
Renderer-Side Content Decoding
horo@chromium.org (Last Update) Jan 24, 2025

crbug.com/391950057

This document is public

Introduction

This document outlines the design for "Renderer-Side Content Decoding," a performance-focused feature

in Chromium that shifts the primary responsibility for content decompression from the network service to

the renderer process, leveraging parallel processing within the renderer.

Prototype CL: https://chromium-review.googlesource.com/c/chromium/src/+/6169866

Goals

●​ Performance:

○​ Reduce main IO thread contention and jank in the network service by offloading

decompression to renderer processes.

○​ Improve overall page load times through parallelized decompression in the renderer.

●​ Code Reusability:

○​ Design the solution to be reusable for the Content-Addressable Disk Cache project (doc),

allowing the renderer to directly access and decompress data from the cache.

Non-Goals

●​ Shared Dictionary Decompression: Decompression for shared dictionaries will remain in the network

service. See the "Future Work" section for potential integration.

●​ Security Enhancements: This project is not focused on improving security. The network service will

continue to handle partial decompression for ORB and MIME sniffing, and thus will still be exposed

to potentially malicious compressed data.

Current Architecture

Currently, the network service is responsible for:

1.​ Receiving HTTP response bodies from the server, or reading HTTP response bodies from the HTTP

Cache.

2.​ Decompressing the response bodies based on the Content-Encoding header.

mailto:horo@chromium.org
http://crbug.com/391950057
https://chromium-review.googlesource.com/c/chromium/src/+/6169866
https://docs.google.com/document/d/1hVWSe8NpegszYSSlA9Jp2u8lP9oxdgOuGUDzWCbuh1Y/edit?usp=sharing&resourcekey=0-2WDMVJ22SAxwuj0K9pgmCw

3.​ Forwarding the decompressed data to the renderer process.

This can lead to performance bottlenecks, as decompression is often CPU-intensive and blocks the

network service's main IO thread.

Proposed Architecture

The proposed architecture moves the main responsibility for content decompression to the renderer

process, which can leverage parallel processing. The network service will retain a limited role, performing

minimal decompression only for ORB and MIME type sniffing.

Key Changes

●​ Network Service:

○​ Will perform partial decompression of the response body (up to net::kMaxBytesToSniff

bytes) only when required for ORB and MIME type sniffing.

○​ Introduces a new flag, client_side_content_decoding_enabled, in

network::ResourceRequest. This flag will be true for requests where the renderer should

handle decompression (e.g., navigation, subresource, preloading).

○​ Adds a new property, client_side_content_decoding_types (an array of SourceType), to

URLResponseHead. This array will list the content encoding types (e.g., kGzip, kBrotli,

kDeflate) the renderer should apply, in the order specified by the Content-Encoding header.

Importantly, if an encoding is disabled via DevTools, it will be omitted from this array even if

present in the Content-Encoding header.

○​ Sends the raw, compressed data to the renderer when

client_side_content_decoding_enabled is true.

○​ Error Handling: If partial decompression for sniffing fails, the network service will fail the

request with net::ERR_CONTENT_DECODING_FAILED, similar to the current behavior.

●​ Renderer Process:

○​ Receives the raw, compressed data from the network service if

client_side_content_decoding_types is not empty.

○​ Decompresses the data using a thread pool, applying only the decoding types listed in

client_side_content_decoding_types.

○​ Handles decompression errors gracefully.

Data Flow

1.​ The renderer of the browser process initiates a resource request as follows.

○​ Renderer process: Subresource requests

○​ Browser process: Navigation requests, preloading requests

2.​ Network service receives the request and fetches the response from the server.

3.​ Network service checks the Content-Encoding header and DevTools settings.

4.​ If client_side_content_decoding_enabled is true for this request type, and the response requires

decompression:

○​ If ORB or MIME type sniffing is necessary, the network service performs partial

decompression (up to net::kMaxBytesToSniff).

○​ If partial decompression fails, the network service fails the request with

net::ERR_CONTENT_DECODING_FAILED.

○​ The network service populates client_side_content_decoding_types in URLResponseHead

with encoding types from Content-Encoding, excluding any disabled by DevTools.

○​ The network service sends URLResponseHead (including

client_side_content_decoding_types) and the raw, compressed data to the renderer.

5.​ If client_side_content_decoding_enabled is false, or the response does not need

decompression:

○​ The network service fully decompresses the response body (if needed) as it currently does.

○​ The network service sends URLResponseHead and the decompressed data to the renderer.

6.​ The renderer process receives the URLResponseHead and the data.

7.​ If client_side_content_decoding_types is not empty, the renderer performs decompression

based on the specified types using worker threads. Otherwise, it handles the data as received

(already decompressed or no decompression needed).

○​ We could potentially improve performance by decoding data when the renderer consumes

the data, thus avoiding thread hops and memory copies. However, many areas of the code

load data from pipes, increasing the risk of bugs where decoding is missed. Also, the error

handling code will become more complex. Therefore, we'll initially implement this by adding

decoding logic as soon as the renderer receives the data pipe. (prototype CL)

ORB and MIME Type Sniffing in Detail

●​ Opaque Response Blocking (ORB): For responses with an opaque type, the network service

partially decompresses the first net::kMaxBytesToSniff bytes to determine if the response should

be blocked based on content.

●​ MIME Type Sniffing: If the Content-Type header is missing, invalid, or ambiguous (as determined by

ShouldSniffMimeType()), the network service partially decompresses the initial

net::kMaxBytesToSniff bytes to infer the correct MIME type.

https://chromium-review.googlesource.com/c/chromium/src/+/6169866/27/content/renderer/render_frame_impl.cc

●​ Sniffing Procedure:

1.​ If ORB or MIME sniffing is required, attempt to partially decompress the first

net::kMaxBytesToSniff bytes using the encoding in Content-Encoding that is not disabled

by DevTools.

2.​ If enough data is produced for ORB/MIME sniffing, proceed with sniffing.

3.​ If ORB/MIME sniffing is successful or not needed, continue to the next step.

4.​ If sniffing fails due to a decompression error, fail the request with

net::ERR_CONTENT_DECODING_FAILED.

Error Handling

●​ Network Service: If partial decompression for sniffing fails, the network service fails the request with

net::ERR_CONTENT_DECODING_FAILED. No further decompression is attempted.

●​ Renderer Process: If any renderer decompression task fails, the request fails with

net::ERR_CONTENT_DECODING_FAILED. The error will be passed to the

network::mojom::URLLoaderClient::OnComplete() method.

DevTools Interaction

●​ Disabling Encodings: When a user disables a specific encoding type via DevTools, the network

service will be notified and will omit that encoding type from the Accept-Encoding request header,

and the client_side_content_decoding_types array effectively preventing the renderer from

attempting to use it. This also affects the partial decompression for ORB and MIME sniffing -

disabled encodings will be skipped.

Compatibility

This change maintains backward compatibility. The existing behavior (full decompression in the network

service) remains the default unless client_side_content_decoding_enabled is explicitly set to true for a

request.

Future Work
●​ Content-Addressable Disk Cache Integration: The renderer-side decompression logic will be reused

for direct reading and decompression from the Content-Addressable Disk Cache (doc).

●​ Shared Dictionary Integration: We may consider renderer-side decompression for shared dictionary

compressed response. But this requires a lot of changes in handling shared dictionary compressed

responses. Currently we store the decompressed response in HTTP Cache for shared dictionary

https://docs.google.com/document/d/1hVWSe8NpegszYSSlA9Jp2u8lP9oxdgOuGUDzWCbuh1Y/edit?resourcekey=0-2WDMVJ22SAxwuj0K9pgmCw&tab=t.0#heading=h.v5wl0kow9heg%5C

compressed responses. We may need to change it to store the compressed response in HTTP

Cache.

●​ Deferred Decompression: In the initial implementation, the renderer begins decoding the data in

worker threads upon receiving the data pipe. However, deferring decompression until the data is

actually consumed by the renderer could potentially improve performance by avoiding thread

context switches and memory copies.

Metrics
●​ Page Load Performance: Evaluate the overall impact on page load times.

	Renderer-Side Content Decoding
	Introduction
	Goals
	Non-Goals

	Current Architecture
	Proposed Architecture
	Key Changes
	Data Flow
	ORB and MIME Type Sniffing in Detail
	Error Handling
	DevTools Interaction

	Compatibility
	Future Work
	Metrics

