Parallel Programming | BDST02]

Module 2

GPU programming, Programming hybrid systems, MIMD systems, GPUs, Performance —
Speedup and efficiency in MIMD systems, Amdahl’s law, Scalability in MIMD systems,
Taking timings of MIMD programs, GPU performance.

1.1 GPU Programming

GPUs are not standalone processors and typically don’t run their own operating system or
access system services like storage. Therefore, programming a GPU also requires writing code
for the CPU host, which manages tasks like memory allocation and data initialization. The
CPU and GPU usually have separate memory spaces, so the host code must handle memory
transfers and execution control. After launching the GPU program, the host is also responsible
for collecting and displaying results. This makes GPU programming a form of heterogeneous

programming, as it involves coordinating two different types of processors.

A GPU consists of one or more processors, each capable of running hundreds or thousands of
threads. While all processors share a large global memory, each processor also has a smaller,
faster memory accessible only to its own threads, functioning like a programmer-managed

cache.

e Threads on a GPU processor are grouped into sets, where each group follows the SIMD

(Single Instruction, Multiple Data) model.

e Threads in different groups can operate independently, executing different instructions

concurrently.

e Within a SIMD group, threads may not execute the same instruction at the exact same

time, but all must complete the current instruction before any can proceed to the next.

e When executing branch instructions, some threads in a group may need to idle,

depending on conditional execution paths.

e For instance, if 32 threads are in a SIMD group and each has a variable rank in_gp
from 0 to 31, their execution may vary based on this variable, potentially causing

divergence and idle threads.

Suppose also that the threads are executing the following code:

Parallel Programming | BDST02]

// Thread private variables
int rank_in_gp, my_x;:

S —

if (rank_in_gp < 16)

my_x += 1;
else
my_x —= 1:

When the condition is checked, threads with rank < 16 will run the first assignment while the
others stay idle. Once that finishes, the roles switch and threads with rank > 16 run the second
assignment, while the rest wait. This back-and-forth leads to poor efficiency, so programmers

should aim to reduce branching within SIMD groups to make better use of resources.

In GPU programming, thread scheduling is handled by hardware rather than software, unlike
CPUs. The GPU's hardware scheduler introduces minimal overhead and executes an

instruction only when all threads in a SIMD group are ready.

For example, each thread needs to have the variable rank in_gp loaded into a register before
the conditional test is executed. To efficiently utilize the hardware, many SIMD groups are
created. This allows the scheduler to idle groups that are waiting (for data or previous

instructions) and switch to another SIMD group that is ready to run.
1.2 Programming hybrid systems

Clusters of multicore processors can be programmed using a combination of shared-memory
APIs within nodes and distributed-memory APIs between nodes. However, this hybrid
approach is typically used only for performance-critical applications due to its complexity. In
most cases, a single distributed-memory API is used for both intra- and inter-node

communication to simplify development.
1.3 Input and Output
1.3.1 MIMD systems

We’ve mostly avoided discussing input and output because parallel I/O is a complex topic that
could fill an entire book. Most programs we write do minimal I/O, which can be handled with
standard C functions like printf, fprintf, scanf, and fscanf. However, these functions are part of
the serial C standard and don’t define behavior when used by multiple processes. Threads
within a single process share stdin, stdout, and stderr, but concurrent access by threads can lead

to unpredictable, nondeterministic results.

Parallel Programming | BDST02]

When printf is called from multiple processes or threads, we usually expect the output to
appear on the console of the system that started the program. While most systems behave this
way, it’s not guaranteed—some may allow only one process to access stdout or stderr, or none
at all. With scanf, it's unclear whether input should be shared or limited; most systems allow at
least one process, typically process 0, to call scanf, and many allow multiple threads to use it.
However, some systems block scanf entirely for processes. When multiple processes or threads
access stdin, stdout, or stderr, the results can be nondeterministic. Output may appear in a
different order or get interleaved across processes/threads. Similarly, input might vary each

time the program runs, even with the same input data.
To simplify I/O in parallel programs, we'll follow these rules:
e Only process 0 (or thread 0) will read from stdin.

e All processes/threads can write to stdout and stderr, but usually only one will write to

avoid jumbled output—except during debugging.

e Each process/thread will use its own file for input/output; no file (except stdin, stdout,

or stderr) will be shared.
e Debug output should always include the process/thread rank or ID.
1.3.2 GPUs

In most GPU programs, the host code handles all I/O using standard C functions, as only one
host thread runs. An exception occurs during debugging, when GPU threads may write to
stdout, though the output order is nondeterministic. However, GPU threads cannot access

stderr, stdin, or secondary storage.
1.4 Performance

The main goal of parallel programming is typically improved performance, so it's important to
understand what to expect and how to evaluate it. This section focuses on performance in
homogeneous MIMD systems, where all cores share the same architecture; GPU performance

will be discussed separately.
1.4.1 Speedup and efficiency in MIMD systems

The ideal case for a parallel program is when the work is evenly divided among p cores without
adding extra overhead. In this case, the program can run p times faster than the serial version

on

Parallel Programming | BDST02]

a single core. If Tserial 1s the serial run-time and Tparaiiel is the parallel run-time, the best possible

outcome 1S Tparaliel = Tserial/ p. This is known as linear speedup.

Table 1: Speedups and efficiencies of a parallel program.

p 1 |2 |4 8 16
s 1019 |36 |65 |108
E=S/p |1.0|095|090|0.81| 0.68

e In reality, parallel programs rarely achieve perfect linear speedup due to overhead.

e Shared-memory programs often have critical sections that require mutexes, adding

extra function calls and forcing some parts to run serially.

e Distributed-memory programs typically need to send data over a network, which is

much slower than accessing local memory.

e These overheads don’t exist in serial programs, so parallel programs usually fall short of

linear speedup.

e As the number of threads or processes increases, the overhead generally grows—for
example, more threads may compete for a critical section, and more processes may

need to exchange data.
Speedup (S) is defined as the ratio of serial execution time to parallel execution time:

g — Terial ‘
Tpurullel

Efficiency (E) is the speedup divided by the number of processors (p):

E — § T:%erial

p P Tparallel
If a program has linear speedup 7paraitel = Tserial/ p, then S = p, and hence efficiency E = 1.

As the number of processors p increases, parallel overhead increases (e.g., communication,

synchronization).

This causes S to become less than p, and thus E=S/p decreases with higher p.

Parallel Programming | BDST02]

The term S/p or efficiency reflects how well the processors are being utilized in the parallel

execution.

Table 1 illustrates how both S and E = S/p decline as more processors are added, indicating

diminishing returns.

If the serial run-time is measured on the same type of core as the parallel system, efficiency
represents how well the parallel cores are used. It shows the average fraction of time each core
spends doing useful work on the problem. The rest of the time accounts for parallel overhead.
This relationship is clear when we multiply efficiency by the parallel run-time.

Tscria] Tserial
' Tparullcl = .
P

- re - —
E-1 parallel
P]para]]el

For example, suppose we have Tserial = 24 ms, p = 8, and Tparallet = 4 ms. Then

and, on average, each process/thread spends 3/4 - 4 = 3 ms on solving the original problem, and
4 — 3 = 1 ms in parallel overhead. Many parallel programs are developed by explicitly dividing
the work of the serial program among the processes/threads and adding in the necessary
“parallel overhead,” such as mutual exclusion or communication. Therefore if Toverhead denotes

this parallel overhead, it’s often the case that

Tpa.ral]cl = Tserial;/ P + Toverhead-

When this formula applies, parallel efficiency is the fraction of time spent on the actual
problem: Tserial/p versus the total parallel time, Tparalel, which includes overhead Toverhead.
We’ve seen that Tparalel, speedup S, and efficiency E depend on the number of threads or
processes p. They also vary with problem size. For instance, halving or doubling the problem

size changes the values of S and E, as shown in Tables 1 and 2 and Figures 2.1 and 2.2.

Parallel Programming [BDST02)

Table 2: Speedups and efficiencies of parallel program on different problem sizes.

p |1 2 4 8 16
Half S 1.0 1.9 3.1 4.8 6.2
E |10 (095 |0.78 |0.60 0.39
Original | § 1.0 1.9 3.6 6.5 10.8
E |10 095 |0.90 |0.81 0.68
Double | § 1.0 1.9 3.9 7.5 14.2
E |10 (095 |098 |0.94 0.89
16 T T T T T T T
—»— Half size
14 | | —+— Original]
—e— Double size
12
a 10 |
7]
6 3
4 |
2+ A
é r;f Eli é 1IU 1I2 1I4 16
Processes

Fig 2.1: Speedups of parallel program on different problem sizes.

1

09}
08}
0.7
06}

Efficiency

03F
0.2}
01}

0

05F
041

—»— Half size
—+— Original
—e— Double size

2 4

6

8

10

Processes

12

14 16

Fig 2.2: Efficiencies of parallel program on different problem sizes

Parallel Programming | BDST02]

In many parallel programs, as the problem size increases and the number of threads p remains
fixed, Tserial (time for solving the original problem) grows faster than the parallel overhead

Toverhead. This results in better efficiency for larger problems.

When reporting speedup and efficiency, there's debate on which Tserial to use—some prefer the
time of the fastest algorithm on the fastest system, while others use the serial version of the
same algorithm run on a single processor of the parallel system. Since efficiency reflects core
utilization on the actual system, most use the second approach. For consistency, we’ll also use

the serial version of the same program on a single core of the parallel system.
1.4.2 Amdahl’s law

Amdahl’s law states that if a portion of a program remains serial, the overall speedup is limited,

no matter how many cores are used. For example, if 90% of a program is perfectly parallelized,
Tserial

S = = .
0.9 x Tscrial/p + 0.1 X Tierial 18/;3 +2

then that part runs in 18/p seconds when Tseria= 20 seconds. The remaining 10% is serial and

takes 0.1xTseria= 2 seconds. So, the total parallel time is 18/p + 2, showing that the

unoptimized part limits the speedup.
Tparallel = 0.9 X Tserial/p + 0.1 X Tserial = 18/p + 2,

and speedup will be

Now as p gets larger and larger, 0.9 x Tserial/p = 18/p gets closer and closer to 0, so the total
parallel run-time can’t be smaller than 0.1 x Tserial = 2. That is, the denominator in S can’t be
smaller than 0.1 x Tserial = 2. The fraction S must therefore satisfy the inequality

Tserial 20

S<——mMm=—=10.
0.1 X Tserial 2

That is, S < 10. This is saying that even though we’ve done a perfect job in parallelizing 90%

of the program, and even if we have, say, 1000 cores, we’ll never get a speedup better than 10.

Amdahl’s Law explains that if a part of a program, say a fraction r, cannot be parallelized, then
the maximum speedup we can achieve is limited to 1/r. For example, if 10% of the program is

serial (r = 0.1), the best speedup we can get is 10, no matter how many cores we use. Even if

Parallel Programming | BDST02]

only 1% is serial (r = 0.01), the maximum possible speedup is 100. So, unless nearly the entire

program is parallelized, adding more cores won’t lead to huge speedups.
There are several reasons not to be too worried by Amdahl’s law

e Amdahl’s Law doesn’t consider problem size; as problem size increases, the serial

portion may shrink — this idea is formalized in Gustafson’s Law.

e Many scientific and engineering applications still achieve very large speedups on

distributed-memory systems.

e Small speedups (like 5 or 10) can still be valuable, especially when the effort to

parallelize is minimal.

In practice, even modest improvements can justify using parallel computing for better

performance.
1.4.3 Scalability in MIMD systems

The term "scalable" is often used informally, generally meaning that a program can benefit
from increased computing power, such as more cores. In the context of MIMD parallel
program performance, scalability has a more precise meaning. If a program maintains the same
efficiency £ when both the number of processes or threads and the problem size are increased
proportionally, it is considered scalable. This means the program continues to perform
efficiently as system resources grow. Scalability, in this sense, measures how well a program

adapts to larger systems and workloads.

As an example, suppose that Tserial = n, where the units of Tserial are in microseconds, and n

is also the problem size. Also suppose that Tparallel = n/p + 1. Then

E n n
~ pn/p+1l) n+p

To test a program’s scalability, we increase the number of processes or threads by a factor of &
and determine the factor x by which the problem size must grow to maintain the same efficiency
E. With kp processes and a problem size of xn, we aim to find x such that efficiency remains
unchanged.

n xn

E= = .
n+p xn+kp

Parallel Programming | BDST02]

Well, if x =k, there will be a common factor of k in the denominator xn + kp =kn + kp =k(n +

p), and we can reduce the fraction to get

xn kn n

xn-i—kp:k(n-l-p):n-l-p'

In other words, if we scale the problem size proportionally with the number of processes or

threads, the efficiency stays the same, indicating that the program is scalable.
There are two special types of scalability: strong and weak scalability.

e A program is strongly scalable if efficiency remains constant as we increase the

number of processes or threads, without changing the problem size.

e A program is weakly scalable if efficiency stays the same when both the problem size

and the number of processes or threads are increased at the same rate.
e In our example, the program is considered weakly scalable.
1.4.4 Taking timings of MIMD programs

To find Tserial and Tparallel, we typically measure how long the program takes to run in
serial and parallel modes. While the exact method can vary depending on the parallel API used,

some general practices can help simplify the process.
Firstly,

1. Timing in parallel programming is done for two main purposes: debugging during

development and measuring overall performance after development.

2. During development, timings help identify issues such as excessive message-waiting
time in distributed-memory programs, which could indicate design or implementation

problems.

3. This stage requires detailed timings, breaking down how much time is spent in specific

sections of the code.

4. After development, the focus shifts to evaluating the program’s performance, typically

using a single overall timing value.

5. The method and level of detail in timing differ significantly between development and

performance evaluation phases.

Parallel Programming | BDST02]

Secondly,

1. In performance analysis, we typically focus on the time taken by a specific part of the

program, like sorting, rather than the entire execution time.

2. Therefore, tools like the Unix time command, which measure total program duration,

are not suitable for such targeted measurements.
Third,

1. We generally don’t rely on "CPU time" reported by functions like clock in C, as it only

measures the active execution time of the program.

2. TItincludes time spent in user-written code, standard library functions (e.g., pow, sin),

and OS-level calls (e.g., printf, scanf).

3. However, it excludes idle time, which can be significant in parallel programs, making

CPU time less reliable for performance analysis.

In distributed-memory programs, if a process waits for a matching send after calling a receive,
the operating system may put it to sleep, and this idle time won’t be counted as CPU time.
However, this waiting period should be included in the total run-time, as ignoring it would give

a misleading view of the program’s actual performance.

When articles report the run-time of a parallel program, they typically refer to the “wall clock”
time—meaning the actual elapsed time from the start to the end of execution. Although users
can't watch the execution directly, they can measure this time by adding timing code at the

beginning and end of the relevant sections.

double start, finish;:

start = Get_current_time():
/x Code that we want to time */

finish = Get_current_time ();

printf("The elapsed time = %e seconds\n", finish—start);
The function Get current time() is a placeholder meant to return the number of seconds
elapsed since a fixed reference point. The actual function used depends on the API—MPI
provides MPI_ Wtime(), and OpenMP offers omp get wtime(), both of which return wall clock
time. However, the resolution of these timer functions can vary; resolution refers to the

smallest time

Parallel Programming [BDST02)

interval the timer can measure. Some timers operate in milliseconds, which may be too coarse
for measuring very short events, especially when modern instructions execute in nanoseconds.
Therefore, programmers should check the resolution either through API-provided functions or

documentation to ensure accurate timing.

When timing parallel programs, it's important to consider that multiple processes or threads are
running the timed code. This often results in p different elapsed times, one for each process or

thread.

private double start, finish;

start = Get_current_time():
/¥ Code that we want to time */

finish = Get_current_time ();
printf("The elapsed time = %e seconds\n", finish—start);

What we usually want is the total time from when the first process/thread starts to when the last
one finishes. Since clocks across nodes may not be perfectly synchronized, we typically use an

approximate method to estimate this elapsed time.

shared double global_elapsed;
private double my_start, my_finish, my_elapsed;

/% Synchronize all processes/threads x/
Barrier ();
my_start = Get_current_time():

/% Code that we want to time =*/

my_finish = Get_current_time ();
my_elapsed = my_finish — my_start;

/% Find the max across all processes/threads */
global_elapsed = Global_max(my_elapsed):
if (my_rank == 0)
printf("The elapsed time = %e seconds\n",
global_elapsed);

Parallel Programming | BDST02]

First, a barrier function is used to roughly synchronize all processes or threads. Each one then
records its own elapsed time, and a global maximum function finds the longest time, which is

printed by process/thread 0.

Timing results can vary across multiple runs, even with the same inputs and system. Since
external factors are unlikely to make a program run faster than its best time, we usually report

the minimum elapsed time instead of the mean or median.

Running multiple threads per core increases timing variability and adds overhead due to extra
scheduling. As a result, we typically use only one thread per core and exclude I/O operations

from reported run-times.

1.4.5 GPU Performance

When analyzing MIMD performance, we often compare how a parallel program performs
relative to its serial counterpart. This same idea is sometimes applied to GPU programs, with
reported speedups showing how much faster a GPU implementation is compared to a serial or
even a MIMD version. However, there's a key difference: MIMD systems usually involve cores
that are similar to those used in the serial baseline, whereas GPUs are built on inherently
parallel cores that function differently. Therefore, directly comparing GPU and CPU

performance may not provide meaningful insights.

As a result, metrics like efficiency—which are useful for MIMD programs—aren’t commonly
applied to GPU performance. Similarly, the concept of linear speedup doesn’t quite work with
GPU programs when compared against serial CPU versions. In the case of MIMD programs,
scalability is formally defined based on efficiency and performance growth with added cores.
But for GPUs, scalability is discussed more informally: if increasing the GPU’s size leads to

better performance, the program is considered scalable.

Amdahl’s Law, which sets a theoretical upper bound on speedup based on the
non-parallelizable fraction of a program, can still be applied to GPU programs—if the serial
portion of the code runs on a regular CPU. For example, if 10% of the program cannot be
parallelized and is handled by a CPU, then the speedup will be limited to less than 10x,
regardless of how powerful the GPU is. However, like in MIMD systems, the size of the serial
portion often depends on the problem size; as the problem grows, the impact of that portion

may shrink, allowing for better speedups.

It's also worth noting that GPU programs often demonstrate very large speedups in practice.

Still, even modest speedups can be valuable depending on the application. When it comes to

Parallel Programming | BDST02]

timing

Parallel Programming | BDST02]

GPU programs, many of the same principles used in MIMD timing apply. Because a GPU
program typically starts and ends on a conventional CPU, a CPU-based timer can be used to
measure the full duration of GPU execution—by starting it before the GPU kernel begins and

stopping it after completion.

For more complex setups, such as when multiple CPU-GPU pairs are involved, careful timing
strategies are necessary. However, those advanced configurations are outside the current scope.
If you’re only interested in measuring a specific part of GPU execution, it’s best to use timing

tools provided by the GPU’s API rather than relying on the CPU timer.

	1.1​GPU Programming
	1.2​Programming hybrid systems
	1.3​Input and Output
	1.3.2​GPUs
	1.4​Performance
	1.4.1​Speedup and efficiency in MIMD systems
	Speedup (S) is defined as the ratio of serial execution time to parallel execution time:
	1.4.2​Amdahl’s law
	1.4.3​Scalability in MIMD systems
	1.4.4​Taking timings of MIMD programs
	1.4.5​GPU Performance

