
BÀI TẬP JAVA CÓ LỜI GIẢI

1. Bài tập java cơ bản

Trong phần này, bạn phải nắm được các kiến thức về:

●​ Các mệnh đề if-else, switch-case.
●​ Các vòng lặp for, while, do-while.
●​ Các từ khóa break và continue trong java.
●​ Các toán tử trong java.
●​ Mảng (array) trong java.
●​ File I/O trong java.
●​ Xử lý ngoại lệ trong java.

Bài 01:

Viết chương trình tìm tất cả các số chia hết cho 7 nhưng không phải bội số của 5, nằm trong
đoạn 10 và 200 (tính cả 10 và 200). Các số thu được sẽ được in thành chuỗi trên một dòng, cách
nhau bằng dấu phẩy.

Gợi ý:

●​ Sử dụng vòng lặp for

Code mẫu:

Kết quả:

Bài 02:

Viết một chương trình tính giai thừa của một số nguyên dương n. Với n được nhập từ bàn phím.
Ví dụ, n = 8 thì kết quả đầu ra phải là 1*2*3*4*5*6*7*8 = 40320.

Gợi ý:

●​ Sử dụng đệ quy hoặc vòng lặp để tính giai thừa.

Code mẫu: sử dụng đệ quy

​

Kết quả:

Bài 03:

Hãy viết chương trình để tạo ra một map chứa (i, i*i), trong đó i là số nguyên từ 1 đến n (bao
gồm cả 1 và n), n được nhập từ bàn phím. Sau đó in map này ra màn hình. Ví dụ: Giả sử số n là
8 thì đầu ra sẽ là: {1: 1, 2: 4, 3: 9, 4: 16, 5: 25, 6: 36, 7: 49, 8: 64}.

Gợi ý:

●​ Sử dụng vòng lặp for để lặp i từ 1 đến n.

Code mẫu:

​

Kết quả:

Bài 04:

Viết chương trình giải phương trình bậc 2: ax2 + bx + c = 0.

Code mẫu:

​

Kết quả:

Bài 05:

Viết chương trình chuyển đổi một số tự nhiên ở hệ số 10 thành một số ở hệ cơ số B (1 <= B <=
32) bất kỳ. Giả sử hệ cơ số cần chuyển là 2 <= B <= 16. Số đại điện cho hệ cơ số B > 10 là A =
10, B = 11, C = 12, D = 13, E = 14, F = 15.

Gợi ý:

●​ Tham khảo bảng ASCII để chuyển đổi kiểu char thành String. Hàm chr(55 + m) trong ví dụ
sau:

●​ Nếu m = 10 trả về chuỗi "A".
●​ Nếu m = 11 trả về chuỗi "B".
●​ Nếu m = 12 trả về chuỗi "C".
●​ Nếu m = 13 trả về chuỗi "D".
●​ Nếu m = 14 trả về chuỗi "E".

●​ Nếu m = 15 trả về chuỗi "F".

Code mẫu:

Kết quả:

Bài 06: Dãy số Fibonacci được định nghĩa như sau: F0 = 0, F1 = 1, F2 = 1, Fn = F(n-1) + F(n-2)
với n >= 2. Ví dụ: 0, 1, 1, 2, 3, 5, 8, ... Hãy viết chương trình tìm n số Fibonacci đầu tiên.

Code mẫu:

 ​

​
Kết quả:

Bài 07:

Viết chương trình tìm ước số chung lớn nhất (USCLN) và bội số chung nhỏ nhất (BSCNN) của
hai số nguyên dương a và b nhập từ bàn phím.

Gợi ý:

Sử dụng giải thuật Euclid.

Code mẫu:

Kết quả:

Bài 08:

Viết chương trình liệt kê tất cả các số nguyên tố nhỏ hơn n. Số nguyên dương n được nhập từ
bàn phím.

Code mẫu:

​

Kết quả:

Bài 09:

Viết chương trình liệt kê n số nguyên tố đầu tiên trong java. Số nguyên dương n được nhập từ
bàn phím.

Code mẫu:

​

Kết quả:

Bài 10:

Viết chương trình liệt kê tất cả số nguyên tố có 5 chữ số trong java.

Code mẫu:

​

Kết quả:

Bài 11:

Viết chương trình phân tích số nguyên n thành các thừa số nguyên tố trong java. Ví dụ: 100 =
2x2x5x5.

Code mẫu:

​

Kết quả:

Bài 12:

Viết chương trình tính tổng của các chữ số của môt số nguyên n trong java. Số nguyên dương n
được nhập từ bàn phím. Với n = 1234, tổng các chữ số: 1 + 2 + 3 + 4 = 10

Code mẫu:

​

Kết quả:

Bài 13:

Viết chương trình kiểm tra một số n là số thuận nghịch trong java. Số nguyên dương n được
nhập từ bàn phím.

Code mẫu:

​

Kết quả:

Bài 14:

Viết chương trình liệt kê các số Fibonacci nhỏ hơn n là số nguyên tố trong java. N là số nguyên
dương được nhập từ bàn phím.

Code mẫu:

​

Kết quả:

2. Bài tập chuỗi trong Java
Bài 1: Nhập một sâu ký tự. Đếm số từ của sâu đó (mỗi từ cách nhau bởi một khoảng trắng có thể là
một hoặc nhiều dấu cách, tab, xuống dòng). Ví dụ " hoc java co ban den nang cao " có 7 từ.

Lời giải:

Thuật toán:

1.​ Nếu chuỗi đã cho input = null thì trả về -1. Kết thúc tại đây.
2.​ Ngược lại, duyệt từ phần tử đầu tiên đến phần tử cuối cùng của chuỗi.

3.​ Nếu ký tự hiện tại là ký tự chữ (ký tự khác space và tab và xuống dòng) thì ta tìm được một
từ. Và đánh dấu từ đó đã được đếm (notCounted = false;). Đến khi gặp ký tự space hoặc tab
hoặc xuống dòng thì đánh dấu từ đó đã đếm xong (notCounted = true;) để đếm từ tiếp theo.

Các bạn xin hãy lưu ý: một bài toán có hàng trăm nghìn cách giải, ngoài cách này ra các bạn
có thể tự nghĩ cho mình những cách giải khác hoặc tìm trên google!

File: StringExample1.java

​

Kết quả:

Bài 2: Viết chương trình java liệt kê số lần xuất hiện của các từ trong một chuỗi.

Lời giải

Trong bài này chúng tôi sử dụng StringBuilder thay vì String trong java để build một từ và sử
dụng TreeMap để lưu các từ tìm được và số lần xuất hiện của chúng trong chuỗi đã cho.

File: StringExample2.java

​

Kết quả:

Lưu ý: trong một số trường hợp phải thao tác nhiều với một chuỗi bạn nên sử dụng
StringBuilder thay vì sử dụng String nhé.

Bài 3: Viết chương trình java kiểm tra xem chuỗi s1 chứa chuỗi s2 không?

Lời giải

Để kiểm tra chuỗi s1 chứa chuỗi s2 hay không, bạn có thể sử dụng phương thức contains() trong
java.

File: StringExample3.java

Kết quả:

3. Bài tập mảng trong Java
Bài 1: Viết chương trình Java nhập một mảng số nguyên a0, a1, a2, …, an-1. Liệt kê các phần tử
xuất hiện trong mảng đúng 1 lần.

Lời giải

Trong bài này chúng tôi sử dụng TreeMap để lưu các từ tìm được và số lần xuất hiện của chúng
trong mảng đã cho.

File: BaiTap19.java

Kết quả:

Bài 2: Nhập một mảng số nguyên a0, a1, a2, …, an-1. Liệt kê các phần tử xuất hiện trong mảng
đúng 2 lần.

Lời giải

Trong bài này chúng tôi sử dụng TreeMap để lưu các từ tìm được và số lần xuất hiện của chúng
trong mảng đã cho.

File: BaiTap20.java

Kết quả:

Bài 3: Viết chương trình nhập một mảng số nguyên a0, a1, a2, …, an-1. Liệt kê số lần xuất hiện
của các phần tử trong một mảng đã cho.

Lời giải

Trong bài này chúng tôi sử dụng TreeMap để lưu các từ tìm được và số lần xuất hiện của chúng
trong mảng đã cho.

File: BaiTap21.java

Kết quả:

Bài 4: Viết chương trình Java nhập một mảng số nguyên a0, a1, a2, …, an-1. Hãy sắp xếp mảng
theo thứ tự tăng dần.

Lời giải

Sau đây là chương trình Java sắp xếp mảng theo thứ tự tăng dần:

File: BaiTap22.java

Kết quả:

Bài 4: Đề bài: Viết chương trình Java nhập một mảng số nguyên a0, a1, a2, …, an-1. Hãy sắp
xếp mảng theo thứ tự giảm dần.

Lời giải
Sau đây là chương trình Java sắp xếp mảng theo thứ tự giảm dần:

File: BaiTap22.java

​

Kết quả:

Bài 6: Viết chương trình Java nhập một mảng số nguyên a0, a1, a2, …, an-1. Hãy sắp xếp mảng
theo thứ tự tăng dần, sau đó chèn phần tử k vào mà vẫn đảm bảo mảng là tăng dần.

Lời giải
Chèn phần tử vào mảng trong java.

Kết quả:

Bài 7: Viết chương trình Java nhập 2 mảng số thực a0, a1, a2, …, an và b0, b1, b2, …, bm. Giả
sử 2 mảng này đã được sắp xếp tăng dần. Hãy tận dụng tính sắp xếp của 2 dãy và tạo dãy c0, c1,
c2, …, cn+m là hợp của 2 dãy trên sao cho ci cũng có thứ tự tăng dần.

Lời giải
Trộn 2 mảng trong java.

Kết quả:

4. Bài tập về các thuật toán sắp xếp trong Java
Bài 1: Viết chương trình Java sắp xếp một dãy số theo thứ tự tăng dần bằng thuật toán nổi bọt
(Bubble Sort).

Lời giải
Sắp xếp nổi bọt (Bubble Sort) là một giải thuật sắp xếp đơn giản. Giải thuật sắp xếp này được
tiến hành dựa trên việc so sánh cặp phần tử liền kề nhau và tráo đổi thứ tự nếu chúng không
theo thứ tự.

Giải thuật này không thích hợp sử dụng với các tập dữ liệu lớn khi mà độ phức tạp trường hợp
xấu nhất và trường hợp trung bình là Ο(n2) với n là số phần tử.

Giải thuật sắp xếp nổi bọt là giải thuật chậm nhất trong số các giải thuật sắp xếp cơ bản. Giải
thuật này còn chậm hơn giải thuật đổi chỗ trực tiếp mặc dù số lần so sánh bằng nhau, nhưng do
đổi chỗ hai phần tử kề nhau nên số lần đổi chỗ nhiều hơn.

Dưới đây là chương trình Java để giải bài sắp xếp nổi bọt (Bubble Sort) trong Java:

​

Chạy chương trình Java trên cho kết quả như sau:

Bài 2: Viết chương trình Java sắp xếp một dãy số theo thứ tự tăng dần bằng thuật toán chọn
(Selection Sort).

Lời giải
Giải thuật sắp xếp chọn (Selection Sort) là một giải thuật đơn giản. Giải thuật sắp xếp này là
một giải thuật dựa trên việc so sánh in-place, trong đó danh sách được chia thành hai phần,
phần được sắp xếp (sorted list) ở bên trái và phần chưa được sắp xếp (unsorted list) ở bên phải.
Ban đầu, phần được sắp xếp là trống và phần chưa được sắp xếp là toàn bộ danh sách ban đầu.

Phần tử nhỏ nhất được lựa chọn từ mảng chưa được sắp xếp và được tráo đổi với phần bên trái
nhất và phần tử đó trở thành phần tử của mảng được sắp xếp. Tiến trình này tiếp tục cho tới khi
toàn bộ từng phần tử trong mảng chưa được sắp xếp đều được di chuyển sang mảng đã được sắp
xếp.

Dưới đây là chương trình Java để giải bài sắp xếp chọn (Selection Sort) trong Java:

​

Chạy chương trình Java trên cho kết quả như sau:

Bài 3: Viết chương trình Java sắp xếp một dãy số theo thứ tự tăng dần bằng thuật toán chèn
(Insertion Sort).

Lời giải
Sắp xếp chèn là một giải thuật sắp xếp dựa trên so sánh in-place. Ở đây, một danh sách con luôn
luôn được duy trì dưới dạng đã qua sắp xếp. Sắp xếp chèn là chèn thêm một phần tử vào danh
sách con đã qua sắp xếp. Phần tử được chèn vào vị trí thích hợp sao cho vẫn đảm bảo rằng danh
sách con đó vẫn sắp theo thứ tự.

Với cấu trúc dữ liệu mảng, chúng ta tưởng tượng là: mảng gồm hai phần: một danh sách con đã
được sắp xếp và phần khác là các phần tử không có thứ tự. Giải thuật sắp xếp chèn sẽ thực hiện
việc tìm kiếm liên tiếp qua mảng đó, và các phần tử không có thứ tự sẽ được di chuyển và được
chèn vào vị trí thích hợp trong danh sách con (của cùng mảng đó).

Giải thuật này không thích hợp sử dụng với các tập dữ liệu lớn khi độ phức tạp trường hợp xấu
nhất và trường hợp trung bình là Ο(n2) với n là số phần tử.

Dưới đây là chương trình Java để giải bài sắp xếp chèn (Insertion Sort) trong Java:

​

Bài 3: Viết chương trình Java sắp xếp một dãy số theo thứ tự tăng dần bằng thuật toán nhanh
(Quick Sort).

Lời giải
Giải thuật sắp xếp nhanh (Quick Sort) là một giải thuật hiệu quả cao và dựa trên việc chia mảng
dữa liệu thành các mảng nhỏ hơn. Giải thuật sắp xếp nhanh chia mảng thành hai phần bằng cách
so sánh từng phần tử của mảng với một phần tử được chọn gọi là phần tử chốt (Pivot): một
mảng bao gồm các phần tử nhỏ hơn hoặc bằng phần tử chốt và mảng còn lại bao gồm các phần
tử lớn hơn hoặc bằng phần tử chốt.

Dưới đây là chương trình Java để giải bài sắp xếp nhanh (Quick Sort) trong Java:

​

Javahạy chương trình Java trên cho kết quả như sau:

Bài 3: Viết chương trình Java sắp xếp một dãy số theo thứ tự tăng dần bằng thuật toán trộn
(Merge Sort)

Lời giải
Sắp xếp trộn (Merge Sort) là một giải thuật sắp xếp dựa trên giải thuật Chia để trị (Divide and
Javaonquer). Với độ phức tạp thời gian trường hợp xấu nhất là Ο(n log n) thì đây là một trong
các giải thuật đáng được quan tâm nhất.

Đầu tiên, giải thuật sắp xếp trộn chia mảng thành hai nửa và sau đó kết hợp chúng lại với nhau
thành một mảng đã được sắp xếp.

Dưới đây là chương trình Java để giải bài sắp xếp trộn (Merge Sort) trong Java:

​

Java chạy chương trình Java trên cho kết quả như sau:

	2. Bài tập chuỗi trong Java
	3. Bài tập mảng trong Java
	Lời giải
	Lời giải
	Lời giải
	Lời giải
	4. Bài tập về các thuật toán sắp xếp trong Java
	Lời giải
	Lời giải
	Lời giải
	Lời giải
	Lời giải

