Voting Escrow

e \otes have a weight depending on time, so that users are committed to the future of
(whatever they are voting for).
e Vote weight decays linearly over time. Lock time cannot be more than MAXTIME (4
years)
o Voting escrow to have time weighted votes
o Votes have a weight depending on time, so that users are committed to the future
of (whatever they are voting for).
o The weight in this implementation is linear, and lock cannot be more than
maxtime.

Structs

1. Point struct
- bias

- slope

- ts (timestamp)
- blk (block)

We cannot really do block numbers per se because slope is per time, not per block and per
block could be fairly bad because Ethereum changes blocktimes. What we can do is extrapolate
at functions

2. LockedBalance struct:
- amount
-end

Interfaces:

1. ERC20:

- decimals()

- name()

- symbol()

- transfer()

- transferFrom()

2. Smart wallet checker



Interface for checking whether address belongs to a whitelisted type of a smart wallet. When
new types are added — the while contract is changed.
The check() method is modifying to be able to use caching for individual wallet addresses

check(address) — bool

Constants

- DEPOSIT_FOR_TYPE
- CREATE_LOCK_TYPE

- INCREASE_LOCK_AMOUNT
- INCREASE_UNLOCK_TIME

WEEK
MAXTIME (4 years)
MULTIPLIER

Events

1. Commit Ownership
- admin: Address

2. Apply Ownership
- admin: Address

3. Deposit

- provider: address
- value: int

- locktime

- type

- ts (timestamp)

4. Withdraw

- provider: address
- value: int

- ts(timestamp)

5. Supply
- prevSupply

- supply



State Variables

- token (address)
- supply(uint256)
- locked(HashMap[address, LockedBalance])

- epoch(uint256)

- point_history(Point[100000000000000000000000000000])
- user_point_history(HashMap[address, Point[1000000000])
- user_point_epoch(HashMap[address, uint256)

- slope changes(HashMap[uint256, int128))

Aragon compatibility vars
- controller: address
-transfersEnabled: bool

- name
- symbol
- version
- decimals

Checker for whitelisted (smart contract) wallets which are allowed to deposit. The goal is to
prevent tokenizing the escrow.

- future_smart_wallet_checker: address
- smart_wallet_checker: address

Methods

1. constructor

e Params
o token_addr: Address: ERC20CRYV token address
o _name: String[64]: Token name
o _symbol: String[32]: Token Symbol
o _version: String[32]: Contract version - required for Aragon compatibility
Does initial setup of the contract.

2. commit_transfer_ownership
Transfer ownership of voting escrow contract to addr
e Params
o addr: Address: Address to have ownership transferred to



3. apply_transfer_ownership
Apply ownership transfer

4. commit_smart_wallet_checker
Set an external contract to check for approved smart contract wallets
e Params
o addr: Address: Address of smart contract checker

5. apply_smart_wallet_checker
Apply setting external contract to check approved smart contract wallets

6. assert_not_contract (internal)
Check if the call is from a whitelisted smart contract, revert if not
e Params
o addr: Address: Address to be checked

7. get_last_user_slope (readonly)
Get the most recently recorded rate of voting power decrease for “addr’
e Params
o addr: Address: Address of the user wallet
e Returns
o int128, Value of the slope

8. user_point_history__ts (readonly)
Get the timestamp for checkpoint _idx for _addr
e Params
o _addr: Address: User wallet address
o _idx: uint256: User epoch number
e Returns
o uint256: Epoch time of the checkpoint

9. locked__end (readonly)
Get timestamp when _addr's lock finishes

e Params
o _addr: Address: User wallet
e Returns

o uint256: Epoch time of the lock end

10. _checkpoint (internal)
Record global and per-user data to checkpoint
The entire contract's main logic is here.
e Params
o addr: Address: User's wallet address. No user checkpoint if 0x0
o old_locked: LockedBalance: Previous locked amount / end lock time for the user



11.

12.

13.

14.

15.

16.

17

18.

o new_locked: LockedBalance: New locked amount / end lock time for the user

_deposit_for (internal)

Deposit and lock tokens for a user

Params

_addr: Address: User's wallet address

o

o _value: uint256: Amount to deposit

o unlock_time: uint256: New time when to unlock the tokens, or 0 if unchanged

o locked_balance: LockedBalance: Previous locked amount / timestamp
checkpoint

Record global data to the checkpoint. Calls internal checkpoint method

deposit_for
Deposit *_value™ tokens for *_addr’ and add to the lock. Anyone (even a smart contract)
can deposit for someone else, but cannot extend their locktime and deposit for a brand
new user.
Params

o _addr: Address: User's wallet address

o _value: uint256: Amount to add to user's lock

create_lock
Deposit *_value™ tokens for ‘msg.sender’ and lock until *_unlock_time’
Params
o _value: uint256: Amount to deposit
o _unlock time: uint256: Epoch time when tokens unlock, rounded down to whole
weeks

increase_amount
Deposit *_value™ additional tokens for ‘msg.sender’ without modifying the unlock time
Params

o _value: uint256: Amount of tokens to deposit and add to the lock

increase_unlock_time
Extend the unlock time for ‘'msg.sender’ to *_unlock_time’
Params

o _unlock_time: uint256: New epoch time for unlocking

. withdraw

Withdraw all tokens for ‘msg.sender’. Only possible if the lock has expired.

find_block_epoch (readonly)
Binary search to estimate timestamp for block number
Params



19.

20.

21.

22,

23.

o _block: uint256: Block to find

o max_epoch: uint256: Don't go beyond this epoch
Returns

o uint256: Approximate timestamp for block

balanceOf (readonly)
Get the current voting power for “‘msg.sender’. Adheres to the ERC20 “balanceOf
interface for Aragon compatibility.
Params

o addr: Address: User wallet address

o _t: uint256: defaults to block.timestamp: Epoch time to return voting power at
Returns

o uint256: User voting power

balanceOfAt (readonly)
Measure voting power of “addr’ at block height *_block™. Adheres to MiniMe
“balanceOfAt" interface: https://github.com/Giveth/minime
Params
o addr: Address: User's wallet address
o _block: uint256: Block to calculate the voting power at
Returns
o uint256: Voting power

supply_at (readonly)
Calculate total voting power at some point in the past
Params
o point: Point: The point (bias/slope) to start search from
o t: uint256: Time to calculate the total voting power at
Returns
o uint256: Total voting power at that time

totalSupply (readonly)

Calculate total voting power. Adheres to the ERC20 “totalSupply’ interface for Aragon

compatibility
Params

o t: uint256: Defaults to block.timestamp
Returns

o uint256: Total voting power

totalSupplyAt (readonly)
Calculate total voting power at some point in the past
Params
o _block: uint256: Block to calculate the total voting power at
Returns


https://github.com/Giveth/minime

o uint256: Total voting power at *_block’

24. changeController
Dummy method required for Aragon compatibility



	﻿Voting Escrow 
	Structs 
	Interfaces: 
	Constants 
	Events 
	State Variables 
	Methods 


