the figure above, only the sparseEqn for double
type is shown as the concrete and complete implementation example, with the Apache common math 3
linear classes used.

SparseEqn for integer, complex and Matrix2X2 data type are also defined, as their actual implementations
are very similar to the double type, they are not shown in the figure above. SparseEqnComplex is mainly
used in forming admittance matrix (Y) and impedance matrix (Z), while SparseEqnMatrix2X2 is used to
represent the Jacobian matrix (J), with the [dPdAng, dPdV ; dQdAng , dQdV] 2X2 block matrix
represented by a Matrix2X2 class object inside.

For the code, please refer to the following link:
https://github.com/InterPSS-Project/ipss-common/tree/master/ipss.numeric/src/org/interpss/numeric/spars
e

(2) Basic operation

Method Description
setDimension set the matrix dimension
increaseDimension increase matrix dimension, the incremental part is

augmented in the right and bottom side of the
original network

addToAij(d, i, j) A matrix aij = aij0 +d

get/setElem(i) get and set aii of A matrix

get/setAij get and set aij of A matrix

setB2Zero set all entries in the B vector to zero
setB2Unity set all entries in the B vector to 1

getXi get the solution result of AX = b, index of i is

based on the internal storage. The sortNumber of
the bus is used by default.

getXVector return the solution X in the form of an array
setBVector set B in the form of an array

setBi set bi of the B vector

addToBi used to update the B by bi =bi0 + updateBi
setToZero set all aij and bi to 0.0

66

http://www.interpss.org
https://github.com/InterPSS-Project/ipss-common/tree/master/ipss.numeric/src/org/interpss/numeric/sparse
https://github.com/InterPSS-Project/ipss-common/tree/master/ipss.numeric/src/org/interpss/numeric/sparse

InterPSS

Simple yet Powerful

Dev Tutorial www.interpss.org
luMatrix perform lu factorization to the A matrix
solveEqgn solve AX=b

A-2. Sparse Linear equation solver

(1) Solver Interface

As is well known that LU decomposition based method is the basis for almost all existing sparse linear
equation solver, therefore, the design of the interface focuses on two methods, i.e., LU decomposition
and solving the [A] X = b problem.

public interface ISparseEqnSolver {
/**
* set the A matrix dirty status to true, due to change of its element
*/
void setMatrixDirty();

/**
* Solve the [A]X = B problem

*/
void solveEqn() throws IpssNumericException;

/**
* LU decomposition of the matrix.

*

* @param tolerance the tolerance for matrix singular detection

* @return if succeed return true.

*/

boolean luMatrix(final double tolerance) throws IpssNumericException;

(2) How SparseEqn object uses a solver to solve the equation set : [A]X
=b
Recall that SparseEqn object stores the matrix A and vector b. With that, the basic logic of solving [A]X =
bis

i) create a new SparseEqgn sover instance and then the SparseEqn object refers to it

ii) the solver LU factorize the A matrix
iii) With the factorized result, the solver solve the equation set: [A]X=b

e Example-- SparseEgnDoubleImpl

public SparseEgnDoubleImpl (int n) {

67

http://www.interpss.org

InterPSS

Simple yet Powerful
Dev Tutorial www.interpss.org

// create a new SparseEqn sover instance and then SparseEqn object refer to it

this.solver = SparseEqgnSolverFactory.createSparseEgnDoubleSolver (this) ;

// the solver LU factorize the A matrix
public boolean luMatrix(final double tolerance) throws IpssNumericException {
return this.solver.luMatrix (tolerance) ;

/*

* solve the equation set

*/

public void solveEqn () throws IpssNumericException {
this.solver.solveEqgn() ;

}

A-3 Customize the solver

With the rapid development of hardware and software, it is probably that you want to use the latest
developed numerical solver to replace the existing default numerical solver of InterPSS. It is quite straight
forward to customize the solver, as there are mainly two steps invovled:

1) Develop your own solver or adapting an existing solver by implementing the the solver interface shown
in A-2 part (1). Specially, the SparseEgnDoubleCommonMathimpl.java is given out as a customized
solver reference.

2) Configure the com.interpss.core.sparse.SparseEgnSolverFactory to assign your new solver to the
solver creator.
Note: the Java 8 Function interface is used below
// configure the sparse eqn solvers

SparseEgnSolverFactory.setDoubleSolverCreator(

(ISparseEgnDouble eqn) -> new CustomDoubleSparseEqnSolver(eqn));

SparseEgnSolverFactory.setComplexSolverCreator(

(ISparseEgnComplex egn) -> new CustomComplexSparseEgnSolver(eqn));

68

http://www.interpss.org
https://github.com/InterPSS-Project/ipss-common/blob/master/ipss.numeric/src/org/interpss/numeric/sparse/impl/SparseEqnDoubleCommonMathImpl.java
http://docs.oracle.com/javase/8/docs/api/java/util/function/Function.html

InterPSS

Simple yet Powerful

Dev Tutorial www.interpss.org

69

http://www.interpss.org

InterPSS

Simple yet Powerful

Dev Tutorial www.interpss.org

Appendix-B Open Data Model for data
import/output

Many years ago, IEEE recommended a Common Data Format (IEEE CDF) for exchanging Load flow
study data[1] using flat file. Power system software companies uses their own internal data format, some
have features similar to a mark-up language. However, it is our observation that these formats are
proprietary and are often not well documented. We think that the power engineering community needs a
completely open, free, flexible and well-documented model/format for power system analysis information
exchange. XML is an obvious choice, since it is a very mature technology and has become the de facto
standard for defining information exchange standards. Also, numerous open-source and free XML
processing tools are currently available. For those who are unfamiliar with XML, some introductory
information relevant to power system representation can be found in Ref[2]. (E.Z.Zhou, “XML and Data
Exchange", IEEE Power Engineering Review, April 2000)

1. Prerequisite
1.1 Basic understanding of XML: schema, data binding and JAXB

Extensible Markup Language (XML) is a markup language that defines a set of rules for encoding
documents in a format that is both human-readable and machine-readable.
For more detailed of XML, please see htip://en.wikipedia.org/wiki/XML

e XML Schema
http://www.w3schools.com/schema/
e Xml data binding and JAXB
o Whatis XML binding
XML data binding is the process of representing the information in an XML document as an object in
computer memory (deserialization). With XML data binding, applications access XML data direct from the
object instead of using the Document Object Model (DOM) to retrieve it from the XML file. Using XML
binding, you can integrate XML data into a business rule application.
o Introduction to JAXB
http://docs.oracle.com/javase/tutorial/jaxb/intro/
o tutorial
http://www.javacodegeeks.com/2013/02/jaxb-tutorial-getting-started.html

1.2 Basic knowledge of data for power system simulation

At least some basic understanding of load flow data is required for understanding the modeling in ODM, a
good reference for this is the paper "Common Data Format for the Exchange of Solved Load Flow Data",

Working Group on a Common Format for the Exchange of Solved Load Flow Data, IEEE Transactions on
Power Apparatus and Systems, Vol. PAS-92, No. 6,

November/December 1973, pp. 1916-1925

70

http://www.interpss.org
http://www.ee.washington.edu/research/pstca/formats/cdf.txt
http://commondatastorage.googleapis.com/mikezhou/paper/XML_DataExchange.pdf
http://en.wikipedia.org/wiki/Markup_language
http://en.wikipedia.org/wiki/File_format
http://en.wikipedia.org/wiki/Human-readable_medium
http://en.wikipedia.org/wiki/Machine-readable_data
http://en.wikipedia.org/wiki/XML
http://www.w3schools.com/schema/
http://docs.oracle.com/javase/tutorial/jaxb/intro/
http://www.javacodegeeks.com/2013/02/jaxb-tutorial-getting-started.html

InterPSS

Simple yet Powerful
Dev Tutorial www.interpss.org

2. ODM in a nutshell

Some useful on-line resources:
e |EEE PES GM 2009 paper: Open Model For Exchanging Power System Data

e Introduction to ODM @ www.InterPSS.org
https://sites.google.com/al/interpss.org/interpss/Home/ieee-pes-oss

e ODM project on GitHub : https://github.com/InterPSS-Project/ipss-odm
Note: If you want to work on the adapter development based on ODM, please check out this project to

your computer, by following the approach discussed in Chapter 1

2.1 ODM as a data-format free intermediary for data exchange

_ = _
Formats Import/Export Import/Export
Utilities Utilities)
IEEE CDF Software
Companyv-A
PSS/E Canonical
Model
ODM
CIM InterPS5
Schema
Company-A
PSAT
Company-B

71

http://www.interpss.org
http://faraday1.ucd.ie/archive/papers/opendata.pdf
http://www.interpss.org
https://sites.google.com/a/interpss.org/interpss/Home/ieee-pes-oss
https://github.com/InterPSS-Project/ipss-odm

InterPSS

Simple yet Powerful
Dev Tutorial www.interpss.org

2.2 XML Schema for power system simulation data modeling
a 5 schema
4 [basecase
» [=f desystem
» [distribution
» [dynamic
» [loadflow
> =gy opf
» [shortcircuit
[§] NetRecordType.xsd
4 5 common
g} DataTypexsd
E] UnitTypexsd
4 [exdension
- = ipss
[£] ExtensionTypexsd
4 [scenario
[8] NetMedification.xsd
[£] ScenarioTypexsd
[£] StudyScenario.xsd
E] ODMSchema.xsd

From the basecase folder, one can easily find the analysis categories of the ODM schema-- it covers a
wide range of data modeling from the conventional loadflow, short circuit, dynamic (transient stability) to
OPF and distribution network analysis. Data types and unit types are defined under the common folder.

ODMSchema.xsd is the main schema definition file. Eclipse XML Schema Editor view of the ODM
schema (ODMSchema.xsd) is shown below:

72

http://www.interpss.org
https://github.com/InterPSS-Project/ipss-odm/blob/master/ieee.odm_pss/schema/ODMSchema.xsd

InterPSS

Simple yet Powerful

Dev Tutorial www.interpss.org

@ Schema : http:/fwww.ieee.org/odm/Schema/2008
(== Directives
2l basecase/loadflow/LFRecord Typexsd =
2l basecase/shortcircuit/SCRecord Typexsd
2l basecase/dynamic/DstabRecordTypessd —i
= basecase/opf/OPFRecordType.xsd
= basecase/distribution/DistRecordType.xsd ﬂ
(&) Elements B Types
€| aclfSWPSKfr : PSXfraWBranchXmlType = =
€| aclf3WXfr: XfraWBranchXmlType -]
€| aclfBus: LoadflowBusXmiType AclfBranchChangeXmlType
€| aclfLine : LineBranchXm(Type AclfBusChangeXmlType
€| aclfMet : LoadflowMet{m(Type AclfGenChangeXmlType
€| aclfPSXfr: PSXfrBranchXmliType Aclfl cadChangeXmlType
€| aclfifr: XfrBranchXmlType Aclfl sadCodeChangeXmliType
e SKfr: PSXfraWshortCircuitXmlType A (miType
e 2 Xfr3WSsheortCircuitXmlType AcscBranchChangeXmlTYpe
e s : ShortCircuitBusXmlType AcscBranchFaultXmiType : pssiAcscBaseFaultXmliType
e ContributeGen : ShortCircuitGenDataXmlType AcscBusChangeXmlType
€ Contributel oad : ShortCircuitLoadDataXmliType AcscBusFaultXmliType : pss:AcscBaseFaultXmIType
€| acscline: LineShortCircuit{mlType ActivePowerLimitXmiType : pss:LimitXmIType
€| gcschet : ShoptCircuitMetXm(Tvpe ﬂ ActivePowerRatinaXmlTvpe : pss:BaseRastingXmlTvpe ﬂ
@Attributes (= Groups
PSKfrinfoGroup
ShortCircuitAfrinfoGroup

NOTE: We think it is better to info users/developers, before any further introduction, that you are not
required to understand the schema completely in order to modify the ODM model or develop a custom
adapter. In fact, some common and useful utilities have been developed to help user to develop
customized ODM adapter to import/output data through ODM. You are encouraged to continue to the
adapter implementation examples in Section 2.4 after you have some basic understanding of ODM
schema. You will find it is easier to use it than expected!

2.2.1 Basic Schema

Naming Convention

There is two main Xml data structures used in ODM, in addition to standard data types defined in Xml
schema.

e Complex Type : <...>XmlType, is for defining complex data structure with different types of
attributes and elements, for example, PSSNetworkXmIType. Complex type always ends
"XmIType".

e Simple Type : <..>EnumType of String is for defining enumeration of simple tokens, for example,
LFGenCodeEnumType has [Swing, PV, PQ]. Simple type of string always ends with "EnumType".

73

http://www.interpss.org

InterPSS

Simple yet Powerful

Dev Tutorial www.interpss.org

e Unit Type : <...>UnitType is special simple type for defining unit. for example,
ApparentPowerUnitType has [Mva, Kva ...].

Name Space

The ODM Schema target namespace is "http://www.ieee.org/odm/Schema/2008". All types defined in the

ODM Schema are "qualified" with a namespace prefix pss.

<schema xmins="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://www.ieee.org/odm/Schema/2008"
xmins:pss="http://www.ieee.org/odm/Schema/2008"
elementFormDefault="qualified">

<element name="PSSStudyCase" type="pss:StudyCaseXmIType"></element>

</schema>
Please see Namespaces in XML for more in depth discussion about namespace.

Version Number

The Schema root element type StudyCaseXmlType has a attribute schemaVersion for indicating schema
version number.

PU System

Actual units, such as KV, MVA, and PU could be used in the ODM Model. All PU values in the model are
based on the base case base Kva and bus base voltage, unless otherwise specified.

Extension

ODM is designed to be extended. The extension folder is for ODM extension by any interested party.
Currently, it has a folder containing extension by InterPSS. The following namespace has been introduced
in InterPSS extension.

xmins:ipss="http://www.interpss.org/Schema/odm/2008"

Schema Root Element

The ODM schema root element PSSStudyCase is of type StudyCaseXmIType.
<schema xmlns="http://www.w3.0rg/2001/XMLSchema" ...>
<element name="PSSStudyCase" type="pss:StudyCaseXmlIType"></element>

</shema>

74

http://www.interpss.org
http://www.ieee.org/cmte/psace/oss/odm/pss/Schema
http://www.w3.org/2001/XMLSchema
http://www.ieee.org/cmte/psace/oss/odm/pss/Schema/v1
http://www.ieee.org/cmte/psace/oss/odm/pss/Schema/v1
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/2001/XMLSchema

InterPSS

Simple yet Powerful

Dev Tutorial www.interpss.org

IDRecordXmiType
id D

T

&) StudyCasexmiType
schemaVersion string
[2] contentlnfo [0.1] ContentlnfoXmlType
[e] networkCategory [1.1] MetworkCategoryEnumType

[e] analysizCategory [1.1] AnalysisCategoryEnumType
wes | baseCase [1.1] MetworkdmlType

e childMet [0.%] MetworkdmlType

[e] modificationList [0.1] (modificationListType)

£ studyScenario [0.1] StudyScenarioXmlType

The StudyCaseXmIType has the following elements:

schemaVersion - version number

originalFormat - [IEEE-CDF | PSS-E | UCTE-DEF | InterPSS| PSAT | PowerWorld | BPA| PSLF |
Custom] original data format.

adapterProviderName - optional, data transformation adapter provider name
adapterProviderVersion - optional, data transformation adapter provider version
analysisCategory - [Loadflow | ShortCircuit | TransientStability | analysis type category. This
could be expended to include more types in the future schema version

networkCategory - [Transmission |Distribution] network type category.

baseCase - element of type PSSNetworkXmIType for describing a power network as the base
case.

modificationList - optional, a list of modification to the base case

scenariolList - optional, a list of scenarios, built on the base case.

Base Record

The information are organized in the Schema using the record concept.

name - Optional, element name

desc - Optional, element description

isoCode - Optional, element ISO code

offLine - Optional, element actual off-line status

normalOffLineStatus - Optional, normal element off-line status

number - Optional, element number

area - Area number. It is optional and should be a non-zero number.

zone - Zone number. It is optional and should be a non-zero number.

ownerList - Optional, owner list of the element

nvPairList - Optional, name value pair for those elements not defined in the schema
extension - Optional, extension point. One can add an element of Any type (any schema type) to
extend the schema.

75

http://www.interpss.org

InterPSS

Simple yet Powerful

Dev Tutorial www.interpss.org

BaseRecord{mlType

arealMumber int
areahlame string
zoneMurmber int
zoneMName string
nurnber long
offLine boolean
[e] iznCode [0.1] string
8] normal OffLine5tatus [0.1] boolean
sea | €] ownerList [0.*] OwnerXmlType
8] mvPair [0.7T MameValuePairXmlType
[8] extension [0.1] anySimpleType

ID Record

[E] BaseRecordxmlType

i

& TORecordamiType.
id 1D

A ID record has an id of Type xsd:ID, which guarantees its uniqueness in an ODM xml file. It is the parent
of all searchable records, such BusRecord, BranchRecord.

2.2.2 Base Case

The base case element is of type PSSNetworkXmlType. It is intend to describe a power network for
simulation purpose. Currently, it our focus is on Loadflow study information. The structure has been
designed in such a way that it could be extended to include more simulation information, such as short
circuit, transient stability.

baseKva - Base kva for the PU system.

baseKvaUnit - [KVA | MVA] base kav unit

busList - network bus record list

branchList - network branch record list

loseZonelList - lose zone list per IEEE CDF. It may be extended to cover other formats
interchangeList - interchange list per IEEE CDF. It may be extended to cover other formats
tieLineList - tie line list per IEEE CDF. It may be extended to cover other formats

76

http://www.interpss.org

InterPSS

Simple yet Powerful

Dev Tutorial

www.interpss.org

[IDRecordXmiType

id D

NetworkXmiType

€] basePower 1.
[e] frequency [0..
|€] busList 1.
e8] branchlList [1..
|&] arealist [0..
|&] lossZonelist [0..
(el type (0.
[e] hasChildMet [0..
[e] childMetDef [0..
|&] autoBranchld [0..

1] ApparentPowerXml(Type
1] FrequencyXmlType

1] (busListType)

1] (branchListType)

1] (arealistType]

1] (lossZonelistType)

1] MetworkTypeEnumType
1] boclean

*1 ChildMetworkDefXm[Type

1] boolean

2.2.3 Bus Record

ApparentPowerXmlType

unit ApparentPowerUnitType

FrequencyXmlType

unit FrequencyUnitType

(busListType)

#lbus [0.*] BusKmlType

{branchListType)

&l branch [0.*] BaseBranchXmlType

(arealistType)

[e] area [0.7] MNetAreaXmlType

(lossZonelistType)

[8] lossfone [0.*] MetZoneXmliType

[EI Net\v\f'orkT}prEnumT}prJ

ChildMetworkDef{mlType

&] childMetRef [1.1] IDRefRecordXmliType

|&] interfaceBranch [0.*] Chi

ldMetlnterfaceBranchXmlType

Bus record is basically defined by following a similar class hierarchy of the Bus in InterPSS core with the

following structure:

ID Record<--CimRdf<- Bus<--Load flow Bus<-- Short circuit Bus <-- Dynamic Bus

The basic Bus record is is BusXmIType

CimRdfRecordType

«=s | 8| cimRdfRecords [0.1] CimRdfList{mIType

BusXmiType

«es 8] baseVoltage [0.1] VeltageXmlType

77

Vo

ltageXmlType

unit

YoltageUnitType

http://www.interpss.org

InterPSS

Simple yet Powerful

Dev Tutorial www.interpss.org

2.2.3.1 Bus Record for AC Load flow

BusXmiType VoltageXmlType
baseVoltage [0.1] VoltageXmlIType unit VoltageUnitType
AngleXmlType

unit AngleUnitType

LoadflowBusXmliType

[e] voltage [0.1] VoltageXmIType PowerXm|[Type
[e] angle [0.1] AngleXm[Type unit ApparentPowerUnitType
2] powerlnjection [0.1] PowerXmiType
[e] genData [0.1] BusGenDataXmlIType BusGenDataXmType
=ec[8] lpadData [0.1] BusLeadDataXmiType code LFGenCodeEnumType
(&] shuntVData [0.1] BusShuntYDataXmiType ses | contributeGen [0.7] LeoadflowGenDataXmlType

8] shuntCompensator [0.1] ShuntCempensator¥mlType

[e] svc [0.1] StaticVarCompensatorXmIType
[&] wLimit [0.1] Voltagelimit{mIType

BusLoadDataXmiType
===/ af| contributeLoad [0.*] LoadflowLoadDataXmlIType

BusShuntYDataXmlType

£ equivy [0.1] YXmiType
& contributeShuntY [0..*] LoadflowShuntYDataXmlIType

Bus Loadflow data is described by the LoadflowBusDataXmlIType.
e baseVoltage - Bus base voltage
baseVoltageUnit - [VOLT | KV] Bus base voltage unit
voltage - Bus voltage
angle - Bus angle
genData - Bus generation data, see more description below
loadData - Bus load data, see more description below
shuntY - Bus shunt Y
powerlnjection - power injection into the network, for store Loadflow results

Bus Generation Data -- BusGenDataXmlType

e code-[PQ, PV, SWING]
e contributeGen list: a list for storing the records of generator(s) connecting to the bus. Thus, the
scenario of multiple generators connected to the same bus is supported.

The record of a generator for load flow includes:
e power - generation, p, q plus a unit [PU | KVA | MVA] (required)
e desiredVoltage/Angle- scheduled voltage magnitude/ angle (required, if not provided at the bus
level)
pLimit - generator real power limit (optional)
gLimit - generator reactive power limit, used for PV bus (required)
vLimit - generator voltage limit (optional)
mvaBase - generator MVA Base (required)
remoteVoltageControlBus - describing desired remote bus when the generator Q is used to
control the remote bus voltage. (optional)

78

http://www.interpss.org

InterPSS

Simple yet Powerful

Dev Tutorial www.interpss.org

e XfrZ - step up transformer impedance (optional)
e XfrTap - step up transformer tap ,defined at the high voltage side (optional)

BusGenDataXmlType {_ LFGenCodeEnumType]

code LFGenCodeEnumType

Lel contributeGen [0.%] LoadflowGenDataXmlIType LoadflowGenDataXmlType
[€] power [0.1] PowerXmlType
[2] desiredVoltage [0.1] VoltageXmlType
[e] desiredAngle [0.1] AngleXmlType
[e] remoteVoltageControlBus [0.1] IDRefRecordXmiType
[€] gLimit [0.1] ReactivePowerLimitXmlType
[e] pLimit [0.1] ActivePowerLimitXm[Type
[e] voltagelimit [0.1] VoltagelimitXmIType
[e] mvaBase [0.1] ApparentPowerXmiType
[e] sourceZ [0.1] ZXmlType
[] «frZ [0.1] ZXmlType
[€] «frTap [0.1] double
[e] mvarVControlParticipateFactor [0.1] double
[€] mwControlParticipateFactor [0.1] double

The acscContributeGen and dstabContributeGenmodels for short circuit and the transient stability
analysis, respectively:

(] acscContributeGen ShortCircuitGenDataXmiType
[e] ratedMachVoltage [0.1] VoltageXmlType
[e] potiveZ [0.1] ZEmIType
=ea|[&] negativeZ [0.1] ZEmIType
[8] zeroZ [0.1] ZXmIType
[e] grounding [0.1] GroundingXmlType
[e] dstabContributeGen DStabGenDataXmiType
[8] ownerMame [0.1] string

[e] pContributionPercent [0.1] double
[e] gContributionPercent [0.1] double

ses i #| machineModel [1.1] MachineModelXmlType
iLe| exciter [0.1] ExciterModelXmlIType
el governor [0.1] GovernorModelXmlType
el stabilizer [0.1] StabilizerModelXmiType

Machine, exciter, turbine and governor as well as stabilizer (PSS), if any, are linked to a
dstabContibuteGen model.

79

http://www.interpss.org

InterPSS

Simple yet Powerful
Dev Tutorial www.interpss.org
Bus Load Data

e code - [CONST_P, CONST _I, CONST_Z] constant power, constant current or constant z load.
e contributeload list - a list for storing all records of loads connected to the bus
e Modeled by BusLoadDataXmiType

A contributing load record
e Modeled by LoadflowLoadDataXmlIType
e There are three components for each load record, i.e., constant power, constant current and
constant impedance component. A contributing load can be a combination of these components.

BusLoadDataXmlType LoadflowloadDataXmliType
Lel contributeLoad [0.%] LoadflowLoadDataXmlType code LFLoadCodeEnumType
[e] constPLoad [0.1] PowerXmlType
[e] constlload [0.1] PowerXmlType
[e] constZload [0.1] PowerXmlType

2.2.3.2 Bus Record for AC short circuit

LoadflowBusXmiType i ShurtCircuitBusEnumT}rpe]
voltage [0.1] VoltageXmlType
angle [0.1] AngleXmlType | YimiType
powerlnjection [0.1] PowerXmlType unit YUnitType
genData [0.1] BusGenDataXmlType
lzadData [0.1] BuslLoadDataXmlType
shuntYD'ata [0.1] BusShuntyYDataXmlType
shuntCompensator [0.1] ShuntCompensatorXmiType
swC [0.1] StaticVarCompensatorXmlType
vLirnit [0.1] Veltagelimit¥mlType

ShortCircutBusXmlType !
scCode ShortCircuitBusEnumType I

cec|—[B] swithedShuntLoadZeroY [0.1] ¥XmIType

80

http://www.interpss.org

InterPSS

Simple yet Powerful

Dev Tutorial www.interpss.org

2.2.3.3 Bus Record for transient stability

ShortCircuitBusXmliType

scCode ShertCircuitBusEnumType

swithedShuntloadZeraY [0.1] YimlType

DStabBusXmType

2.2.4 Branch Record

Branch record has an unique id, an id reference to a from bus record, an id reference to a to bus record, a
circuit id. The tereiayBus is optional, which could be used to define a 3-winding transformer. It also holds
branch related simulation data.

As a general practice, Line and 2-winding transformer are modeled separately, but they share some
common information, e.g., terminals are defined by two buses. The class inheritance structure is as
follows:
BaseBranch<--Branch<--LineBranch (conventional line/cable)
\
\ <-- XfrBranch (Xfr stands for 2-winding transformer)

Base Branch Data

BaseBranchXmlType { ZXmlType

circuitld string unit ZUnitType

[e] fromBus [1.1] BuslDRefXmliType

[e] toBus [1.1] BuslDRefXmlIType I BranchRatingLimitXmIType

[e] tertiaryBus [0.1] BusIDRefimIType [e] mva [0.1] MvaRatingXmlIType
[e] current [0.1] CurrentXmlType
[e] mw [0.1] ActivePowerRatingXmliType

BranchXmiType [EI BranchBu:SidEEnumT‘;p&]
[e] z [0.1] ZXmiType

[e] ratingLimit [0.1] BranchRatingLimit{m(Type
[e] meterLocation [0.1] BranchBusSideEnumType

Loadflow Line Data
e z-line impedance, r, X, plus a unit [PU | OHM]
e totalShuntY - total line charging shuntY, g, b, plus a unit [PU | MHO | MICROMHO]
e fromShuntY - extra shunt Y at the from bus end of the line

81

http://www.interpss.org

InterPSS

Simple yet Powerful

Dev Tutorial www.interpss.org

e toShuntY - extra shunt Y at the to bus end of the line
e ratingLimit - thermal or contingency rating limit
e Linelnfo is optional

BranchXmlType YXmlType
z [0.1] ZXmIType unit YUnitType
ratingLirnit [0.1] BranchRatingLimitXmlType
meterLocation [0.1] BranchBusSideEnumType [&] LineBranchInfoXmlIType
[e] type [0.1] LineBranchEnumType
[2] length [0.1] LengthXmlType
[e] lossFactor [0.1] double

LineBranchXmlType
[8] totalShuntY [0.1] YXmIType
[8] fromShuntY [0.1] YXmIType
[e] toShuntY [0.1] ¥YXmlIType
[2] linelnfo [0.1] LineBranchinfoXmlType

Loadflow Transformer Data

By analysis different data formats, we believe the above transformer model captured all possible
permutations of a local transformer or a logical phase-shift transformer model for loadflow analysis
purpose. Adjustment could be applied to transformer tap to adjust bus voltage or Mvar flow, or to
phase-shifting transformer angle to adjust Mw flow.

Transformer Data

z - transformer impedance, r, x, plus a unit [PU | Ohm].

ratingData - transformer rating data. Voltage unit should be VOLT or KV and the same for both
side.

fromTurnRatio - PU based on the transformer rated voltage

toTurnRatio - PU based on the transformer rated voltage

tapAdjustment - transformer tap adjustment info, see more below.

82

http://www.interpss.org

InterPSS

Simple yet Powerful

Dev Tutorial

www.interpss.org

BranchXmlType

TurnRatioXm[Type

ratingLimit

z [0.1] ZXmlIType
[0.1] BranchRatingLimit{mIType

meterLocation [0.1] BranchBusSideEnumType

unit TurnRatioUnitTy,

pe

YXmIType

unit YUnitType

TapAdjustment¥mlType

HfrBranchXmiType offLine boolean
[e] fromTumnRatio [0.1] TurnRatioXmIType [e] adjustmentType [1.1] TapAdjustmentEnumType
8] toTurnRatio [0.1] TurnRatioXmlType [€] tapLimit [1.1] Taplimit{m[Type
=< —[€] magnitizing¥ [0.1] VXmIType [] tapAdjStepSize [0.1] double
[e] tapAdjustment [0.1] TapAdjustmentXmlType [€] tapAdjSteps [0.1] int
[e] xfrinfo [0.1] TransformernfoXmiType [e] tapAdjOnFromsSide [1.1] boolean

[e] voltageAdjData [0.1] VoltageAdjustmentDataXmliType
[e] mvarFlowAdjData [0.1] MwvarFlowAdjustmentData¥XmlType

TransformerinfoXmlType
[e] dataOnSystemBase [0.1] boolean

[g] fromRatedVoltage [0.1] VoltageKmlIType
[e] toRatedVoltage [0.1] VoltageXmlIType

[] ratedPower [0.1] ApparentPowerkmliType
[e] fromLossFactor [0.1] double

|e] toLossFactor [0.1] double

[e] zTableMumber [0.1] int

In the transformer data schema definition, only transformer impedance z are required elements. The
fromTurnRation and toTurnRatio should be set to 1.0 if not defined. The other optional elements should
be set to zero if not specified.

Please Note: When transformer Z and Y are specified in actual value, in Ohm or Mho, the side where the
value is measured need to be specified. ODM assumes that the value is measured at the high voltage
side.

Transformer Tap Adjustment

e adjustmentType - [Voltage | MvarFlow] tap adjustment type, voltage adjustment or mvar flow
adjustment

tapLimit - tap limit

tapLimitUnit - [PU | PERCENT] tap limit unit

tapAdjStepSize - tap adjustment step size. If 0.0 or not defined, assume continuous adjustment
tapAdjOnFromSide - Turn ratio at from side or to side could be adjusted.

voltageAdjData - voltage adjustment data, see more below

mvarFlowAdjData - mvar flow adjustment data, see more below.

Transformer Tap Adjustment for Bus Voltage

e mode - [ValueAdjustment | RangeAdjustment] adjustment could be based on a desired value or
desired range.

desiredValue - desiredValue for desired bus voltage for the ValueAdjustment

desiredRange - desiredRange for desired bus voltage range for the RangeAdjustment
desiredVoltageUnit - desired voltage unit [PU | Volt | KV]

adjVoltageBus - adjustment voltage

adjBusLocation - [TerminalBus | NearFromBus | NearToBus | FromBus | ToBus] adjustment bus
location

83

http://www.interpss.org

InterPSS

Simple yet Powerful
Dev Tutorial www.interpss.org

Transformer Tap Adjustment for MVar Flow

mode - [ValueAdjustment | RangeAdjustment] adjustment could be based on a desired value or
desired range.

desiredValue - desiredValue for desired mvar flow for the ValueAdjustment

desiredRange - desiredRange for desired mvar flow range for the RangeAdjustment
desiredMvarFlowUnit - desired mvar unit [PU | KVAR | MVAR]

mvarMeasuredOnFromSide - describing mvar measuring location, from bus side or to bus side

Loadflow PhaseShift Transformer Data
PhaseShift transformer inherits from transformer. In addition it has the following fields

fromAngle - from bus side angle
toAngle - to bus side angle
angleAdjustment - phase shifting angle adjustment to control MW flow.

Phase Angle Adjustment

mode - [ValueAdjustment | RangeAdjustment] adjustment could be based on a desired value or
desired range.

desiredValue - desiredValue for desired MW flow for the ValueAdjustment

desiredRange - desiredRange for desired MW flow range for the RangeAdjustment
angleDegLimit - phase shifting angle limit in degrees

desiredPowerUnit - [PU | KW | MW] desired MW flow unit

desiredMeasuredOnFromSide - desired MW flow measured on from bus or to bus side

Branch Rating Limit
Three mva rating limits and a current rating limit could be defined

mvaRating1 - branch mva rating limit

mvaRating2 - branch mva rating limit

mvaRating3 - branch mva rating limit

currentRating - branch current rating limit

mvaRatingUnit - [PU | KVA | MVA] branch mva rating limit unit
currentRatingUnit - [PU | Amp | KA] current rating limit unit

3-Winding transformer

84

http://www.interpss.org

InterPSS

Simple yet Powerful
Dev Tutorial www.interpss.org

AfrBranchXmlType LimlType
[e] fromTurnRatic [0.1] TurnRatioXmlType unit ZUnitType
] toTurnRatio [0.1] TurnRatioXmiType
=[] magnitizing¥ [0.1] YXmIType TurnRatioXmlType
2] tapAdjustment [0.1] TapAdjustmentXmliType unit TurnRaticUnitType
[&] «frinfa [0.1] TransformernfoXmlType

BranchRatingLimit{mIType

mva [0.1] WwvaRatingXmiType

current [0.1] CurrentXmliType
Kfr3WBranchXmlType

wind1OffLine boolean
wind20ffLine boolean
wind3C0ffLine boolean |
€ 223 [0.1] ZXmiType |
[e] 31 [0.1] ZXmIType |
=ss - [€] tertTurnRatio [0.1] TurnRatioXmlType }
|

mw [0.1] ActivePowerRatingXmlType

[2] ratingLimit23 [0.1] BranchRatingLimitXmlIType
[8] ratingLimitl3 [0.1] BranchRatingLimitXml[Type

As a general modeling practice, the impedance of the three-widing transformer is determined by the
following procedure: one winding is short circuited and one is left open circuited, while a voltage is applied
to the remaining winding. This test yields the magnitudes of the three leakage impedances, ZLH, ZLT, and
ZHT. The impedance, ZLH, is the sum of low- and high-voltage winding leakage impedances when the
tertiary winding is open

In the ODM, the default branch Z = 212 = ZLH, Z23 =ZLT, Z31 = ZHT

Modification

A list of modifications could be defined in a StudyCase, as shown in the following figure:

85

http://www.interpss.org

InterPSS

Simple yet Powerful
Dev Tutorial www.interpss.org
] StudyCasexmiType
schemaVersion string
[8] contentlnfo [0.1] CententInfoXmlType

[e] networkCategory [1.1] MetworkCategoryEnumType
[e] analysisCategory [L.1] AnalysisCategoryEnumType

sesl | L€] baseCase [1.1] MetworkXmlType
el childMet [0 MetworkXmliType
[e] modificationList [0.1] (modificationListType)
el studyScenario [0,1] StudyScenarioXmiType I

(modificationListType)
=ea|[€] modification [0..*] ModifyRecord¥XmliType

The modification element is of type ModifyRecordXmIType, which is abstract. In actual application, it
needs to be replaced with a concrete Xml type, for example, the NetModificationXmIType, in the following
figure:

ModifyRecordXmiType (busChangeRecListType)
[e] busChangeRec [0.*] BusChangeRecXmlType

{branchChangeReclistType]
Modliﬁ;EfEﬁXhﬁype wes|[€] branchChangeRec [0.*] BranchChangeRecKmlType

[] busChangeRecList [0.1] (busChangeRecListType)

[e] branchChangeRecList [0.1] (branchChangeRecListType)

Contingency

In contingency analysis, there is a need to define a list of contingencies which might be applied to the
base case. Here we present one possible ways to define contingencies.
e A contingency could be described as a set of branch offline status changes;
e A modification of type NetModificaitonXmIType could be defined to represent a contingency;
e A StudyCase XML file could contain a list of modifications for contingency analysis

Study Scenario

A studyScenario could be defined in a StudyCase, as shown in the following figure:

86

http://www.interpss.org

InterPSS

Simple yet Powerful

Dev Tutorial

www.interpss.org

StudyCaseAmiType

[e] analysisCategory [1.1]

schernaVersion string
[e] contentInfo [0.1] ContentlnfoXmlType
[e] networkCategory [1.1] MetworkCategoryEnumType

AnalysisCategoryEnumType

=ealof| baseCase [1.1] MetworkdmlIType
L8| childhet [0.7] NetworkXmiType
[e] modificationList [0.1] (modificationListType)
LEl studyScenario [0.1] StudyScenarieXmlType

2.3 Data binding with JAXB

StudyScenarioXmiType

'] modifcation [0.1] ModifyRecordXmlType

JAXB is used to compile ODM schema to a set of Java classes. Set up the JAXB plugin with the following

procedure:
1) Download JAXB Eclipse plugin from Here and unzip;

2) Copy the plugin into <Eclipse install>/Plugins and restart Eclipse

When you check out the ieee.odm.schema project from the repo, it is empty. There is no source code
inside. It is for hosting compiled ODM schema Java code. After the check-out, you need to compile the
schema by right-click the ODMSchema.xsd file, select JABX 2.1-> XJC, and set parameters as follows:
output directory should be pointed to your local src folder of the ieee.odm.schema project.

-

-
-

S S |

XJC mandatory parameters

Package name org.ieee.odm.schema

Output directory

Ceclipse\ipss_ws\ieee.odm.schema\src

Mext =

‘ [Finish] ‘ Cancel

2.4 Data import to ODM/XML

Due to some legacy issue, power system simulation data is usually defined in a text file. Most of the
existing data formats follow the following convention: the same type of data records are usually grouped
into one data section, while each data record is usually defined in a single line, some models in a few

87

http://www.interpss.org
http://commondatastorage.googleapis.com/interpss/program/org.jvnet.jaxbw.eclipse_1.1.0.zip

InterPSS

Simple yet Powerful

Dev Tutorial www.interpss.org

data format defined with multiple lines. The following table present the survey result of the most common

data formats:
TABLE 1
FEATURES OF MOST CoMMON DATA FORMATS FOR POWER SYSTEM ANALYSIS

Format Diata Diata Dynamic Mlarket Bhort Circuit Graphic | Custom MNumber Default Muodification
Mame Position | Order Data Diata Chzta Dhata Dhata of Files Values Command
CEPEL Fixed Fixed Mo Mo Mo Mo Mo Unigue Mo Mo
CYME Fixed Fixed Yes Mo Yes Mo Mo Multiple, Fixed Yes Mo
Dig&ilent Free Fres Yes Mo Yes Yes Mo Unigue Prototypes Mo
EFRIVEPA Fized Fixed Yes Mo Yes No No Unigue Yes No
Eurostag Fized Fixed Yes Mo Yes No No Multiple, Fixed Yes No
FlowDemo.net Free Fixed No Mo No Yes No Unigue Mo No
GE-PSLF Free Fixed No Mo No No No Unigue Yes No
IEEE CDF Fized Fixed No Mo No No No Unigue MNao No
INFTC] Fized Fixed No Mo No No No Multiple, Fixed MNao Yes
MatPower Free Fres Mo Yes Mo Mo Mo Any Mo Mo
Meplan Free Free Yes Mo Yes Yes Yes Multiple, Fixed Yes Mo
PowerWorld Free Free Mo Yes Yes Yes Mo Unigue Yes Mo
PEAT Free Fre=s Yes Yes Mo Yes Yes Any Mo Yes
PESE Free Fined Yes Mo Yes Mo Yes Unigue Yes Mo
PET Free Fres Yes Mo Yes Mo Yes Any Mo Yes
Simpow Free Fres Yes Mo Yes Yes Yes Any Yes Yes
LUCTE Fixed Fixed Mo Mo Mo Mo Mo Unigue Yes Mo

* source: Milano, F., M. Zhou, and GuandJi Hou. "Open model for exchanging power system data." Power
& Energy Society General Meeting, 2009. PES'09. IEEE. IEEE, 2009.

2.4.1 Model data parser and mapper

At high level, ODM data flow process of an ODM adapter is shown in the following diagram:

— Line String — Line String —> QDM Parser

Parser Mapper

Input File

e Input text file is processed line-by-line. For each input data line string, a corresponding data line
string parser is invoked to parse the data;

e After the input line string is parsed, a corresponding data line string mapper is invoked to map the
data store in input line string parser to an ODM Parser object, which stores input file info in the
ODM format.

For each data segment in the input file, a corresponding DataMapper and DataParser need to be
implemented. And the mapper is called inside the parser to parse the input line string.

DataMapper DataParser

2.4.1.1 Input Line String Parser
Since the data record is usually defined in a single line or multiple lines, a general data parser

88

http://www.interpss.org

InterPSS

Simple yet Powerful
Dev Tutorial www.interpss.org

BaselnputLineStringParser has been defined, which defines the method to facilitate the text-based data
processing. Further, the AbstractDataFieldParser class provides a higher level abstraction for data parser.
Two major methods to be implemented/customized for each data adapter are : getMetadata() and

parseFields(String)

In the case of position free data file, such as PowerWorld, input file has the following data structure.

A, B, ¢, D, A:1, E, F <- Metadata

1.0, 2.0, 3.0, 4.0, 5.0, 6.0 <- Actual data
, , 3. <- Data could be in multi-line
, 5.0, 6.0

The following are some sample code to parse the input data line string.

// assume we have a data parser class defined

parser = new Parser();

// first parse the metadata line and cache the info

parser.parseMetabData (A, B, C, D, E, F”);

// parse a data line
parser.parseData(“1.0, 2.0, 3.0, 4.0, 5.07);
double a = parser.getDouble (“A”);
if (parser.exist (“A:1")
a = parser.getDouble (“A:1");

In case of fix position input data file, such as IEEE CDF, PSS/E, there is no explicit meta data defined,
use the getMetadata() to define metadata for the input line string parsing.

@Override public String[] getMetadata() {

return new Stringl[] {

// O=—————————— l- - 2=———m— 3—————————————— 4
"BusNumber", "BusName", "Area", "Zone", "Type",

// 5 6 7 8 9
"VMag", "VAng", "LoadP", "LoadQ", "GenP",

// 10 11 12 13 14
"GenQ", "BaseKV", "Desiredv", "MaxVarvVolt",

"MinVarvolt",

// 15 16 17

"ShuntG", "ShuntB", "RemoteBusNumber"

}i
}
Please Note: because of using the line string parser, we can use field name,e.g., “BusNumber”, to

access the input data field, instead of using field position. This decouples the mapper from the underlying
input data structure.

Parse input line String

Syntax: dataParser.parseFields (str);

89

http://www.interpss.org
https://github.com/InterPSS-Project/ipss-odm/blob/master/ieee.odm_pss/src/org/ieee/odm/adapter/BaseInputLineStringParser.java
https://github.com/InterPSS-Project/ipss-odm/blob/master/ieee.odm_pss/src/org/ieee/odm/adapter/AbstractDataFieldParser.java

InterPSS

Simple yet Powerful

Dev Tutorial www.interpss.org

This method needs to be implemented and overrided to reflect how the data is defined in the input line
string

2.4.2 Implement a specific data parser and mapper

2.4.2.1 Impl . i .

The major work of implementing input line string parser is to realize and override the getMetadata() and
parseFields(final String str) method. The following is some sample code of IEEE CDF bus data parser.

public class leeeCDFBusDataParser extends AbstractDataFieldParser {
@Override public String[] getMetadata() {
return new String[] {

/0 1 2 3 4
"BusNumber", "BusName", "Area", "Zone", "Type",
II'5 6 7 8 9
"VMag", "VAng", "LoadP", "LoadQ", "GenP",
/I 10 11 12 13 14
"GenQ", "BaseKV", "DesiredV", "MaxVarVolt", "MinVarVolt",
/I 15 16 17
"ShuntG", "ShuntB", "RemoteBusNumber"
2

}

@Override public void parseFields(final String str) throws ODMEXxception {
if (str.indexOf(",") >= 0) {
final StringTokenizer st = new StringTokenizer(str, ",");
int cnt = 0;
while (st.hasMoreTokens()) {
this.setValue(cnt++, st.nextToken().trim());
}
}else {
/[Columns 1-4 Bus number [I] *
this.setValue(0, str.substring(0, 4).trim());

/IColumns 6-17 Name [A] (left justify) *
this.setValue(1, str.substring(5, 17).trim());

2.4.2.2 Implement input line string mapper
For a line string mapper, there is a corresponding line string parser, which parse the input data first, then

the mapper can easily access the data and map it accordingly to the ODM java objects.
The following are some sample code to implement input line string mapper:

90

http://www.interpss.org

InterPSS

Simple yet Powerful

Dev Tutorial www.interpss.org

// define data parser
TeeeCDFBusDataParser dataParser = new IeeeCDFBusDataParser();

public void mapInputLine(final String str, AclfModelParser parser) {
// parse the input data line
dataParser.parseFields (str);

// map data to ODM
String busId = dataParser.getString ("BusNumber") ;
LoadflowBusXmlType aclfBus = parser.createAclfBus (busId);

}

2.4.3 Data Adapter

With parsers and mappers being implemented for all data sections, the last step is to logically organize
them together to parse a complete data file or set of files. The IEEE CDF adapter will be taken as an
example, the sequence of the data section is shown below, with the corresponding data mapper shown

on the right.

Title/headline data| ————> [eeeCDFNetDataMapper

L
Bus data — leeeCDFNetDataMapper
L}

Branch data — leeeCDFBranchDataMapper
Loss zone data — leeeCDFLossZoneDataMapper
Interchange data — 7 leeeCDFInterchangeDataMapper

Tie-line data — leeeCDFTielineDataMapper

91

http://www.interpss.org

InterPSS

Simple yet Powerful

Dev Tutorial

www.interpss.org

A simple logic for processing such sequential data would be : 1) iterate over each line of the input data file
2) determine what type of data is under processing 3) apply the proper data mapper to parse and map to
data into ODM. The outline of the IEEE CDF adapter implementation is given below:

/] read the first line - head line
/I sample :

"

08/19/93 UW ARCHIVE 100.0 1962 W IEEE 14 Bus Test Case

String str = din.readLine();
netDataMappe.maplnputLine(str, parser);

int dataLinelndicator = DataNotDefine;

do {

str = din.readLine();

if(strl=null){
if (str.trim().equals("END OF DATA"))

break;

try {
/*
* process section head record - for example
* BUS DATA FOLLOWS
*/
if ((str.length() > 3)

&& str.substring(0, 3).equals("BUS")) {
dataLinelndicator = BusData;
ODMLogger.getLogger().fine("load bus data");

}
else if (
/*

* End of processing section head record

* parse data line

*/

else if (dataLinelndicator == BusData) {
busDataMapper.maplnputLine(str, parser);

}

else if (dataLinelndicator == BranchData) {
branchDataMapper.maplnputLine(str, parser);

}

e |IEEE CDF Format Adapter:
The complete implementation of IEEE CDF adapter is available from:

https://qithub.com/InterPSS-Project/ipss-odm/tree/master/ieee.odm_pss/src/org/ieee/odm/adapter/ieeecdf

92

http://www.interpss.org
https://github.com/InterPSS-Project/ipss-odm/tree/master/ieee.odm_pss/src/org/ieee/odm/adapter/ieeecdf

InterPSS

Simple yet Powerful
Dev Tutorial www.interpss.org

2.5 ODM -> InterPSS

1) ODM Parser

Appendix-C Useful Plugin Tools

C.1 InterPSS Network Topology Visualizer
C.2 Network Equivalencing Tool

93

http://www.interpss.org

	Introduction
	
	Chapter 1. Setting up the InterPSS Development Environment
	1.1 Import InterPSS library projects
	1.1.1 Clone Library project repository via Egit
	Clone the repository to local PC and import the projects into workspace

	

	
	Chapter 2. An introduction to the power system basic models in InterPSS
	2.1. Overview of power system modeling in InterPSS
	2.2. Inheritance and class hierarchy structure
	2.3 Three basic types of power system models
	2.3.1 Network object
	2.3.2 Bus
	2.3.3 Branch

	2.4. Getting and setting the data of an object
	2.4.1 Network
	2.4.2 Bus
	2.3.3 Branch

	2.4 Example

	Chapter 3. Power system load flow analysis
	Introduction to power system load flow
	3.1 Data required for load flow analysis
	3.1.1 System/network data
	3.1.2 Bus data
	3.1.3 Branch data

	
	
	3.2. Supported power system models
	
	3.3. Solution methods and internal sparse matrix data structure
	3.3.1 Newton-Raphson
	3.3.2 Fast Decoupled
	3.3.3 DC load flow

	3.4 Adjustment During load flow
	3.5 Configuration of load flow algorithm
	3.6 Example
	3.6.1 Run load flow and output result
	3.6.2 Customize NR load flow

	3.7 N-1 Contingency Analysis
	

	
	Chapter 4. Short circuit analysis
	Introduction to short circuit analysis
	4.1 Power system sequence data
	4.2 Bus based simple short circuit
	4.3 Branch based simple short circuit
	4.4 Short circuit analysis in InterPSS
	4.4.1 Create ACSC network
	4.4.2 Define a fault
	4.4.3 Calculate short circuit
	4.4.4 Obtain results

	4.5 Example
	4.5.1 Build a system for short circuit analysis
	4.5.2 Single Short circuit analysis with load flow and sequence data
	4.5.3 Parallel short circuit screening analysis

	
	
	Chapter 5. Transient stability simulation
	5.1 Introduction to transient stability simulation
	5.2 Dynamic models
	5.2.1 Machine model
	(1) Machine model in a DStabBus
	(2) Machine models of different levels of modeling details
	(3) Modeling the effects of saturation

	5.2.2 Excitor
	5.2.3 Turbine and governor
	5.2.5 Load model
	5.2.7 Bus Frequency Measurement

	5.3 Numerical Solution
	5.4 Simulation procedure
	5.4.1 Simulation data preparation
	5.4.2 Simulation setting
	5.4.3 Event setting
	(1) Fault setting
	 (a) Bus fault
	(b) Branch Fault

	5.4.4 Monitoring and output
	(1) State Variable Recorder
	(2)State Monitor

	5.4.5 Load flow and system initialization
	5.4.6 Simulation

	5.6 Data check and auto correction
	5.7 Development of new dynamic device
	5.8 Example

	
	
	Chapter 6. Power system optimization through integrating InterPSS with GAMS
	6.1 GAMS V24
	6.2. Call GAMS from Java
	6.3 Economic dispatch Sample

	
	Chapter 7. Sensitivity Analysis and DCLF-based contingency analysis
	
	
	Chapter 8. New dynamic model development with Controller Modeling Language
	
	
	Chapter 9. Graph based power system applications
	
	
	Appendix-A Sparse Matrix and Solver
	A-1. SparseEqn classes
	(1) Overview
	(2) Basic operation

	A-2. Sparse Linear equation solver
	(1) Solver Interface
	A-3 Customize the solver

	
	
	Appendix-B Open Data Model for data import/output
	1. Prerequisite
	1.1 Basic understanding of XML: schema, data binding and JAXB
	1.2 Basic knowledge of data for power system simulation

	2. ODM in a nutshell
	2.1 ODM as a data-format free intermediary for data exchange
	2.2 XML Schema for power system simulation data modeling
	2.2.1 Basic Schema
	Naming Convention
	Name Space
	Version Number
	PU System
	Extension
	Schema Root Element
	Base Record
	ID Record

	2.2.2 Base Case
	2.2.3 Bus Record
	2.2.3.1 Bus Record for AC Load flow
	Bus Generation Data -- BusGenDataXmlType
	Bus Load Data
	2.2.3.2 Bus Record for AC short circuit
	2.2.3.3 Bus Record for transient stability

	2.2.4 Branch Record
	Base Branch Data
	Loadflow Line Data
	Loadflow Transformer Data
	Transformer Data
	Transformer Tap Adjustment
	Transformer Tap Adjustment for Bus Voltage
	Transformer Tap Adjustment for MVar Flow
	Loadflow PhaseShift Transformer Data
	Phase Angle Adjustment

	Branch Rating Limit
	3-Winding transformer

	Modification
	Contingency

	Study Scenario
	2.3 Data binding with JAXB
	2.4 Data import to ODM/XML
	2.4.1 Model data parser and mapper
	2.4.1.1 Input Line String Parser
	Parse input line String

	2.4.2 Implement a specific data parser and mapper
	2.4.2.1 Implement input line string parser
	2.4.2.2 Implement input line string mapper

	2.4.3 Data Adapter

	2.5 ODM -> InterPSS
	Appendix-C Useful Plugin Tools

